EWD465.html

Copyright Notice

The following manuscript
EWD 465: Monotonic replacement algorithms and their implementation
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 84-88 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD465.html

EWD465 - O

Monoionic replacement algorithms and their implementation.

(The following is written with demand paging for fixed-size pages in

mind; the size of the pages being fixed is probably not essential.)

The ides of a virtual storage implementation is that not all the
stored information (bnth program and variables) needed for the progress
of a computation need to be in primary store simultaneously, but that for
large periods of time parts of it may reside in secondary store. for this
purpose the information is partitioned over a number of chunks such that
during progress the information of a chunk will be either totally present
in, or totally absent from primary store. In this sense the chunks are our
"units of presence”., If all the chunks have the same size, they are called
"pages"; primary store is then subdivided into sc-called "page frames",

i.e. units of store able to contain exactly one page.

The idea of demand paging is that the computation can proceed at
full speed until access to an absent page is required. Such a requirement
is called "a page fault": the computation causing it .comes to a grinding
halt until the page needed has'been brought in. If only pages were brought
in, the capacity of primary memory would be exceeded very quickly; therefore,
upon a page fault a page gwap takes place: one of the pages present in
primary memory while the page fault occurs is sent back to secondary store,
is "dumped”. The page subjected to this fate is called "the victim" and it

is the purpose of the so-called "replacement algorithm" to choose the victim.

Elsewhere —-in EWD462 (and in its preliminary version EWD408) - 1
have argued that in a multiprogramming environment the victim should be
chosen from the present pages of the program causing the fault. The number
of pages that a program has present 3in primary store, its so-called "window
size", is, as = result, not changed by the occurrence of a page fault. It
is the purpose of this note to describe how the information is te be collected

on account of which a reconsideration of the window size can be justified.

We call a replacement algorithm "monotonic" iff (i.e. if and only if)
it has the following property. If the praogram were executed fwice (but im
strict synchronism) with two different window sizes, the pages present in
the smaller window will at any moment all be present in the larger window,

if this were the case at program start. Monotonic replacement algorithms



EWD46es -

have the pleasant property that the page faults occurring with the larger
window size are a subset of those occurring with the smaller window size,
and an increase of the window size can never lead to.a higher page fault
frequency. It is easily seen, however, fhat a larger window size needs not

to lead to a lower page fault frequency either.

Note 1. Here "frequency" is not meant as "number of times per unit of real
time™, but as "number of times per unit of computational time", i.e. with
repect to a clock that runs while the program is being executed at full

speed and is stopped while the computation is not in progress.(End of note 1.)

Nate 2. In the sequel we shall take the freedom to consider for fixed
window size the page fault frequency as a function of --computation,

see previous note-- time, although a frequency cannot be the function of a
moment, as it is only defined as an average over a period. For the time

being we can think of something like
8 /(nnw - the mament of the last page fault but 7)

Physicists --vide Lorentz-- do things like this all the time; we shall

return to this later. {Fnd of note 2.)

Although we know that at any moment the page fault freguency is a
non-increasing function of the window size, we have without further informa-
tion no knowledge about the slope of that curve (nor need, for a given
computation that slope be constant in time). As a result, with a certain
target page fault frequency in mind, we cannot trust the effectiveness of
the simple feedback mechanism that increases or decreases the winhdow size
if the page fault frequency observed with the current window size was too
high or too low respectively. (This would be like trying to keep a éar on’
the road for which the actual steeriég mechanism reacts with unknown and

varying sensitivity to a rotation of the wheel!)

In particular:

1) If the current window size gives a page fault frequency which is
higher than the target value, we would like to know the larger window size
(if any!) for which the page fault frequency would be small enough. {(We

just cannot expect to find this larger value by trial and error: if within



EWD465 - 2

the bounds of primary store no such window exists, all trials become errors,

and gquickly even expensive ones!)

2} If the current window size gives a page fault frequency which is

higher than the target value --and therefore, decreasing the actual window
size is not something one feels tempted to suggest-- we would like to know
how much the window size can be decreased withcut'increésing the page fault

frequency.

3) 1f the current window size w gives a page fault freguency lower
than the target value, we should like to know the page fault freguency for
@ window of size w - 1 : if that is much higher than the target value, we

must abstain from decreasing the window size.

Note %. The curve plotting the page fault frequency as a (non—increasing)
function of the window size has very often rather sharp knees. In such a
situation the simple feedback system can easily lead to thrashing half the

time.(fnd of note 3.)

The moral of the above is that in order to justify an adjustment of
the window size, we would like to know the (:urrent) page fault frequency
for all possible window sizes, and not just for the actual window size w.
In the sequel we shall show how this information can be obtained for monotonic

replacement algorithms.

Monotonic replacement algorithms define (independent of actual window
sizes!) after each access a unigue order for the pages of the computation
that have been accessed at least once during program start. (In the following
that ordering only interests us for the first maxw elements, if maxw is
the maximum window size.) At any moment the k-th page in that order is the
unigue (!) page that would be contained in the window of size k , but

not in that of size % - 1

fonsider now the effect of an access to a page which, prior to the
access to it, is at stition K imn that order; upon completion of that
access it must be at position 1t . (If we had executed the program with
a window size = 1 , the page concerned would have begn in tHat single page

Trame window.) If K >1 , then the page originally in pasition 1 has



EWDAES - 73

to move to a position higher up in the order, k1 say; then the paqge

originally in position k,F has to move to a higher position, k2 say ,

etc. until a page is brought into position K . More-precisely:

with k =1, k, =K and for O < i <n: k., <k,
1 1 - 1, 1,
0 n j j+t

a@ cyclic permutation of pages has to take place with the page Driginally
at position K moving to a lower position (viz. 1), all other ones moving
to a higher position. For position k with k > K + the ordering remains

unaffected.

Note 4. If, for 0 <i<K we take kj+1 = ki +1 , i.e. each page
originally at a position k < K moves one position higher up in the order,
we have the LRU-algorithm (Least Recently Used). For each window size w

we have that K > w indicates a page fTauli, the page originally at position

w is indeed both the least recently used one and also the one that will

be pushed outside the window. (End of note 4.)

Note 5. All other reorderings than the cyclic permutations described above
would lead to more than one page moving to a lower poéition in the order,
i.e. for some window sizes an unasked for page would be brought inside the
window, but that is not what we call "demand paging": the combination of
demand paging and monotonicity mekes the above cyclic permutations the only

permissible ones. (End of nnte 5.)

The mechanism consists of a string of mosquitos numbered from 1 through
wmax. Mosquito nr. i has a variable cp (current page) whose valué equals
--for the moment we assume that the mdsqujtos are fast enough-- the name
of thg page currently in the i-th position of the order. Furthermore each
musquitolis activated by placing a page name an its "A input" and one on
its "B input". The A input will equal the name of the page that arrives
in its positioﬁ, the B input is the name of the page being accessed. Upon
access of a page, its name is placed on both A input anrd B input of

mosquito nr. 1, The code for mosquito nr. i is: (for LRU)



EWD465 - 4

if cp £ B input — A output:

€p;
B output:= B input;
cp:= A input

H cp = B input - cp:= A input

where the output of mosquito nr. i is the input for mesquito nr. i + 1 .

Left alone, lhe mosguitos will update their cp-value in the order of
increasing ordinal number. If the accessed page was originally in position
K, the first K-1 mosquitos will select the first alternative, the K-th
mosquito will select the second altermative and there the "ripple" ends. If

K>w , & genuine page fault occurs.

If this string of mosquitos were used to detect the presence or absence
of a page, the transmission speed of the ripple would have to be very high’
viz. wmax mosquitos per memory access at least. Under the assumption of
independent presence/absence detection with respect to the current window,
higher mosguitos may lag behind! It suffices if they can go through the
above motions with a speed of once per memory access: they are like the

elements of a fancy shift register.

For the i-th mosquito each selection of the first alternative corres-
ponds te a page fault that would have occurred if i has been the actual
window size. Each mnsquito has to extract from this series o cerresponding
"page fault frequency™. They can do so by taking the pest into account by
an exponentially decreasing weight, for instance by keeping éach.a variable
amppf (“average moment previous page faults") and transmitting "now", and

adjusting each time the first alternative is selected amppf for instance

by amppf := amppf + (now - amppf)/8

(whefe "now" refers to the moment that the ripple entered the string of mos-
quitos). If for a certain window size the page faults occur at reqgular
time intervals "“delta", then in the limit:

before each adjustment: now - amppf = 8 * delta and

[

after each adjuslment: now — amppf 7 * delia .




EWD46S - 5

If we don't like this discontinuity, we can store per mosguito in

addition for instance amppf' , each time updated by
amppf':= amppf' + (now - amppf')/2 .

With page faults occurring at regular time intervals "delta", we have then

in the limit:

before each adjustment: now — amppf' = 2 ¥ delta
after each adjustment: now - amppf' =1 * delta .
As @ result we have constantly _ amppf' - amppf = 6 * delta ,

and with the above we have achieved a Lorentz-like smoothing (see Note 2.)

* - %

Two questions have been left unanswered, but it seems premature to

try to settle them now.

The first question is what to do when a processor switches fram ane
program to another. As an elephant contains the information of wmax mos-
quitos, wmax may be high and processor switching may occur at great fre-
quency, switching one eiephant with equal frequency from one program to
another might lead to unacceptable switching delays. I can only think of the
crude solution: have at least as many elephants as we have high-priority
programs. With tSI-techniques --the more of the same bardware, the better--

this is perhaps ne so unacceptable as it sounds in my puritan ears.

The second guestion is bhow the collected information for a program
is tn‘be delivered. This has to occur at a page fault --when the Qictim
has to be chosen-- and upon reconsideration of the window size. Particu-.
larly in the first case the "lagging behird" of the mosguitas higher up
in the order presents some difficulties: it makes irstantaneous selection

of the victim impossible.

19th December 1974 7 prof.dr.Edsger W.Dijkstra
NUENEN - 4565 Burroughs Research Fellow
The Netherlands



