E4024560 - O

Correctness concerns and, among other things., why they are resented.

Invited paper, to be presented at the 1975 International Conference

on Reliéble Software, 21—23 April 1975, Los Angeles, California U.S.A,

Edsger W.Dijkstra
Burroughs
Plataanstraat 5
NUENEN - 4565
ThelNetherlands

According tc Webster's definition of a tutorial: "a paper and esp. a
technrical Paper written to give practical information about a specific subject",
this paper is not worthy of the name "tutorial", because I would bever describe
what I intend to do as "giving practical information". On +the contrary: 1 intend
to give as little "practical informatien" as I possibly can. I am not geing to
enumerate facts, results and theories, for those you can find --in abundance,

I am tempted to add-- in the published literature. What I do hope to achieve,
hoewever, is helping you to understand and evaluate those facts, results and
theories when you encounter them in the literature. I intend to do so by providing
you with a historieal perspective, be it --in more than one sense-- a partial

one. It is & lucky circumstance that the amateur Fistorian, like myself, can
always come away with very few facts: the fewer the facts, the greater our

freedom of interpretation, and it is that freedom that I intend to enjoy.-

For a short while we have to go back to the scientific climate at the
beginning of this century, for there we seem to find the roots of the philosophica
opinions that prevailed a few decades later. And these philosophical opinians,
in turn, seem toc be the source of today's tacit ESSumptiuns; By being tacit,
these assumptions tend to escape being challenged and that is bad, because
they are third-generation off-spring of scientific hopes that, in the mean time,
have been shown to have been unjustifi;d, they express everyman's image of a

goal that, in the mean time, has been proved to be unattainable.

The scientific optimism of the late 19th century is resporisible for the

common apinion that "the greater our'knowledge, the more perfect our understanding

EWD450 -1

This assumption is the ultimate justification for so many of our university
curricula, that one can hardly challenge it without running the risk of being
accused of preaching the virtues of ignoranée. Yet I challenge it: the greater
our knowledge, the more perfect our understanding..... what sheer nonsense!
Think about the wealth of information that the modern communication media

give us about the world and its inhabitants: never before, Mankind has been

so confused about itself as today! The overpowering flood of conflicting im-
pressions leaves many of us so bewildered that, in utter despair, they seek
salvation in cheap mysticism or a narrowminded ideology: the greater knowledge
has not created greater understanding, it has created extremism instead.
Another fine example is provided by the last decades of nuclear physics. At a
phantastic expense a phantastic number of bubble chamber experiments have heen
made. And what has happened? By discovering a new "elementary particle" every
other week, the nuclear physicists have made themselves the laughingstock of

the scientific community.

What, you may ask, has all this to do with Computing Science? Well, every-
thing. In perfect analogy to the belief that our understanding was imperfect,
because we did not know enough, it was also- felt that many goals were not
reached, hecause what had to bé done for that purpese, could not be done fast
enough. The usual explanation of the successful advent of the avtomatic com-
puter refers to Babage's technical failure to make one with mechanical means,
and observes that, at last, electronic technology had made its construction
feasibly:, T would like to offer another explanation: at last there was a cul-
tural climate in which the attitude of "the mere, the better" was such a pre-
dominant one that it was willing to accept the gimmick'as the obvious tool for
our salwvation. And if you do not believe this explanation, try to imagine,
how Confucius, Buddha, Jesus, Mohammed or Homer would have reacted when they
had been offered a UNIVAC 1...., Who of us doesn't remember the advertisements
for the first electronic business—mécﬁines, proudly announcing that "our machines
will take for you more than a hundred thousand decisions a second!". The adver—
tisement did not warn the reader that they were all trivial, nor that in this
connection the use of the term "decision" is misleading, but to that misleading
terminoclogy I shéll return later. Speed was the key issue ard in the thinking

of many still is,.

The first warnings that with faster and faster machines, the conceptual

EWD450 - 2

problem of designing thase wondérful computations for which tomorrow's machines
would be powerful enough, would at least grow in propertion, were not taken in
gratitude. They were not even heard, for they would have spoiled a dream....
Babbage's daydream had first to become a fully transistorized nightmare....

And has the latter traumatic experience cured all of us from confusing day-
dreams with attainable reality? I am afraid nof: the distorting spell of speed
still seems to make its victims. We see automatic thearem provers proving toy
theorems, we see automatic program verifiers verifying toy programs and one
observes the honest expectation that with faster machines with lots of con-
current processing the life-size problems will come within reach as well. But,

honest as these expectations may be, are they justified? I sometimes wonder...

Another path via which the last century's unwarranted scientific optimism
has influenced aur trade is psycholagy. In an effert to understand Man, psycho-
logists decided to study Rat; They designed a crude model of the Rat's behaviour,
a model tHat showed only a superficial resemblance +n the behaviour of the true,
average Rat, But in the scientific optimism of those days, that did not disturb
anybody: the beginning, full of promise, was there, in principle the modelling
worked and from now onwards it was only a question of refining the model. Once
we. should have a fully a:ceptéble model of Rat, and from there to a model of
Man would then be only a next step. That the ensuing imaée of Man would, in
all probability, be somewhat ratomorphic did not seem to bother many psychologists
either. But again the question is: how'lung can one live with a “prowising start"
without becoming blind to the possibility that the promise will never te ful-
filled? '

What, one may ask again, has this to do with our trade? Well, as I hope
to explain: everything. At the beginning of the computer revolution a book
appeared with the aminous title "Giant brains, or machines that think". Once
at a time I was tempted to write a compensating companion to it under' the title
"Giant hearts, or machines that fall in love", but I did not do so, when I
realized that the title about the giant brains was more symptom than cause.

To the somewhat excited hoped as to what machines can do had been added a

somewhat simplified image of Man,

Extreme consequences of that attitude can be found in all effarts aimed
at developing "natural language programming systems”, a theme that recurs with

the same reqularity as influenza epidemics. It is observed that without con-

EWD450 - 3

siderable dedication people have a hard time expressing themselves precisely
in a formal system as provided by a programming language. Man at large being
rather educatidn-resistant in that view, the problem is solved by letting him
express himself in a way which precludes precision, By posing smart questions
about the Man's intentions —-the‘Man in this connection always being denoted
as “the user"-- the system will eventually guess his intentions, Interactive
facilities have added a new dimension to this game and ultimately the "user"

will produce his design specifications as a kind of Pavlovian slobber.

These are, of course, extreme cases., But even efforts to prove mechanically

a8 posteriori the correctness ar —-because for the latter there seems to be a
bigger market-- the incorrectness of programs, efforts to guess mechanically
invariant relations for repetitive comstructs —-because most programmer's are
supposed toc be too lazy or too stupid to write them down themselves--, they

all have something of that condescending flavour. Just because a machine is

very good at a few things we are poor at, it does not follow that ultimately

the machine will be very good at something just because we, ourselves, find it

difficult. Yet, the euphoric pressure to helieve so0 is still very strong,.

Alttcugh not directly connected with the theme "software reliability",
I cannot resist the temptation to draw from the wider field of Computing
Science a few further examples. The desire to understand Man in terms of
Machine has --as is only to be expected-- its inverse counterpart, viz. the
desire to understand the Machine in terms of Man: in computing science the
terminology is shockingly anthropomorphic. What with Habbage was still called
"a store” is now "a memory", what used to be called "an instruction code" is
now called "a programming language". I picked up the sentence "When this Juy
wants to talk to that guy..." while the speaker referred to distant components
of a computer network. I contend that this preponderance of anthropomorphic
terminology is the symptom of a wide-spresd confusion, a confusion without
which, for instance, so-called "conversational programming” would never have
enjoyed the glamour that, at one time, it did enjoy. Finally: the traces ef
the superstition "the more, the better" can be found in the awe for so-called
"powerful".prcgramming languages, with all their hells and whistles, and does
the belief- "the greater our knowledge, the better our understanding"” not find

its ultimate confirmation in today's cult of large data bases?

* *

EWD4A50 - 4

I would not like to leave you with the impression that Computing Science
has developed along 30 years of foolish projects: such a distortian of the
truth would be too gross even for the worst amateur historian! With respect to
Software Reliability a lot has happened, insights of lasting value seem to
have been gained, and all that took place in a relatively short period of

time!

The first expression of serious concern about the confidence level of
our programs, that I could find in the open literature dates from 1961, In
1965, at the IFIP Congress, it is voiced by more. Stanley Gill, for instance,
remarks: "Another practical problem, which is now beginning to loom very large
indeed and offers little prospect of a satisfactory solution, is that of
checking the correctness of a large program.", certainly an expression of
serious concern! John McCarthy opens his introduction with: "The prize to be
won if we can develop a reasonable theory of computation is the elimination
of debugging. Instead, a programmer will present a computer—chécked proof that
a program has the desired properties." Here, the reader is left in doubt as to
whether McCarty's main concern is really the ultimately attainable confidence
level or only the great expense of the debugging process, but sericus concern
is' ir any rase expressed. In passing we note -~-we shall return to this later--
that both speakers don't mention yet any alternative for a posteriori veri-

fication,

Were these guotations two fairly isolated examples taken from the 1965
Conference Proceedings, in 1968 the climate has changed drastically. In October
1968 the NATO Conference on Software £ngineering created a sensation by its
open admission of the software crisis. Anyone doubting, that much has changed
since then, should read those conference proceedings! One now very well-known
professor of Computing Science confesses that "the wozrd "proof" causes him
to hate a sort of mental hiccough", another very well-known professor of com-
puting science calls the notion of proof "idyllic" and nowhere one finds a
reference to R.W.Floyd's article that by that time is already one year old!
Was that NATO Conference perhaps technically not. very significant, its
political significance can hardly be underestimated: the most significant

work could happen since!

E4D4nC - 5

After the above sketches of the intellectual climate, we turn, in a
little bit more detail, to some of the more technical aspects: ohviously we

do so without any claim te completeness.

Cne of the, in retrospect, most striking things is that for many years
the correctness problem was solely viewed as a posteriori verification of
given programs. Given a program and given a set of requirements, does the given
program meet the given reguirements? Phrased as a question that could be answered
by "Yes" or "No", it was apparently not without appeal for the mathematicians
of -that period, mathematicians who, by their traiming, were on the average
perhaps rather analytically oriented. But besides that, I think that a specific
tradition pushed them inte that analytic direction, and that is the tradition
that got its pronounced form with the work of Alan M.Turing. It is the approach,
in which a --hopefully well-understood!-- mechanism is started and we are
invited to figure out, whether we can prove something about the class of ensuing
happenings, corresponding to the class of initial states in which the mechanism
may be started. We can ask nurselves whether it will terminate or, if that is
too difficult, whether we can say something about the final state provided the
activity terminates, and so an. It is the mechanistic, operational point of
view which regards the "answer" to be defined as the last one of a long sequence
of intermediate machine states of which the initial state is the first one.
Turing's work and the branch of mathematics that emerggd from it were so impressi.
that they caused a strong bias in the earlier work on pragram correctness, a
bias which I do not consider as wholly fortunate., Its main CoAsequences SEeem

to have been the follaowing.

Firstly, nearly all through the sixties, efforts at giving a formal definit-
ion of the semantics of programming languages have been in the form of writing
an interpreter, i.e. designing an abstract machine, for such a programming
language. Developing means far describing the intermediate.statES of such an

abstract machine became soon a major concern.

Secondly, the unsolvability of the haltirg problem, combined with an
early desire to mechanize correctness pruviﬁg, has caused many to restrict
themselves --apparently without much hesitation-- to proving pértial correctness
only, viz. proving only that an acceptable answer will be produced under the

additional assumptiorn that the computatiaonal process terminates.

EwWDa%0 - 6

Since the late sixties we distinguish, however, a process for which
"shedding the shackles of automata theory" could be an appropriate --be it
perhaps too vivid-- description. Two things started to happen in parallel,

initially, as far as I can see, rather independently of eachother,

The first development was the result of challenging the choice of a
posteriori verification of given programs as the most significant problem,
the argument against that choice being that programs are not "given", but
must be designed Instead of frying to find out which known proof-patterns
are applicable when faced with a given program, the program designer can
try to do it the other way round: by first choosing the proof-pattern that
he wants to be applicable, he can then write his program in such a way as to
satisfy the requirements of that proof. This "inversion" of the problem of
program correctness was one of the cornerstores of the field of activity
which about five years ago became known as "programming methodology".
Correctness proofs began to play in that field of activity two signifiecant
roles: firstly, in the constructive approach to the problem aof program
correctness, proof-patterns provided an important heuristic guidance during
the programming process, secondly, the length of the ecorrectness proof re-
quired was generally accepted as an objective measure for the "elegance” of
programs and for the "adequacy" of proposed languaée features. This objectivity
has probably been more effective in reaching a comfortable consensus of
opinign among many than anything else, certainly moré effective thar eloquence
could ever have been. I mention this consensus explicitly, because it has
been so important: it was the only way in which we could hope to raise language
design from the prlitical and commercial level, aimed at "user satisfaction"

to the level of a scientific activity.

In parallel to the exploration of programming methodologies, the methods
for proving program correcthess and their foundations, slﬁwly divorced them-
selves from the operational pwoint of view. Naur's article of 1966 and Floyd's
article of 1967 are still rather operatiomal, but Hoare's article of 1969
presents a step away from that pDint-of view, as he suggests that "axioms
may pravide a.simple solution to the problem of leaving certain aspects of
a language undefined”". This remark is deeper than the primarily suggested
applications such as leaving wofdlength or precise specification of rounding

rules unspecified. Hoare's rules for the repetitive construct rely on the

EWDATO - 7

fact that the repeatable statemenrnt leaves a relevant relation invariant. As
a result the same macroscopic proof is applicable to two different programs
which only differ in the form of the repeatable statements S! and 52 -,
provided that both S! and 52 1leave the relevant relation invariant .(and
ensure prOgress). But then the same proof applies‘to a non-deterministic

machine in which a daemon decides quite arbitrarily at each repetition,

whether 5! or 52 will be chosen! The fact that the obviaous way was shown

for dealing with at least some very common and desirable forms of non-determinac
although obvious in retrospect, only came to be exploited systemetically a few
years later. From the operational point of view, such daemon's seem to create
problems: they must be assumed to supply some "ghost-input" to the mechanism
that, assumed to be deterministic, otherwise would not know which way to go.
Reasoning from the other end and starting with the functional specifications,
the daemons only enter the picture by the time that we start thirking about
implementations: they appear as the freedom of the implementation, viz.

wherever the choice does not matter.

* *

I now skip the enumeration of a long series of important'publicatinns,
successful development projects and promising research efforts, and would
like to round up by drawing your attention to two side-effects of all these

efforts, the final impacts of which still lies in the future.

The first one is that most technigues for proving the correctness of
a program treat the program text as a static, rather formal, mathematical
object that can be dealt with independently of the fact that there may exist

machines that could execute such a program. As such,a clear separation of

EDNCEINS emerges: we might call them the mathematical concerns about correct-
ness and the engineering concerns about efficiency. In contrast to the
correctness concerns, the efficiency concerns are only meaningfull in relatien
to implementations and it is only during the efficiency concerns that we need
remember that the program text is intended to evoke computational processes.
Both the mathématical and the engineering cunﬁerns have, of course, always
been with us, but once they used to be dealt with inextricably intertwined.
The discovery how to separate them rigorously in our thinking is relatively

young, and even when aware of this possibility, we often fall back inte our

EwWD4s0 ~ 8

old bad habits. But I guess that this discovery will have profound conse-
Quences, which will become fully apparent when new generations of programmers
have been educated who separate these concerns more naturally than we do,

unhampered as they are by our obsolete experience and out worn-out habits.

The second side-effect concerns the bells and whistles of yesterday's
programming languages. When the correctness guys started their efforts, they
used at first very simple programming languages, mini-languages, one might
say. for the programmers who lived "in the real world of computing™, this
restriction was often a reason for some scorn: "Toy-problems, solved by toy-

programs written in toy-languages: what has that to do with us?".

But things, again, are changing. People decided to try to program
without got-statements, and it did . not do much harm to the efficiency of
their programs, quite often gn the contrary even. Feople decided to do away
with "controlled variables" as we know from FORTRAN's D0-loops or ALGOL 60's
for-statements, and this did not impair the efficiency either. But after a
while, these "restrictions" turned out to bear unexpected fruits: for
instance, people who had trained themselves in using & very simple, but very
elégant repetitive construct, could discover algorithms that turned out to
be much harder to find by a programmer in whose mind repetition was irre-
vocably connected with a controlled variable. The abclishment of the "controlled
variable" turned out to be a gain! Aﬁd this process seems %o be continuing:
the correctress guys have still a tendency to use mini-languages, but in the
mean time their experience in using them is no longer restricted to toy-

problems, on the contrary!

I would like to end this talk by relating a recent personal experience
that may be exemplary for the kind of surprises that the use of such mini-
languages still has in store for Qs._I had been ExplDring‘programmiﬁg metho-
dologies and as a carrier for my investigations 1 had used a mini-language
without recursion (although intuitively I was fully familiar with recursive
programs for about fifteen years). I did not feel the urgent need to intro-
duce recursion at this stage, because my language did contain extensible
ane-dimensional arrays and, when tempted to use recursion, 1 felt that I

could always try to program around it.

EWD4s0 ~ §

fackling a problem from graph theory I developed (as a matter of fact
without feeling the need for recursion) without much hesitation in a number
of steps a beautiful algorithm, clear, compactly coded and highly efficient
in terms Dfloperations needed (viz. linear in the sum of the number of edges
and the number of vertices of the given graph). It turned out that, shortly
before, an algorithm for the same problem had been published in an American
Journal, an algorithm that had the same efficiency characteristics, but was
very hard to understand and --as 2 result'-- was generally considered as a
great intellectual achievement: no one less than Donald E.Knuth described
the published version as "a deep algorithm". For the difference in clarity
and ease of discovery] have only one explanation: my program manipulates
lexplicjtly --they entered the design quite naturally, one after the other--
four independent stacks, most of them growing and shrinking asynchronously
with eachother. The published version, however, was a recursive program,
by its very nature favouring.a solution with one (anonymous) stack, and
squeezing a four-stack algorithm into that straightjacket is in all probability
indeed "a great intellectual achievement", which, however, cannot be expected

to lead to a very natural program.

The discovery that doubts may have to be casted upon recursion --in
Computing Science for more than a decade the hallmark of academic respect-
ability!-- was something of a shock for me. Although at the moment of writing
not yet conclusive, evidence is piling up: a number of our established
"powerful"™ programming language features, even beloved ones, could very well
turn out to belong rather to "the problem set" than to "the solution set".
And even if this were the anly lasting contribution of the work of the

correctness guys, their efforts seem already well-rewarded'

22nd November 1974

