EWD472.html

Copyright Notice

The following manuscript

EWD 472: Guarded commands, non-determinacy and formal
derivation of programs

was published in Commun. ACM 18 (1975), 8: 453-457. It is
reproduced here by permission.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD472.html

EwD4i2 - 0

Guarded commands, non-determinacy and formal derivation of programs.

by Edsger W.Dijkstra *)

*) Author's address: BURROUGHS
Plataanstraat 5
NUENEN - 4565
The Netherlands.

Abstract. So-called "quarded commands" are introduced as a building block
for alternative and repetitive constructs that allow non~deterministic
program components for which at least the activity evoked, but possibly
even the final state, is not necessarily uniquely determined by the initial
state. For the formal derivation of programs expressed in terms of these

constructs, a calculus will be shown.

Kevwords. programming languages. sequencin rimitives rogram semantics,
———— g g 9 ’ ’ g

programming language semantics, non-determinacy, case-construction, repe-
tition, termination, correctness proof, derivation of programs, programming

me thodology. -

CR-category: 4.20, 4.22.

Guarded commands, non-determinacy and formal derivation of grograms.

1. Introduction.

In section 2, two statements, an alternative construct and a repet-
itive construct will be introduced, together with an intuitive (mechanistic)
definition of their semantics, The basic building block for baoth of them
is the sb-called "guarded command", a8 statement list prefixed by a boolean
expression: only when this boolean expreséion is initially true, is the
statement list eligible for execution. The potential non-determinacy
allows us to msp otherwise (trivially) different proérams on the same

program text, 2 circumstance that seems largely responsible for the fact that -

EwWp472 - 1

now programs can be derived in a more systematic manner than before.

In section 3, after a prelude defining the notation, a formal defi-
nition of the cemantics of the two constructs will be given, together with

two theorems for each of the constructs (witﬁbut pronf‘).

In section 4, it will be shown, how upon thg above a formal calculus
for the derivation of programs can be founded. We would like to stress
that we do not present "an algorithm" for the derivation of programs: we
have used the term "a calculus" for a formal discipline --2 set of rules--
such that, if applied successfully
1) it will have derived a correct program
2) it will tell us that we have reached such a goal,

(We use the term as in "integral calculug)

[

2. Two statements made from quarded commands.

If the reader accepts "other statements” as indicating, say,
assignment statements and procedure calls, we can give the relevant syntax
in BNF [2]. In the following we have extended BNF with the convention
that the braces "{...}“ should be read as: "followed by zero or more

instances of the enclosed".

< guarded command > ::= < guard > - < guarded list >

< guard > ::= < boolean expression >

< guarded list > ::= < statement > {; < statement >}

< guarded command set > ::= < guarded command > {[] < guarded command >}
< alternative construct > ::= if < guarded command set > fi

< repetitive construct > ::= do < guarded command set > od

< statement > ::= < alternative construct > | < repetitive construct >

"UtHer statements® .

b
~

The semicolons in the guarded list have the .usual meaning: when the
guarded list is selected for execution its statements will be executed

successively in the order from left to right; a'guarded list will only he

EWD472 ~ 2

selected for execution in a state such that its guard is true. Note that

8 guarded command by itself is not a statement: it is a component of a
guarded command set from which statements can be corstructed. If the
guarded command set consists of more than aone guarded command, they are
mutually separated by the separator "[" ; our text is then an arbitrarily
ordered énumeration of an unordered set, i.e. the order in which the guarded

commands of a set appear in our text is semantically irrelevant.

Our syntax gives two ways for constructing a statement out of a
guarded command set. The alternative construct is written by enclosing
it by the special bracket pair: "if ... f£i". If in the initial state none
of the guards is true, the program will abort, otherwise an arbitrary
guarded list with a true guard will be selected for execution.

Note. If the empty guarded command set were allowed "if fi" would be

semantically equivalent to "abort" . {End of note.)

An example --illustrating the non-determinacy in a very modest fashion--
would be the program that for fixed x and y #assigns to m the maximum

value of x and y :

if x>y = m=

Y2 %X = miz y

£ :

The repetitive construct is written down by enclosing a guarded
command set by the special bracket pair "do ... od" . Here a state in
which none of the.guards is true will not lead to abortion but to proper
termination; the complementary rule,‘however, is that it will only terminate
in a state in which nene of the guards is true: when initially or upon
completed execution of a selected guarded list one or more guards are true,
a8 new selection for execution of a guarded list with a true guard will take
place, and so on. When the repetitive construct has terminated properly,

we know that all its guards are false.

Note. If the empty guarded command set were allowed "do od" would be

semantically equivalent to "skip" . (End of note.)

EWD472 -~ 3

An example --showing the non-determinacy in somewhat greater" glory--
is the program that assigns to the variables ql, g2, qQ3 and g4 a permutation
of the values Q', G2, Q3 and G4, such that qi _<q2 S'qE < g4 . Using

concurrent assignment statements for the sake of convenience, we can program

al, 42, q3, a4 := Q1, Q2, @3, Q4;
da g1 >_q2 -~ql, g2 1= q2, qf
"0 a2 >q3 - q2, ¢3 :=q3, g2
[a3 >q4 - q3, g4 :=q4, g3
"

To conclude this section we give a program where not only the computation
but 2lso the final state is not necessarily uniquely determined. The program
should determine k such that for fixed value n (n >O) and a fixed »

function f{(i) defined for O© Xi<n, k will eventually satisfy:
f

O0<k<n and Yi: 0<i<n: f(k) > f{i)) .
(E\.rentual.‘f_;yr k should be fhe plac_é of;.a_ maximum, }

ki= 05 j:= 1;

da j £ n = if £(5) < (k) = ji= j ‘

(i) > f{k) = ke= j; je= 3 + 1

—+

0
fi
od . v

Only permissible final states are possible and each permissible final

state is possible.

3. Formal defipition of the semantics.

$.1. Notational prelude.

In fhe following sections we shall use the symbols P, Q and R
to denote (predicates defining) boolean functions defired on all points of
the state space; alternatively we shall refer to them as "condificns",
satisfied by all states for which the boolean function is true. Two special
predicates +that we denote by the reserved names "T" 'and “Fﬁ play a
special role: T denotes the condition that, by definition, is satisfied

by all states, F denotes, by definition, the condition that is satisfied

EWD472 - 4

by no state at all.

The way in which we use predicates (as a tool .for defining sets of
initial or final states) for the definition of the semantics of programming
language constructs has been directly inspired by Hoare [1], the main
difference being that we have tightened things up a bit: while Hoare
introduces ;Lfficiant pre-conditions such that the mechanisms will not

produce the wrong result (but may fail-to terminate), we shall introduce
necessary and sufficient --i.e. so-called "weakest"-- pre-conditions such

that the mechanisms are guaranteed to produce the right result.

More specifically: we shall use the notation "wp(S, R)" + where 5§
denntes 3 statement llSt and R some condition on the state of the system,
to denote the weakest pre-condition fof the initial state of the system such
that activation of 5 4g guaranteed to lead to a properly terminating
activity leaving the system in a final state satisfying the post-condition
-R « Such a *Wp ~-which is called "a predicate transformer”, because it
associates a pre-condition to any post-condition R ~- has, by definition,

the following properties.

1) For any S, we have for all states .

wp(S, F) F

]

(the so-called "Law of the Excluded Miracle").
2) For arly 3 and any two post-conditions, such that for all states
P =>q

we have for all states

wp(S, P) = wp(s, q) .
3) For any S and any twe post-conditions P and Q we have for all
states :
2 (Hp(S, P) and wp(S, Q)) = wp(S, P and Q) .
4) For any deterministic § and ény post-conditions P and Q we have for

-all states (‘WP(S“ P) er wp(s, Q))= WD(S; P Bbr Q) ‘

For non-deterministic mechanisms S the equality has ‘to he replsced by an

implicaticn; the resulting fnrmu;a follows from the second property.

EWDAT2 - 5

Together with the rules of prnpositianai calculus and the semantic
definitions to be given below, the above four properties take over the

role of the "rules of inference" as introduced by Hoare [1].

We take the position that we know the semantics of a mechanism §
sufficiently well if we know its predicate transformer, i.e. can derive

Qp(S, R} for any post-condition R.

Note. We consider the semantics of § only defined for those initial states
for which has been established a priori that they satisfy wp(S, T) ' i.é.
for which proper termination is gquaranteed (even in the face of possibly
non~deterministic behaviour); for other initial states we don't care. By
suitably changing S , if necessary, we can always see to it that wp(S, T)

is decidable.(End of nute.)

Example 1. The semantics of the empty statement, denDtEd‘by-'"skip", are

given by the definition that for any post-condition R , we have

wp{"skip", R) = R .

Example 2. The semantics of the assignment statement "x:= £" are

given by x

wp("x:: £, R) = R .
E ,

in which RE denotes a copy of the predicate defining 'R in which each
n,mn

occurence of the veriable x" is replaced by "(e)n,

Example 3. The semantics of the semicolon ";" as concatenation operator
ere given BY wp("st; s2%, R) = wp(st, wa(s2, R)) .

ca

35.2. The alternative construct.

In order to define the semantics of the alternative construct we
define two abbreviations,.

Let "IF"™ denote

-

-sHﬂ.“ﬂsn»&nﬁ; ;

IA
b
A
3
m
~——
-t

then, by definition

EWD472 ~ 6

wp(IF, R) = (BB and Vi: 1 <i <n: B, = wp(SL_, R)) .
(The first term "BB" requires that the alternative construct as such will
not lead to abortion on account of all guards false, the second term
requires that each guarded list eligible for execution will lead to an
acceptable final state.) From this definition we can derive -=by simple

substitutions——

Theorem 1. From

(Vi: 1 <i<n: (Q and Bi) pr(SLi, R)) for all states

we can conclude that

{Q and BB) = wp{IF, R) holds for all states .

¢ Let "t" denote some integer function, defined on the state space,
and let "wdec(S, £)" denote the weakest pre-condition such that activation
" of S is guaranteed to iead to a prnpéily terminating activity leaving the
system in a final state such that the value of t is decreased by at

least 1 (compared to its initial velue). In terms of "wdec" we can foar-

mulate the very similar

Theorem 2. from ' .

Vi: 1 <i <n: (Q and B,) = wdec(SL., t)) for all states

we can conlude that

(Q and BB) = wdec(IF, t) holds for all states.

Note {which can be skipped a2t first reading). The relztion between "wp"

and "wdec" is as follows. For any point X in state space we can regard
cwp(s, t <)

as an equation with t0 as the unknéwn. Let its smallest soluticn.for to
be tmin(x). (Hefe we have added the explicit dependence on the state X.)
Then tmin(X) can be interpreted as the lowest upper bound for the final
value of t if the"mechanism 5 is activated with- X as initial state.

Tﬁén, by definiticn, .

wdec(s, t) = (tmin{X) < t(x) = 1) = (tmin(x) < t(X)) .

(End of nnte-)

EwD472 - 7

3.5. The repetitive construct.

As is to be expected, the definition of the repetitive construct
do B, - sL, ﬂ...ﬂBn—-SLngg_

that we denote by "DO" , is more complicated.

Let ' Hy(R) = (R 2nd non B8)
and for k >0: H (R) = (wp(IF, _Hk_1(R)) or HO(R))

N

(where ™IF" denotes the same gquarded command set enclosed by "if fi"

then, by definition
wp(00, R) = (Fk: k > 0: H (R)) .

(Intuitiualy, Hk(R) can be interpreted as the weakest pre-condition guar-
Vénteeing proper termination after at most k selections of a guarded list,

leaving the system in a final state satisfying R .) Via mathematical

-

induction we can prove

Theorem 5. If we have for all states
(P and BB) = (wp(IF, P) and wdec(IF, t) and t >0)
we can conclude that we ha;e for all states
P = wp{DO, P and non BB} .

Note that the antecedent of Theorem 3 is of the form of the consequents of

Theorems 1 and 2.

Because T is the condition by definition satisfied by all stateé,
wp(S, T) is the weakest pre~condition guaranteeing proper termination for
S . This allows us to faormulate an alternative theorem about the repstitive

construct, wviz.

Theorem 4. from
(? and BB) = wp(IF, P) for all states,
we can cunclﬁde that we have for all states

(P and wp(DU, 7)) = wp(BU, P and non B3) .

In connection with the above theorems "P" is called "the invariant relation"

EWD472 - 8

and "t" is called "the variant function". Theorems 3 and 4 are easily

proved by mathematical induction » with k as the induction variable.

4. Formal derivation of programs .

"m:

The formal requirement of gur pragram perfarming max(x, y)"

~-see above-- is that for fixed x and ¥y it establishes the relation

Rz {m =x o m=y)andm2x'andm_>.y .

—_—

Now the Axiom of Assignment tells us that "m:= x" is the standard
way of establishing the truth of ™m = x™ for fixed x, which is a way
of establishing the truth of the first term of A. Will "m:= x" do the
job? In order to investigate this, we aerive and simplify

1 : »
’ wp("m::x",ﬁ):(x:xo x=y)andx2xandx2y

= x>y .
Taking this weakest pre-condition as its guard, Theorem 1 tell us that

TAf x>y e miz x fi

will produce the correct result if it terminates suceesfully. The disad-

vantage of this program is that BB % T, i.e. it might lead to abortion;
weakening BB means looking for alternatives which might introduce new

guards. The obvious alternative is the assignment "m:= y" with the guard
wp("m:= y", R) = y >« 3

thus we are led to our program

x>y-m:=

Y2 x »mi=y

o

and by this time BB = T and therefore we have solved the problem. {In
the mean time we have proved that the maximum of two values is always
defined, viz. that R considered as equation for m has always a

solutian.)

As an example of the deriviation of a repetitive construct we shall
derive a program for the greatest common divisor of two positive numbers,

i.e. for fixed, positive X and Y we have to establish the final relation

EwD472 - 9

X = gcd(X, Y) .

The formal machinery only gets in motion, once we have chosen our
invariant relation and our variant function. The program then gets the

t
struc ure "establish the relation P to be kept invariant";

do "decrease t as long as possible under invariance

of P" od .

Suppose that we choose for the invariant relation
P: gcd(X, Y) = gcd(x, y) arnd x >0 and y > 0
a relation that has the advantage of being easily established by

xi= X; yi= Y .

! The most general "something” to be done under invariance of P is

of the form x, yt= E1, E2

and we are interested in a gquard B such that

(P and B) = wp{"x, y := E1, E2", P)
= (g:d(X, Y) = gcd(é1, €2) and E! > 0 and E2 > 0) .

Because the guard must be a computable boolean expression and should
not contain the computation of gcd(x, Y) -=for that was the whole praoblem!--
we must see to it that the expressions E£1 and E2 -are so chosen, that
the first term

ged(X, Y) = ged(E1, E2)

is implied by P , whicﬁ is true if
ged(x, y} = ged(E1, E2) .

In other words we are invited to massage the value pair (x. y) in such
a fashion that their gcd is not changed. Because --and this is the place

at which to mobilize our mathematical knowledge about the gcd-function—~
gcd(x, y) = gcd(x - ¥, y)

a possible guarded list would be
Xt= x --y .

Deriving

EWD472 - 10

wp(™x:= x - ¥", P) = (ged(X, Y) = ged(x - vy, y) and x - y>0and y >0)
and omitting all terms of the conjunction implied by P we find the guard
X >y

as far as the invariance of P is concerned. Besides that we must require
guaranteed decrease of the variant function +t . Let us investigate the

consequences of the choice

t‘_—x“’y . .
From " "
wp(x:=x-—y,t5to)=
wp{"x:1= x - y", x+y._-§ to) = (xSto)

we conclude that R
tmin = x

-

therefore wdec(gpx:: X - yll, t) - (x < x + y) = (y >o) .

The requirement of monotonic decrease of + ‘imposes no further
restriction of the guard because wdec{"x:= x - y", t} is fully implied

by P and we come at aur first effort

xi= X3 yi=Y;

do x>y = xi=x-yod .

Alas, this single guard is insufficient: from P and non BB we
are not allowed to conclude x = gcd(X, Y). Ina completely analogous
manner, the alternative yi:= y - x will require as its guard y > x

and our next effort is
xi= X; yi=Y;
80 x >y = xi= x ~ y

ly>x=yi=y-x

IS _U_q. .

Now the job is-dcne, because with this last program non BB = (x = y)

and (P and x = y) == (x = gcd(X, Y) because gdc(x, x) = x .

Note. The choice of t = x +2y and the knowledge of the fact that the

gcd is a symmetrie function could have led to the program

EWD472 - 11

ﬂ'y > X wx, ¥ iz y, x
od :

The swap X, ¥ =y, X can never destroy P : the guard of the last
guarded list is fully caused by the requirement that t is effectively

decreased.

In both cases the final game has been to find a large enough set of
such guarded lists that BE , the disjunction of their guards, was suffi-
ciently weak: in the case of the alternétive construct the purpose is
avoiding abortion, in the case of the repetitive construct the goal is
getting BB weak emough such that P and non BB is strong enough to

imply the desired post-condition R .
. :

It is illuminating to compare our first version of Euclid's Alge-

rithm with what we would have written down with the traditional clauses:

xt= X; y:= Y; (version A)

while x £ y 88 if x >y then x:= x - y else yi=y - x fi od

and xi= X; yr=Y; (version E)

while x # y do while x >-yld0 Xi= x - y od;

while v > x do yi= y -~ x od
od

In the fully symmetric version with the guarded commands the algorithm has
been reduced to its bare essentials, while the traditional elauses fﬁrce

us to choose betheen versions A and B (and nthers), a choice thaﬁ can
only be justified by making assumptions about the time taken for tests~aﬁa
about expectation values for traversal frequencies. (But even taking the

time taken for tests into account, it is not clear that we have lost: the
average number of necessary tests per assignment ranges with guarded commands
fram 1 +to 2 , equals 2 for version A and ranges from 1 ta 2.5 for
version B. If the guards' of a quarded command set are evaluated concurrently
--nothing in our semantics excludes that-- the new version is time-wise
superior to all the Uthérs.) The virtues of the case-construction have

been extended to repetition as well.

EWD472 - 12

5. Concluding remarks.

The research, the outcome of which is reported in this article, was
triggered by the observation that fuclid's Algarithm could also be regarded
as synchronizing the two cyclic processes "do x:= x - y gd" and "dg yi=y=-x od"
in such a way that the relation x>0 and y >0 would be kept invariantly
true. Tt was only after this observation that we saw that the formal
techniques we had already developed for the derivation of the synchronizing
conditions that ensure the harmonious co-operation o% (cyclic) sequential
pracesses, such as can be identified in the total activity of operating
systems, could be transferred lock, stock and barrel io the development
of sequential programs as shown in this article. The main difference isg
that while for sequential programs the situation "311 guards false" is a
desirable goal —-for it means termination of a repetitive construct--.,

Dné tries to avoid it in operating systems --for there it means deadlock.

The second reason to pursue these investigafiuns was my personal
desire to get a better appreciation, which part of the programming activity
can be regarded as a formal routine and which part of it seems to require
"jnyention™. While the design of an alternative construct now seems to be
a reasonably straightforward activity, that of a repetitive construct re-
quires what I regard as "the invention" of an invariant relation and a
variant function. My presentation of this calculus should, however, not
be interpreted as my suggestion that all programs should be developed in

this way: it just gives us another handle.

The calculus does, however, explain my preference for the axiomatic
definition of programming language semantics via predicate transformers
asbove other definition techniques: the definition via predicate transformers
seems to lend itseif most readily to being forged intoc a tool for the goal-

directed activity of program composition.

Finmally I would like to add a word or two about the potentlal non-
determlnacy. Having worked mainly with bardly self~checking hardware, with
which non-reproducing behaviour of user programs is a very strong indication
of a machine malfunctioning, 1 had to overcome a considerable mental re-

sistance, before 1 found myself willing to consider non-deterministic programs

EWD472 - 13

seriously. It is, however, fair to éayvtﬁét I could never have discovered
the calculus before having taken that hurdle: the simplicity and elegance
of the above would have been destroyed by requiring the derivation of
deterministic prugraﬁs only. Whether non-determinacy is eventually removed
mechanically --in order not too mislead the maintenance engineer-- or (per—
haps only partly) by the programmer himself because, at second thought,

he does care --e.g. for reasons of efficiency-— which alternative is
chosen, 'is something I leave entirely to the tiftumstances In any case

wWe can appreciate the ncn—determlnlstlc program as a helpful StEpplhg—

stone.

Acknowledgements.

In the first place my acknowledgements are due to the members of
the IFIP Working broup W.G.2.3 an "Programming Methodology". Besides them,
W.H.J.Feijen, D.E.Knuth, M.Rem and C.5.Schelten have been directly helpful
in one way or another. I should also thank the various audiences --in
Albuguerque (courtesy NSF), in San Diega and Luxembourg (courtesy
Burroughs Corporation)-— that have played their role of critical sounding

board beyond what ane is entitled to hope.

[1] Hoare, C.A.R., An Axiomatic Basis for Computer Prbgramming, Comm.ACM 12
(0ct. 1969) 576 - s583.

(2] WNaur, Peter, (Ed.) Report on the Algorithmic Language ALGOL 60,
Comm.ACM 3 (May 1960) 299 - 314

27th January 1975 prof.dr.Edsger W.Dijkstra
NUENEN Burroughs Research Fellow

