EWDALZ - O

Abnut robusiness and the like.

I cannnt expect the following to exceed the status of a very tentative
and preliminary report, for that is what it is as far as 1 am concerned. In
the year behind me I have confined my atiention --intentionally!-- almost
exclusively to one-and-a-half aspect of the programming task. Let me summarize
it, so that I can use it as my starting point.

_ The one side had to do with "program correctness". For this purpose I
considered a program as a code for a predicate transformer that for each
post-condition R allowed us in principle to derive the corresponding weakest
pre-condition for the initial state that would guarantee a terminating pro-
cess ending in a final state satisfying R . In order to get a balanced view
of the significance of that theary, the following remarks seem in order.

1, For Yerazy" R --i.e. a totally uniniended post-condition-— the method
works only "in principle®, namely in the sense that carrying out the predicate
transformation would lead to totally ummanagesble formulae. I do rot consider

this as & serious defect -- as a matter of fact: as no defect at all.
2. Focussing attention upon the intended pust-condition, the formalism

could be used in a constructive manner, designing programs for which a
sufficient pre-conditian could be derived as well., The corresponding formal
discipline is certainly on the plus-side of the achievement.

3. In order to get not too excited we should observe that the formal method
referred to is quite sufficient when we want to compute the greatest comman
divisor, because there both problem and answer are phrased in terms of integers,
i.e. the basic subject matter being manipulated by our programming language.
Quite often, however —-when dealing with graphs, for instance-- we introduce
(because neither problem nor answer is really stated in terms of integers)

a canvention for representing the current state of affairs ~-initial, inter-
mediate and final-- with the aid of integer variables and arrays. In one
direction we introduce a representation, in the other direction an abstraction
function, associating with each collection of integer values a unique value

in the abstract domain. The gquestion whether this representation/abstractinn

is adequately mirroring our intentions has largely been left outside our
considerations. (To quote an older sentence, by which T tried to capture

this state of affairs: "The only thing a computer can da is the manipulation

of sym?ols, the only reason for doing so is that the symbols stand for something
else."

3.1. I think that I know what has to be done: the absiract values and the
operations upon them have to be captured in a formal system. Independent of

the program we can ask ourselves if we think that ihe axioms of that formal
system capture the subject matter we would like to talk about. (T hope that
this remark silences the complaint:"When do you know that the given specificat-
ions are the ones intended?". The obvious answer is:"Never, but we can do our
best in trying to be pretty sure.")} Using techniques --see Hoare's article

on the correctness of data representations in ACTA INFORMATICA-- we can verify
formally that our manipulations on our represented values satisfy the axioms

of the abstract formal system, Usually we don't do that!

3.2, The situation is a litlle bit more serious in the sense that we are
often willing to use known properties of the abstract world to "guarantee"
things about the higtories displayed by the repressnted values manipulated. .

Ewngs2 -1

We shall argue that a certain loop does terminate because we can related each
history to a direcled path on a graph --our abstract entity-- of which we
know that it has no cycles! And such a sweeping statement is not wilhout
danger when, for instance, each terminal "leaf" is represented as a node

with an arc leading from itself to itself! Yet we do it, and I do as yet .
see no renl aliernative. The best seems to be aware of it —-and to hesitate
three or four times when introducing "a cunning representalion convention".
Without further information and further thought] assume for the time being
that this oscillation between "the representation" and "what it stands for"
is an intrinsic part of the programmer's game, of which he had better be
aware! (It could be also this oscillation, which makes programming so difficult
for peaple untrained to switthing between levcls.)

4, On the plus-side is certainly that our approach has shown the possibility
to separate to a much higher degree than I was able to achieve before, the
correctness concerns an the one hand from the efficiency concerns on the

other. It is only for the latter concerns --which only have & meaning with
respect to an implementation-- that the other interpretation of the program
text --viz. as executable code-- becomes relevant.

The half aspect tmken into account during the past year was "the cor-
responding computational processes". It was only taken into account as a
source of efficiency considerations --based upon fairly neutral assumptions
regarding time and space requirements of the implementation-- , 385 a means
of providing a motivation for preferring one possible (correct) solution
above another possible (and equally correct) one. Again some remarks are in
order.

5. Under ihe assumption of availability of (in particular) the array oper-
ations --the fact that in actual fact integers stored have to remain within

@ bounded range can be dealt with in the usual way-- our mini-language
allowed very efficient and delightfully compact algorithms of great sophis-
tication, and was certainly helpful in their discovery. This was very en-
couraging and it was refreshing to get hints that many of the usual bells

and whisiles of our powerful programming languages --possibly including
recursion!-- had perhaps better be discarded.

6. Thanks to the fact that precise execution times had been left undefined
a host of aptimization problems became meaningless (leavinq one's mind free
to replace an algorithm of cubic growth by ore of quadratic growth, say). It
is a mistake to think that without precise execution times, the programming
task --at least the efficiency part of it-- becomes empty or trivisl, When
we shift our attention from "efficiency" to "robustness", we hope --and to
be guite honest: trust-- to be able to do so without (in complete analogy)
postulating precise probabilities for various forms of malfunctiong, yet
retaining the ability to "increase robustness by an order of magnitude”

in very much the same way as we could "increase the efficiency by an order
of magnitude" without fixing the execution times,

6.1, The unwillingness to make precies assumptions about the execution times
or fault rates is not only a (commendable!) lazyness from my side: it does
alsa provide s means by which one's considerations gain in gereral applica-
bility. {How many of Don Knuth's optimizations based on counting memory
accesses will loose their validity under the assumption of a small associative
store?)

EWD4L2 - 2

6.2, My stubborn unwillingness to restrici the erralic behaviour of the
daemon which is assumed in the implementation of non-determinacy is a decision
of the same categary.

As 1 have argued elsewhere —-in EWD447-- scientific thought derives its
effecitiverness from our willingness and abilily to isolate an aspect of our
problems temporarily and to try to study it for a while in isolation, for
the sake of its own consistency, 50 to speak. This "focussing of one's attention!
is different from (completely) ignoring the bpther aspects, for the one who
does the latter is, indeed, a narrow-minded fool whose work cannot be expected
to have any significance ouiside the little world he has created for himself.
Consciously trying not to be a narrow-minded fool, I have tried te fecus my
attention upon the correctness problem, without forgetting about the engineering
considerations that are related to the computational histories. There was a
reason for tackling ihe correctness issue first --besides it being easier--
and that is the following. (I mentiaon it, because it seems often overlooked.)

In very pragmatic environments, it is often argued that "our software
need not he more reliable than out hardware”. (Note. This siatement only makes
sense if, with respect to software, the adjective "reliable" can be used in
practly the same meaning as with respect to hardware --otherwise we let
ourselves in for statements like "this cup of tea is sweater than that cup
of coffee is hot"--; anyhow I have my doubts.) As an assumed consequence it
is allowed that programs may contain errors producing erroneous results,
erroneous results that could have been provoked by hardware malfunctioning
as well: they will be caught by the same recovery mechanisms that have to
be included anyhow. Here, however, T have a few comments.

7. From a point of view of maintenance of the hardware --of which we must
assume, in contrast to software, that it is subject to wear and tear-- it

is highly desirable to be allowed to conclude from cerlain recovery needs that
only -hopefully rather specific-- hardware malfunctioning can have caused
them!

8. Even if we allow malfunctioning and introduce recovery protocols, we
would like the recovery process itself --please!-- to he correctly programmed!
This gives a certain technical priority to the problem of program correctness
OVET TERCOVETY.

9. The task of recovery is one that I can only understand in relatien to
what a correct program correctly executed woiuld cause to happen. This gives
a certain philesophical priority to the problem of program correctness.

10. I am not sure that such systems of hierarchical reeovery do not suffer
from the same disease as most "system engineering systoms" seem to suffer
from: having understood from Wiener that a system should have feedback, they
make a religion out of "design iteration cycles" without worrying whether
the iteration cenverges towards something scceptable. Locking at the history
of D5-like projects, one can only get the impression that they often don't

do so.
* *

In the three-day interval denoted by the above stars I cleared up a
confusian in my mind, that I must deal with first, before I can proceed. It
has to do with so-called "defensive programming".

EWRAs2 - 7%

We teach students explicitly thai if in a certain point in the program
only three cases are allowed Lo occur, and all three have to be dealt with
separately, the program should not test explicitly for the presence of
two cases, and lreat by default anything else as "the third case", but that
for the third case should be tested explicitly as well. (That with the advent
of the guarded commands the temptation for which we had to warn has largely
disappeared, is fine, but here of no relevance.) In the hislory of the program,
including its development, such "superfluous tests" played, however, very
different roles!

In the beginning --we know how programs used teo be'!-- they were a de-
Bugging aid. And upon the alarm that a fourth case, uncatered for, was pre-
sented, we wsually still had to figure ocut, whether not catering for the
fourth case had been an omission of that program part, or whether the
fourth case had been erroneously produced by & program bug somewhere else!
(11 is typically the function of explicit program interfaces to settle that
dispute in advance.) In any case the alarm was taken at the beginning as
the indication of a program bug. Dy the time that one was fully confident
in the program's correctness --fully confident to the standards of those
days-—- , however, one did not remove the checks, on the contrery! If, after
intensive use of such s debugged program, one of these checks suddenly gave
an alarm, -the first thought was a detected machine malfunctioning.

If in the following I consider the justification for additional checks,
it wil) always be in thal second functinn. While designing "correct programs”
as I have been considering during the past period, 1 always assumed a per-
fect machine in the case that you wanted the program execuled. (Perhaps
you were not interested in its execution at all: the guestion of the program's
correctness still makes sense.) But now [am shifting my attention from the
program towards it execution, and now I must assume a perfect program! I

pretend to be no longer interested in the guestion of the correctness of the
program, but only to be interested in the correctness of the answer, the
correctness of the execution. I know that this vivlates our common sense aof
modesty. Yet this is the only sensible assumption that I can make if I want
to separate the various concerns, and if I don't do that, T know that I shall
never come to grips with the problem. (1f it hurts too much, we shall assume
our programs to have been made by The Good Lord Himself, in exactly the same
way as we have delegated last year the execution of our programs to The Good

Lord's Machine GLM!)-

* *
*

S0 we envisage the situation of a perfect program executed by a possibly
lousy machine, i.e. a machine that possibly does not provide a perfect imple-
mentation of our programming language (and those wha regard this sjtuation
so utterly unrealistic as to have difficulty in reading an, 1 can only beg
to have patience, lois of patience.....

In our aims we may be modest or ambitious: in the modest approach we
only try to decrease the probebility of producing & wrong result, in the
ambitious approach we try also to increase the probability of producing the
right result, the difference being in the probability that the machine "gives
up". In the modest approach the adagium will be "When in doubt, abstain!",
in the ambitious approach the adagium will be "When in doubt, try saomething
else, try to recover!", The ambitious approach is clearly self-defeating if
the decreasing probsbility of "giving up" is bought at the price of an

increasing prabability of producing a wrong result, i.e. our modest approach

EWDASZ2 - 4

poinls at a goal that we should never forsake; it is the most fundamenial
of the two, and, therefore, I shall focus my attention upan that one first.
(1t has the added advantage of seeming to be the easier of the twa.)

How can we increase our confidence --because that is now what it boils
down to-- that during program execution pothing has gone wrong? Well, the
machine can certainly assist by its very structure to incressing that confidence
There is one very important way in which it can do so, so important as a
matier of fact, that we may state thati a well-designed machine must do that.

I assume thal our programs have been written for the GLM, because that
is a maching we can hope tn be able to program for. The designer of the
actual machine knows —-nr at least, he should know-- that he is not the
Goad Lord Himself, and that he can hope at most to bhuild & partial simulator
of the GLM. While in the GLM, for instance, there is in principle no upper
bound an the maximum value of integer variahles, the actual machine simulating
the behaviour of the GLM may be such -~usually is such-- that it can only
cope with integers up to a certain limii. The simulator should check constantly
whether it fails, not by viriue of malfunctioning, but by virtue of its de-
signpd construction, to sinulate the GLM faithfully. As a result a test on
overflow of integer capacity is absolutely essential and & machine which
in order to remain in range, reduces inteqger values,for the sake of its own
convenience and wilhout warning, modulo something, is a monstrum, unfit for
human use. From now onwards we assume that the design of the actual machine
is perfect as well, perfect in the sense that -apart from malfunctioning--
no wrong answers will be produced in account of undetected inability to
simulate tbe GLM, as incorporated in the design. (The simulation of the
GLM's behaviour is only claimed for a subset of the bomputations that could
take place in the GLM. The simulation as designed is only a partial function
of the correct programs+input, and it is the duty of the actual machine to
check that in this sense it is not invoked outside its domain.)

So far so goed. But now the problems come. There are two types of
results: there is the result that is laborious to find, but easy to check,
once you have it, there is also the result that is not only laborious to
find, but egually laborious to check, once you have it.

Suppose that we know how to multiply quickly, but don't know how to
extract a square root. Than "finding the square root" will be regarded as
a laborious process, in order to check it, we only need to compare the
square of the result with the arqument;

Suppose that we want a very large number to be factorized in prime
factors. If the result is a8 long series of small factors of which we know
that they are all prime numbers, we only need to multiply them with each other,
in order to check that the original number returns. But what, if the outcome
of the computation is that the given number itself is already a prime number?
(It is then clearly a prime not known to us, because otherwise there would
have been no pnint in providing it as the argument to cur factorization
prnqram!)

At first sight, there seem only two ways of increasing our cenfidence
in the correctress of a result that is as laborious to theck than it is to
find. And in a certain sense they both seem {o double the costs of computation.

EWp4h2e -~ 5

The one way is usually described as "repeating the computation™. If the

repetition Is done --as they sometimes do-- with a different program and/or
a different machine and/nr a different mathematical approach, and the two
answers confirm each other, we have checked in some way a lot more than
the correcl execulion of a program. We shall --in accordance with the position
taken-- ignore those additional advantages, and only remark, that comparing
two independently derived results is only any gond if the result is unigue,
if we could come away with a deterministic machine. I think --but this is

. na more than a feeling-- that even for the answer of a non-deterministic
computation matters can be srranged in such & way that verification can be
done at a price similar to construction af the result.

The other way is indeed relying on the result, "without back-substi-
tution" so to spesk, because one knows that the individual steps of the
simulation of the GLM have been checked rather shundantly. The secand approach
has the undoubted advantage of being a general purpose salution; add to this
the advantage of getting diagnostic information about hardware functioning,
and it is clear that no computer manufacturer can afford not to explore the
possibilities of that approach. It is, however, not the whole story, for
such a machine makes the outcome of a long computation still less trustworthy
than the vutcome of a short one, Trying to supply the rest of the story is
one of the things I should do!

* *
*
The above, which has the nature nf a research proposal, was written
about three manths ago, from which it can be deduced that, in the mean time,
I have been engaged on onther tasks. At odd moments T have given some attention
to the problem of increasing the reliability of answers produced by a not fully
reliable machine, but 1 intend to describe these exercises in separate documents.
I can, however, already mention one tentative conclusion.

One way of trying to preveni the machine from producing a wrong answer
.is trying to prevent it from making any undetected error. This very puritan
attitude shifts the stress from the correct answer o the cnrrect machine,
and from the point of view of hardware maintenance, it might be the most
helpful one.

My experiments, however, seemed to indicate that "hecking the machine"
to such an extent is a very hard problem, and that the whole problem becomes
more manageable if we don't care for such machine malfunctions that, although
"malfunctions" in the sense of not heing intended behaviour, are harmless in-
sofar that, despite their occurrence, the final answer will still be correct.

The simplest example of such a malfunctioning is when in a repetitive

construct do B -5 od

after B has been correctly evaluated to the value "true" the execution of
5 erroneously reduces to the empty statement "skip". This is a completely
harmless error, and I am afraid that it would be very expensive to catch.

Aithough being a puritan by nature, I expect therefore to confine my
attention at first to the prevention of the generation of wrong results,

st January 1975 prof.dr.Edsger W.Dijkstra
Burroughs Research Fellow

