14th February 1975 EWD476 - O
EWD476.html

Cogpcurrent programming: & prelimimary investigation.

(Instead of the usual term "parallelism” I prefer the term "concurrency™:
parallelism is a term that I would like to reserve for a number of rather
identical companents, progressing "in parallel", i.e. in rather strict

- synchronism. The term "concurrency” only refers to the (pnssibility of)

simultaneous activity.)

I observe that rather operational approaches to the problem of defining
the semantics of programming languages encounter problems when it is tried
to extend them to "concurrent programming languages". The way in which the
problem manifests itself is that a set of sequential processes --all by
themselves well-understood-- are allowed to operate in a common memory (at
some grain of interleaving) and that then the non-determinacy is investi-
gated that is generated by this uncontrolled interleaving. This form of non-

determinacy is --not surprisingly-- rather hard to cope with.

What 1 bave done in the past year suggests a rather different attack.

In that year I have introduced --not necessarily deterministic—- programs by
regarding them as (codes for) predicate transformers. During that stage it

is totally irrelevant that the program can also be interpreted as executahle
code for a sequential méchine (that is only a pleasant surprise when we try

to implement the programming language the next day). Because initial and final
states are by definition eonnected by arpredicate transformer {and only to-
mcrrow, when we consider implementations, by a long chain of intermediate
states) nathing in my language is "sequential"” as long as I do not drag im-
plementations into the picture. The result is that I do not truly understand
anymore what is meant by the usual phrase "parallel programming languages",
and that I see only one feasible way of attacking the problem: designing a
"programming language in my usual way, and then observing {tomorrow) that an
implementation with a lot of concurrency is possible. (The language design

may silentiy be motivated by that possibility, but that should not confuse

us today, when neither implementation, and a fortiori "time" nor "concﬁrrendy"
play any role at all.) It is fairly obvious that our programming language
should be non-deterministic, but that need not frighten me anymore: it is,

after all, now more than a year age that I decided to regard non-determinacy

as the rule and determinacy as a --not very interesting-- special case. This

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD476.html

EwDa76 - 1

report —-of which I hope that it will be foellowed by others on the same topic--
is only a preliminary survey. (My intention to introduce the possibility of
concurrency dates --according to my notes-- back to Jaruary 1973, but non-
determinacy had to be catered for first -—fall 19735-—. A new incentive to

take up this investigation I received at the IBM-Seminar at Newcastle in

September 1974, but I wanted to finish my book Ffirst.)

The reversal of an algorithm.

This section records an observation that we made in the fall of 1974
——while we were playing with little programs-- an cbservation to which we
did not pay much attention at the time (it was not even recorded). The other
week, when making programs fit for concurrent execution, we were suddenly

reminded of it.

Our example dealt with a recagnizer for the following syntax:

< sentence > ::= < expression > ;
< expression > :1:= < primary > {< operator > < primary >}

< primary > i1:= < digit > {< digit >}] (< expression >)

where the braces are to be read as "followed by zeroc or more instances of

the enclosed".

We assume that our recognizer finds the characters of the text in an
array varisble "in", where "in.low" is the currently "lowest" element --i.e,
the one with the lowest index value-- and the operation "in:lorem" removes
from "in" this lowest element. (We have separated the reading of the next
symbol and the moving of the tape.) The call "sent" will do the recognitiaon
——i.e. if "in" does not begim with a senterce, the program will abort-- if we
.assume the self-explanatory boolean procedures Missemi", "isopen", "isclose",

"isop" and "isdigit" with a symbal as argument available,

proc sent: exp; if issemi(in.low) — in:lorem fi corp;
proc exp: prim; do isop(in.low) — in:lorem; prim od corp;
proc prim: if isdigit(in.low) — in:lorem; do isdigit(in.low) - in:lorem od

ﬂ isopen(in.low) - intlorem; exp;

Cif isclose(in.low) - in.lorem fi

fi cor .

EWD476 - 2

Here, sent , exp and prim +try to remove from the low end of "in" the
largest << sentence >, < expressiaon > and < primary > respectively that they
can find. If they cannot do so (because in.low 1is ihaccaptable) they abort.
Note, that there are only three reasons for abortion: a missing semicolon
where it is needed (e.g. on the text "123(....") in sent, a missing digit
" or open parenthesis (e.d. on the text 1234)....") in prim, or a missing

closing parenthesis were it is needed (e.g. “(123(...") in prim as well,

The observation we made that the generator of an arbitrary < sentence >
--we take the liberty of not bothering about termination-- can be derived from
the recognizer in a straightforward manner. (The operations “out:hiext"
add symbols at the high end of the array variable "out", which is initially

assumed to be empty.)

proc sent: exp; Dut:hiext(semi) corp;
proc exp: prim; do 77 - Dut:hiext(mp); prim od corp;
proc prim: if true - Dut:hiext(digit); do 7?7 — nut:hiext(digit) od

ﬂ true — out:hiext(open); EXP;
out:hiext(close)
fi gozp .
(Here do ?? - S od means "zero or more times S", i.e. it is short for
something like goon t= true;
do goon - 5 ﬂ geon - goon:= false od .
This netation with questionmarks has been introduced here for convenience,
and also with the intention of presenting recognizer and generater with
exactly the same layout.) The transformation from generator to recognizer

is equally obvious,

We liked the transformations and said to each other "That is nice,
isn't it?", in my short enthousiasm I showed it twice to a colleagque, and
then we turned to other matters. At that moment we had clearly other interests,
rfor none of us remarked that the ocutput of such a generator could be fed

directly as input inte a concurrent recognizer.

* *
*

EWD476 ~ 3

Buffering mosquitos.

A configuration that 1 would like to study at some state of the game
is @ so-called "elephant built from mosquitos”. Mosquitos are little machines
and they have a few connections '--"legs"-- and an input-leg of ane mosquito
"is paired to the output-leg of another mostquito. When one mosquito transfers
information to another one, I shall use in the description of both mosquitos
the same name for the connection: if a sending mosquito transmits via leg
A .the current value of its local variable x , we shall denote this in its
text by "Ri= xM i in the description of the receiving mosquito that
assigns the transmitted value to its local variable ¥ ,» reception will be
indicated by "y:= A" and for the time being we shall assume that some magic
sees to it that these two statements are executed simultaneously, i.e. legs

are not suppesed to contain memory elements.

A one-place buffer is easily coded as a mosquito: let it have one

input leg, A say, and one output leg, B say; then its text can be:
do true — x:= A; B:= x od .

This is a fully deterministic mosquitoc: after the one-place buffer has been

filled, we can only empty it and vice versa.

More interesting is a mosquito buffering (FIFQ) a maximum of, say, 20
values. Suppose that it has a classical array with twenty elements from
buf(O) through buf(19) . In its simplest form --and too naive—- we can code
it (with "f" for "filling" and "e" for "emptying")

e := 0, O;

true - buf:(f): Ay f:= (f + 1) mod 20;
true — B:= buf(e); e:= (e + 1) mod 20

Io Ia -
o c=3lg ~

But this is very naive, even if we assume that the selection of alterna-
tives is dependent on whether the environment is ready to offer via A and/nr
to accept via B a next value. We are making rather strong assumptions about
the decency of that environment and it seems nicer to make the mosquito

itself control its capacity and contents, i.e,

let nf be the number of values accepted via A
let ne be the number of values delivered via B

EWDATE - 4

then the values accepted but not yet delivered should be stored (in order
of age) as the values buf(e) through buf((e + nf - ne —1)mod 20)

and the mosquito itself should maintain

P: 0 <nf -ne<20 which leads to the program

"

f, e t=0, 0; nf, ne :=0, O
do nf -~ ne <20 = buf:(f): Ay fi= (f + 1) mod 20; nfi= nf + 1

nf - ne >0 - B:= buf(e); e:= (e + 1) mod 20; ne:= ne 4+ 1

O =

a

We leave to the reader the exercise to convince himself that the

following program will do the job as well, provided K > 2t:

f, e t=0, 0; nl, n2 := 0, 0;

do (n1 - n2)mod K < 20 - buf:(F): A; fi= (F + 1)mod 20; nl:= (n1 + 1)med K
ﬂ (n1 - n2)mod K > Q- Bi= buf(e); e:= (e + 1)mod 20; n2:= (n2 + 1)mod K

odl .

—_—

(The easiest way to do this seems to maintain first the statements operating

an nf or ne and then to prove the invariance of P.)

I would like to make the following remarks about the above programs.
Remark 1. I have not bothered about "termination" but that is so easily
fixed that I feel entitled to allow myself the cnnvenience.(End of remark 1.)
Remark 2. From a time-less point aof view, the FIFO buffer is strictly
deterministic: the output stream equals the input stream. It is only when
we consider the sequénca-nf consumptions via A and productiom via B y that
the non-determinism shows itself. When we consider this program as working
in a fully cooperative environment --i.e. willing to produce via A and to
accept via B when our mosquito feels like it-- the nan-determinism of the
sequential program displays the complete freedom we envisage (with the_possibly
meaningless exception that as long as we regard the above executed by a
strictly sequential machine, productien and consumption will never take
place simultaneously.) (End of remark 2.)

Rematk 3. Very little prohibits "concurrent execution® of both alternatives.
We must make the assumption that "buf:(f): A" and "B:= buf{e)" will not
interfere with each other when tried concurrently, but with e # f . We must
further make the assumption that pragrams desling with different variables

can be executed concurrently. The only possible form of interference is via

EWDATE - 5

the n's, but with respect to these, our programs have a very special property.
If --sequentially interpreted-- the one alternative is selectéd while the
other guard is true, the other guard remains true. And that, of course, im-
plies that we can implement the whole game as two cyclic processes which may
be detained during their stream-operations when the environment is not ready
‘and must be detained when the guard is found to be false. (End of remark 3.)
Remark 4. These programs have an even stronger property, but it seems too
special perhaps, to make much use of it here: the execution of one alternative
is quaranteed to make the other guard true. This means that the one process
evaluating (n1- n2)ggg K need not even read either the old or the new value
of an n with which the other process fools: the evaluatian of the guard may
be supplied with a rubbish value, a mixture: the only result can be that
erroneocusly the value "false" is evaluated, but then we can say "better luck
next time". In this special case we don't even need the mutual exclusion
usually provided by a switch. The remark is of significance if we wish to
abolish daemons that cater for mutual exclusion in unsynchronized self-

stabilizing systems, 1 think we can drop it here.(End of remark 4.)

Experiments with a sorting elephant.

We consider a long string of mosguitos with between each pair of neighbours
a connection L for traffic to the left and a connection R for traffic to
the right. The terminology is at first sight perhaps confusing, because now
each mosguito has two legs, both called L, but it will turn out to be conve-

nient: in mosquito nr. i

Li=..., means sending to nr, i-1
ceeat=L means accepting from nr. i+l
=L, means sending to nr. i+1

eeeet= R means accepting from nr. i-1 .

Our simplest elephant consists of as many (plus 1 or 2) mosquitos as
numbers have to be sorted. We distinguish even and odd mosquitos alternating
in the string and do not bother about the fact that the terminal mosguitos have

to be slightly different, nor do we bother for the time being about termination.

EWD476 - 6

Initially the even mosquitos contain two numbers, while the odd mosquitos
start empty. The even mosquito sorts its contents, sends the smalles value
to the left, the largest to the.right and then waits (empty) until it has
received from both its neighbours a number back and repetatur. The odd mosguito

waits until it has received a number from both sides, sorts them and send the

smallest toc the left and the largest to the right and repetatur.

Let each even mosquito have two variables x and vy (for the communication
with its lefthand and righthand neighbour respectively). Its repertoire of

actions consists of

A: dg x >y - x, yt=y, x od (sorting)

B: L:= x (sending to the left)

C: x:= R (receiving from the left)
D: Ri= y (sending to the right)

E: yi= L (receiving from the right)

The logically necessary precedence relations can be pictured in the

following graph

entry —> A etc.
\\\ﬁ D E"';?-

and the gquestion is, how to represent them. One way of doing this is with

a boolean for each arrow:

ca:= true; ea:= true; ab:= falge; bc:= false; ad:= false; de:= false;

do ca and ea - A; ca:= false; ea:= false; ab:= true; ad:= true
ﬂ ab — B; ab:= false; bc:= true
0 be - C; bci:= false; ca:= true
ﬂ ad | ~ D; ad:= false; de:= true
ﬂ de -+ E; de:= false; ea:= true
d .

But, although perfectly general, this notation does not attract me very

much: it is worse than jumps. Another experiment has been (with "dop" for
"do permanently") dop A; par [B]; [c]

0 [p); [£] zap pod

EWD476 - 7

where the squate brackets denote the unit of interleaving, and the par ~ rap

are a sort of parbeqin and parend. But this turned out to be a dead alley.

(As we shall see shortly, it is awkward for the description of the odd mos-
quitos.)

1
)

I em now mostly attracted ~-perhaps because it is so new, that I have

not seen its shortcomings yet-- by the following notation

doo *[A]; [B]; [c]
[ilals [0]; [€]

pod

where we have two cyclic processes, and the exclamation mark indicates
"mutual coincidence", i.e. the two loops must "share" the single point event
A each time. The odd mosgquitos can be described similarly: each odd mosquito

has two variables u and v , its repertoir consists of

F: dou>vaeu, v iz, u od

Gz L:i= u

H: ut= R

Js Ri= v

K: vi= L

and its program is dop [H]; ![F]; [G]
[(<) tF]; [u]

pod .

The charm of the above notation is that we can now combine an even
mosquito with its righthand neighbour into a single one, by eliminating the

internal traffic, by identifying H(uzz) and D(R:: y) with
IR: ui= y (“IR".For Internal to the Right)

and by identifying E{y:= L) and G(L:= u) with

IL: yi=u

and the formal combination becomes the following program
dop t[a]; [B]; [C]
0:0r); t[mR]; t[1]
D el 2[F] o[1e]
[kI :[F1; [4]

pod

EWDAT6 - 8

The next observation is that withaout any change in its semantics, the

middle two lines can be combined:

dop ![a]; [B}; [c]
D:[als)i t[FY; [1]
0 k1 :[F]; [4]

pod

The last observation is that, now the alternation of A ‘and F has been
nicely expressed by the middle line, thaet u« and y can be the same

variable, and that IR s&nd IL disappear, i.e. with

A: d9 x >y - x, y 1=y, x od
F: doy>v-y, vi=v, yod

the combined mosquito becomes, when all is filled in

dop ![A); [L:= x]; [x:= R]
[:[al; t[F]
ﬂ [v:z L]; ![F}; [R:: v]

pod
The above nicely describes the endless graph with the precedence relations

A 5B —3Co—3A—> B—5[—>

,\\n ”,,—f”;7 \\\\ ,,-’"~’$§ e}c_

Ky FZo J o K =5 F —3 J =3

Merging two successive mosquitos of the above type leads to

dop t[A]; [L:= x]; [x:= R]
[:[a); :[F]
[¢fat]; t[F]
[:fards t[F]
ﬂ [v':: LJ; ![F']; [R:: v']

pod

Here the primed items refer to the righthand side component. Drawing the
beginning of the endless graph with the precedence relations, as I did for

the previous mosquito, is an exercise that I leave to my readers. It is quite
instructive and gives some idea of the power of this netation, (That VETY pOwer

may also be its greatest weakness, but that is another story.)

EWD476 - 9

Again a buffering mosquito.

The following mosquito describes a buffer with a maximum capacity of

three values in our new notation

dop ffe:= L]; t[be=L]; t[er= L]
[tlas=1}; t[Ls=a]
Jtfbe=0]; t[Le= 1]

i tle:= L]; L= ¢]
| ifte=al; tfLe=b]; Le=c]

pod .

Here I am, playing with a new toy! The top line expresses that the local
variables are filled cyclically in the order (a, b, c), the bottom line ex-
presses that they are emptied in the same cyclic order. The second line ex-
presses that with regard to the local variable a filling and emptying al-
ternate (so that everything going in goes out again), the nmext lines ex-

press the same relation for b and ¢ .

Remark. In the above description I have allowed myself a sloppy thing: after
the exclamation marke I have written down the statements themselves, instead
of their names. We could require in several lines the coincidence of ![51]
and the coincidence of ![52] » while elsewhere it is defined that both §1

and S2 are, for instance, "skip". (End of remark.)

Although I think the above mosquite intriguing, I should not close my
eyes to the fact that I currently don't see, how to derive from the above
a buffering mosquito in ‘the style of EWD476 - 4, If this inability is not
overcome in an acceptable manner, that fact may point to an, as yet unfathémed,
weakness of the notation. I hope that time will show, either in one way, or

in the other.

Multiple coincidence.

It seems unnatural to restrict coincidence to two fccurrences, mMore pre-
cisely, to the occurences in just two cyclic processes. In the elephant for

the hyper-fast Fourier transform, with the so-called "perfect shuffle",

each mosquito starts broadcasting its contents z wvia the legs 01 and 02

EWD476 - 10

to two different mosquitos, simultanecusly waiting to receive via I1 and 12
te values from two different mosquitos, accepting these values in the local

variables x and y. After a1l this information exchange, it performs basically

Fs z:=f(x, y). This would lead to the structure

dop [01:= z]; ![F]
[[o2:= 2]; t[F]
ﬂ [x::-. I1‘]; ![F]
[[y:=12]; ![F]

ped .

It seems unattractive to reduce the number of four cyclic processes to
two by imposing more stringent sequencing constraints upon the contacts with
the mosquito’s outer world. First of all we must be careful not to introduce

global deadlocks, such as would be caused by

QEE [015= Z]; ,[x:: 11]; ![F] s
[[02:= 2];5 [y:= 12]; t[F]

pod

as this would start all mosquitos sending and none in the mood to receive.
Secondly, we would like all mosquitos to be of identical structure, and

for two of the mosguitos one of their own output legs is cannected to aone

of their own input legs. Obviously I do not care too much about the analysis
which sequencing constraints to be imposed upon the external contacts are
still admissibls. Thirdly, it would reduce the traffic density between the
mosquitos, so time-wise it is rot attractive either. FPerhaps it would be
wise to indicate at the exclamation marks the multiplicity of coincidence.
The synchronization structure of the mosquitos of the hyper-fast Fourier
transformer is mentioned here as a recording of the issues involved in ele-

phart construction.

Things to be done sooner or later.

1) Instead of falling in love with my new notation, I should continue the
investigation of alternatives.

2) The current notation has to be extended so as to include a termination
criterion as well,

3) It should be investigated whether the current rotation should be ex-

EWD4T76 - 11

tended so as to include other reasons for delay besides (internal or external)
coincidences. I would feel safer about it, if I could find an argument that
this extension is not necessary, for that would do away with the analysis of
obligations for waking up.(Is it, therefore, too much to hope for?)

4) I have not given yet a formal definition of the semantics of a single
‘mosquito. Only thereafter can I hope to derive thecrems about merging several
mosquitos into a single one. v

5) It should be tried on some standard exercises, such as The Dining
Philosophers, and perhaps also on the Readers and the Writers.

6) It should be discovered, whether proving something about an elephant
is more conveniently done by merging its mosquitos into a single giant
mosquite --which is equivalent to the elephant-- or, whether we prove

our assertions about the elephant in two steps: first proving everything
about the individual mosquite's, regarded in isolation, and then, knowing

the relevant properties of the nodes, our assertions about the whale network.
Intuitively 1 prefer the second approach, but I must admit that it is rather
unclear to me, how such prrofs should look like. The artticle by W.H.Burge
"Stream Processing Functions" {IBM J.Res.Develop., Vol.19, No. 1, pp 12 - 25)
as yet does not strike me as very helpful.

7) How to design elephants.

8) etc.

It is nearly three weeks ago, since I started on this preliminary inves-

tigation and it seems that the time has come to sollicit comments.

5th March 1975 prof.dr.tdsger W.Dijkstra
Plataanstraat 5 Burroughs Research Fellow
NUENEN -~ 4565

The Netherlands

