EWD46Y - O

Programming methodologies, their objectives and their nature.

Years ago I gave a talk at a large software house, showing what
techniques we had at our disposal for preving the correctness of programs.
The talk was a disaster. My audience rejected the topic for what they
regarded as sound business reasons: from a business point if viewycorrectness
was their last goal: it was much more important to make a customer dependent
on a software product so poorly documented and still so full of bugs, that
its maintenance contract fell into your hands as well. But not only the
managers of the firm rejected my topic, so did the programmers in my
audience: they felt that I was tampering with the magic of their craft.
While I had urged that a programmer should eontinue to understard what he
is doing, it transpired during the discussion that many a professional
programmer derives his intellectual excitement from not quite understanding
what he is doing, from the daring rigsks he takes in his irresponsibility.
The wanted the magic of their craft to remain black magic.... I mention
this story because their reaction took me by surprise, My first explanation
for it was, that in this streamlined society, the craving for magic is
one of our most undernourished ones and that programming without truly
understanding what one is doing, is one of the ways to satisfy that deep
psychological need for magic, Later I understood that there is a second

explanation,

All through the centuries, knowledge and skills have been transmitted

to the next generation by two techniques.

The one technique we find with the guilds: here the apprentice works
for years under the guidance of the master, all knowledge is transferred
implicitly, by osmosis, so to speak, until the apprentice has absorbed
enough of it to become 2 master himself., The members of the guild typically
keep their common knowledge and skills among themselves as a well-guarded

secret.

The other technique we find at the Universities: here teachers try
to make the knowledge explicit, to formulate it in words and symbols and,
by doing so, try to bring it into the public domain. It is no accident

that the rise of the Universities coincided with the emerging art of printing:

by being formulated, the knowledye became more stable and lasting and could,

../transcriptions/EWD04xx/EWD469.html

EWD4KY - 1

indeed, become public property.

But,whenever the followers of the University try to bring a new
field of knowledge into the public damain, .try to make an explicit science
out of a secret craft, the members of the corresponding guild feel themselves
to be threatened. And that feeling of being threatened accounted for the
barrier that I hit when I tried to reach the programmers of that software
house! But, thank goodness, that audience did not make upt the world. The
so-called "software crisis" became so apparent, that all sorts of people
involved, both programmers and managers, felt that something should be done
about it snd started to wonder what.

-

For a long time many people felt that the software failure was largely
due to & failure of mapagement. This is understandable: the larger a project
is, the more management is involved, and it were particularly the large
software projects turned into disaster, that attracted the most attentien.
Besides that, many were justly impressed by the American space program that,
by being so successful, led many of us to believe that with perfect management

one can reach any goal,

The idea, that improved management techniques could solve the problem
was further inforced by the discovery that the techniques, used for managing
saftware projects so far,were indeed highly questionable. To take a simple
example: in those days it used to be quite usual to measure a programmer's
productivity by number of lines of code produced per day. Reasonable, isn't
it? It is a programmer's job to produce programs, and ‘the more program he
produces, the more productive he is! But on closer inspectien, that measure
was discovered to be not only meaningless, but even harmful. It is meaningless,
because the programmer is not supposed to preduce "nrograms", he is supposed
to produce solutigns, and the program he writes is only a carrier for that
solution, and the more unnecessary lines of code he uses, the poorer his
solutiaon. But measuring his productivity by the production speed of lines
of code encourages such poor solutions: it encourages the fast production
of insipid code. Besides that, that crazy measure of productivity encourages
coding as suchyand more and more people began to discover that the eoding
stage, at least most of it, had better be postpored as long as possible:

being in a sense the most laborious stage of the programming process, we

EWD469 - 2

had better try to postpone it until we are as sure and certain,as we can,
about what the piece of code sﬁould accomplish, The modern advice is "Don't
rush into codingl” and I expect that in a well-run establishment today a
programmer is not allowed to start coding something without explicit per-

mission. I also guess that many manager would be happy with the rule that

everyone pays the punched cards he uses ocut of his own poctket.

But those who had great expectations of the new management techniques,
those who embraced Systems Engineering or something of the same nature as
the new religion that would bring salvation, were disappointed. The question
is simply .the following: better management techniques, although indispensable,
will, all by themselves, never compensate technological shnrtcom}ngs. While
it is q}ear that without some sort of quality control it is vain to hope
to produce good products, it is also clear that no amount of quality control
will ensure the production of good products if you are unable to make them
in the first place. And it was at that stage, when the shortcomings of our
programming ability were recognized, that people started to talk about
Programming Methodology (with two capital letters). Needless to say, a
considerable amount of thought had already been given to it, under the

surface, so to speak, before that problem area had a name.

Questions that became important were "Why is programming so difficult?"
and "When we know why programming is so difficult, can we avoid some of its
difficulties?". Again, the spectacular failures of s few large software
projects attracted, at first at least, most attention. I remember myself
having been responsible for the following argument, showing why the size
of a program has consequences for the confidence level of its parts. The
argument was as follows: we all know, that we must make a large program |
by composing it out of a number of "meodules", N say, and if p is the
probability for a single module to be correct, the probability P for
the whole program to be correct, satisfies eomthing like

P ﬁpr .

We may now laugh a little about that formula and wonder, how much it means
as long as we don't know what we call "a module", but the formula showed
one thing guite clearly: if N is large (and such pragrams we were thinking

about), then p should be indistinguishable from 1 if P is to differ

appreciably from O . The size of the whole system puts heavier demands upon

EWD469 - %

upon the confidence level of the individual components. Perhaps was the
argument only put forward as a justification for the already existing desire

to study software reliability!

There were a number of reasons for turning our attention to the process
of programming itself. A reslly compelling reason was the demonstrated in-
effectiveness of the debugging process. People spent more than fifty percent
of their time to the debugging of their programs and still they delivered
error-loaded products: it was concluded that program testing might demon-
strate the presence of bugs very'ﬁonvincingly, but is hopelessly inadequate
to demonstrate their absence. And therefore attent%un turned to the problem
how we could prevent most of the bugs from entering the design in the first
place. In view of the well-known advice "Prevention is better than cure.”
not a surprising conclusion; yet it was a conclusion with considerable

effects.

There was a second reason for turning our attention to the programming
process, equally compelling, although perhaps less obvious. The insufficiency
of @ posteriori quality control by testing being demonstrated, their might
be the possibility of groving.the programs to be correct. A correctness
proof seems indeed a much more effective alternative for raising the confi-
dence level of our software products. But the first efforts at proving a
posteriori that a given program was correct were not encouraging, to put
it mildly: if the proofs could be given at all, they were so laborjious and
sometimes tortunus even, that they failed to inspire much confidence. This
was partly due to our limited experience, to the absence of useful theorems,
etc.,but it was also a consequence of the programs themselves. Comparing
these "given" programs with programs that were designed with the intention
of proving their correctness as well, showed that the amount of formal
labour and of detailed reasoning needed, could depend critically upon the

structure of the program itself.

This was a very valusble discovery, for it drove home the message,
that it does not suffice to design a program of which we hope that it
meets its requirements, but that we have to design such a program that we
can demonstrate that it meets its requirements. The program must be such

that whatever we accept as convincing correctness proof must be feasible

as well. , '

EWD469 - 4

This additional requirement of demonstrability of the program's
correctness implied very obviously a change in the programming task and
therefore a change in the act of programming. At first sight it seemed
that this additional requirement would place another burden on the poor
programmer's shoulders, but upen closer inspection it turned out to make
his task in some sense lighter. Needless to say, this was & very encouraging
discovery. As more and more became understood of what it means to prove
the correctness of & program, we got gradually a better knowledge of what
kind of dirty tricks are most harmful to the feasibility of giving the
proof. As such, the additional requirement of the demonstrability of the
program's correctness limited the programmer's freedom, but that is only
a8 negative way of describing its influence; the positive way of. describing
its influence is saying that it gave him elements of a discipline. The smaller

his solutions space, the smaller the prcbability that he looses his way.

It is about here in my story that I must insert a small interlude
about the social role of mathematics. In the above I have referred numerous
‘times to "proofs" and one may raise the question, whether formal proofs in
8 strict mathematical sense are really needed. They are not, of course. The
real need is a convincing demonstration of the prugrém's correctness, and
as the number of cases that we can try is negligible compared with the
number of possible cases, we must to all intents and purposes rely for all
of them on reasoning. Whether this reasoning takes the strongly codified
form of a mathematical proof is gquite another matter. In wany cases good
English is as adequate a vehicle for expressing the reasoning in a convincing
manner than a mathematical symbolism. Most demonstrations of correctness
of preograms that I see today are largely prose, only at specific points
--where the subject matter requires it and prose would give rise to lengthy
and ¢lumsy descriptions-~ supplied with some formalism. The competent

reasoner always chooses the vehicle that is most convenient for the situstion.

Why theﬁ, one may ask, tﬁe stress on formality, a formality that
frightens the layman and tires the reader? This guestion is fully justified,
for the formal aspects of correctness proofs for pragrams are given consi-
derable attention, I would like to give several answers to that guestion.

If you think a formal treatment an obfuscation and failing to convince

because formal manipulations are as error-prone as programming is itself,

EWD469 - 5

I must warn you, that verbal arquments are tricky too, often more tricky
than we would like to admit, and more ofter than the 'superficial reader
suspects general cautiousness fully justifies taking recourse to formal
treatment. This is a justification. Secondly, believe me or not, there

are quite a number of bright young lads, who just like those formal

games. That is an explanation. But most important is its conseguence,
thanks to the fact that it is a generally accepted standard: it has tutned

out to be instrumental in reaching a consensus on many points,

Since the early sixties I have attended many discussiuns about the
elegance of programs, about the adequacy of proposed language features,
discussion which were distressingly inconclusive for lack of & common yardstick
that was generally accepted as relevant, and was also effective. Too much
we tried to settle in the name of "convenience for the user", which was a
nice altruistically sounding name for our ignorance and lack of direction.
As soon as the possibility of formal correctness proofs emerged, the
picture changed completely. The suggestion\that what we intuitively regard
as an elegant program is usually also the program that admits the shortest
formal correctness proof --there was a reasonable amount of experimental
confirmation of that hypothesis-- was immediately accepted by many as a
sound and'effective working hypothesis. By its objectivity it was very
effective and has done more for the reaching of a consensus with regard
to the goals of programming methodology than anything else I can think of.
Such & consensus is indispensable for any joint effort that should have
impact, and, from a historian's point of view, the general acceptance of
the working hypothesis is more important than the question how correct it
is, The fact that from then onwards a number of mathematicians claim to
contribute to computing science by studying the structure of such proofs
for their own sake and forgetting that they were intended %o convince in

the first place, is a price that we should ungrudgingly pay.

So much for the role of mathematical formality: it bas a place when-
ever it assists us in understanding what we are doing or considering. And
such greater understanding has been the main target of programming methodo~

logies.

EWD469 - 6

« The considerations that have been most helpful fall inte two broad
categories. On the one hand we have the general considerations concerning
the question how to avoid unmastered complexity, on the other hand we have
their applications to the specific problem of programming, And I am VETY
glad that we had both of them: the general considerations without very
tangible consequences for the programming activity would have had a hard
time in trying to rise above the level of motherhood statements, the
specific remarks concerning the programming activity would have had an ad

hoc character without the general considerations.

The general considerations try to do justice to the fact that we
have small heads and cannot think about many things simultaneously, but,
besides that, get tired and unreliable when we have to think about a very
great number of things in succession. The way to avoid these situations with
which we can hardly cope has been captured more or less by many catch-phrases:
the exploitation of one's powers of abstracticn, divide and rule, the
judicious postponement of camhitments, the separation of concerns etc.
In eny case we must never forget its dual purpose: to parcel out the
necessary detailed reasoning into portions of manageable size, but, more
important still, to reduce to total amount of detailed reasoning that

remains necessary.

0f these, the advice "divide and rule" was, of course, the best known
one, and at one stage of the game people have felt that the problem of pro-
gramming would be solved provided that we could divide the program to be
made over "modules" of a manageable size. In retrospect it is not hard
to see, that without further guidance, such an arrangement would only
postpone the hard problems till the stage of "integration", i.e. when all
the modules have to be hooked together. This simple view of "modularization
of the program” regarded the program too much as the final product, and took
the early decisions as to what the computer was to do too much for granted.
From there the attention shifted towards what the computer was supposed to
achieve and then it became apparent that what the computer may have to do
in order to achieve the desired effect, is greatly dependent an how one
structures one's solution. And "separation of concerns" is, since then, a
more adequate term, hecause now one tries to parcel out --or: to use another

term: to factorize-- the requirements.

EWD469 - 7

To mention a few of such separations, we want our program to be correct,
we want our program to be efficient, Although the choice of the algorithm is
usually heavily influenced by efficiency considerations, by the time that
we focus our attention upon the question whether under all circumstances
the execution of the program will deliver a correct result, all efficiency
considerations can be temporarily forgotten, we can even forget the possi-
bility of jinterpreting our text as executable code and settle the problem
of correctness quite independent of possible computational histories. This
has given rise to all the theory and practice of proving the correctness
of programs, theorems about repetitive constructs exbressed in terms of
invariant relations --to ensure that no unacceptable result will be delivered--
and variant functions --to ensure effective progress for each repetition--.
The emergence of such theory and practice was greatly facilitated by the
restriction to more disciplined sequencing, to well-known alternative
and repetitive constructs rather than arbitrary jumps. (For instance: the
most useful theorems apply to the altermative and repetitive constructs

as a whole.)

Secondly, we want our programs to be efficient. It is here that com-
putation times are taken into account, But by that time one does not need
to worry about what result will eventually be produced, the only question
that then matters is: how long will the computer be engaged on that task?
In general this is a very hard question and again, people have discovered
that the most efficient way for solving a problem is to run away from it,
i.e. to try to avoid such computational processes to be evoked, for which
the run-time behaviour becomes time-wise hardly predictable., Here Herbert
A.Simon's "The Architecture of Complexity" (reprinted in "The Sciences of
the Artificial [1]) has had grest influence, as it has pointed out the
virtue of what he calls "nearly decomposable systems", It says very roughly
the following: if a systems is expected to adjust itself to changes in the
environment of two types, A and B say, and the adjustment to a change of
type A takes place an order of magnitude faster that the adjustment called
for by a change of type B, then, while studying the latter adjustment
process, we are allowed to idealize adjustment to a change of type R as
instantaneous: the "mechanics" of the two adjustments need hardly to inter-
fere and both can be studied (with respect to speed, stability etc.) in
isolation. As soon as one becomes aware of the great benefits that can be

derived from the "near decomposability", one immediately tries to design

EWD469 - 8

one's systems with the absence of such undesirable --because uncontrollable~--
interferences as one of one's main design criteria. The successful abolish-
ment of such an interference pays twice: we don't need to mess up Our.think-
ing, and the machine need not waste its time in elaborate strategies for

coping with them.

It is not surprising that these techniques have found at first their
most spectacular applications in the design of operating systems. Many of
them are now shaped in the form of a family of loosely coupled, harmoniously
cooperating sequential processes. The harmonious cooperation is guaranteed
by synchronizing them explicitly, without making thereby any assumptions
about speed ratins. It is in that realm that mutual integrity of fellow
programs in a multiprogramming environment, the absence of deadlock and of
individual starvation etc.,can be dealt with rigorously. It is in the way
of dealing with micrasecond phenomena --such as interrupt handling--, miewe— bl
second phenomena --such as page fault handling-- and second phenomena --
such as resource allocaﬁinn—- that we try to achieve a nearly decomposable

system,

In a later stage, when these techniques were applied more consciously,
similar techniques have been applied to the design of purely sequential
programs. Une of the ways in which this was possible, was the following.
In sequential programs, we have boolean expressions_(as part of our alter-
native and repetitive constructs) influencing during execution the flow
of contrel. The way in which they prevent some%hing either disastrous or
only undesirable from happening is very similar to the way in which, in
multiprogramming, the so-called synchronizing conditions describe whether
a8 process could continue or should be hold up until a more favourable
situation has arisen. The techniques that had been developed for the deri-
vation of such synchrorizing conditions could be taken over, practically
lock, stock and barrel, for the deriviation of the sequencing expressions

as they have to occur in sequential programs.

Also: inspired by the successful decomposition that could be obtained
in operating systems, people have tried to separate their concerns equally
effectively in the design of purely sequential programs, People trying to
do so had the pleasant experience that this could be done to a much higher

degree than they were used to.

EWD4A69 - 9

A simple advice that will often show you the way for achieving such
a separation is to become extremely suspicious as soon as one finds oneself
faced with a case analysis which has to distinguish between a great number
of cases that have been generated by some multiplicative mechanism. 1 have
much experience with & problem in which pebbles which are either red,
white or blue, are--under a number of additiona’® constraints to make the
problem difficult enough-- to be sorted in the order of the Dutch
Natiornal Flag. In a not uncommon approach --which from a point of efficiency
seems quite reasonable-- people find themselves essentially faced with a
case anaysis which has to cover 6 different cases. Six is a very high
number and usually they get stuck somewhere in the design process. The
answer is: think for a moment with how many cases you would be faced, if
we had had five different colours, instead of only three! Then nne will
discover that the answer is 20 --if "n" .is the number of colours, the
formula is n*(n—1)——; as soon as that observation has been made, one sees
that this multiplicative building up could have heen aveided by looking
at only one pebble at a time and the case analysis collapses to one with
as many cases as we have colours, and from then onwards the problem is
trivial. And, in retrospect, the discarded efficiency gain turns out to

be close to negligible!

Developing programming methodologies is more than trying to become
a more competent programmer: one must not only learn to become that, one
must also be able to teach it. From the above it is clear that programming
methodologies have close connections with problem selving, with effective
ordering of one's thoughts, with at leas? cne important aspect of thinking:
how not to get lost! And the teachability of such aspects of thinking is
not obvious. It is not so much that one must teach manipulative ability,
for that can be done, it is done at all levels: arithmetic at the primary
school, algebra at the secondary school, and symbolic legic at the univer-
sity. Now we must try to teach how to think with the aim of reducing the

need for otherwise exploding amounts of manipulation.

To give a course "How To Think Big Thoughts In Ten Easy Lessons" is
obviously nonsense. But I firmly believe that something else is guite pos-
sible. That is, firstly, to drive howme the message, that we should think

with the purpose of reducing the amount of detailed reasoning eventually

EWD469 ~ 10

needed; that is, secondly, to show the most common mechanisms by which the
exploding need for manipulation is generated, i.e. don't only warn them for
the symptoms, but also for as meny causes as you can name explicitly. To a

certain extent this can be dome in the explicit style of University teaching.

It becomes hardeg¢ when we know that we should try to separate concerns,
but do not know how to untie and to disentangle the amorphous knot of the
initial goals. Some striking examples, dealt with by an inspiring teacher
can certainly do no harm. The extent to which we have to be content with
teaching this in the style of the gquilds, by showing only what we do and
hoping that the apprentice will discover for himself how to do it, is
still an open question for me. My experience over the last yearr. is en-

couraging.

Bne thing is certain: learning how to program well requires a great
amount of exercise and confrontation. Exercise in order to get the agility,
confrontation in the sepse that the learning student must struggle in order
to discover how bard programming is: and after having constructed a one-
or two-page program in four hours of hard work, show him an eight-line
solution that a more competent programmer wrote down within fifteen minutes.
It is cruel, but without that confrontation the student will remain stuck
at his current level of competence, unless he can learn, a1l by himself,
from his own experience. But people who can do that are extremely rare:

if one of our students cén do that, he will soon he our.Master!

[1] Simon, Herbert A. The Sciences of the Artificial, MIT Press, 1969

prof.dr,Edsger W.Dijkstra
Burroughs Research Fellow
Plataanstraat 5

NUENEN - 4565

The Netherlands

