2nd April 1975 . EWDA92 - O

On-the-fily garbage collection: an exercise in multiprocessing.

(After careful considerstion of a wider class of problems, A.J.Martin
and E.F.M.5teffens selected and formulated the following problem and did most
of the preliminary investigatiocns. I arrived at its solution during a discussion
with the latter, W.H.J.Feijen and M.Rem. It is a pleasure to acknowledge their

share in its diseovery.)

With the emerging advent of multiprocessor installations, all of us have
discovered that it is by no means obvious how a great number of processors
should be engaged on a single task. One line of attack has been --and still ig—-—
to try to discover problems that can be solved by a great number of concurrently
active processors; on the one hand we are inspired and encouraged by some spec-
tacular results, on the other hand it is somewhat discouraging that these
techniques are always only applicable thanks to the rather special nature of
the specific problem to be solved. The other line of attack is inspired by the
observation that in any large scale computer installation today, a considerable
amount of time of the (general pUTpOSE) processor is spent in "operating the
system" and the question, therefore, emerges to what extent these "special
purpose" activities inside a rather general purpose installation can be done
concurrently with the execution of users! programs. Because the more intimate
the interference, the harder the organization of the cooperation between the
concurrent processes, the problem of garbage collection was chosen as one of
the most challenging --and, hopefully: most instructive!-- target. Whether
the following sclution is of any economic significance is beyond the scope of

this report: for the time being it suffices to be fascinated by its existence.

In the traditional LISP-environment the data structure to be stored at
any moment is a directed graph in which each node has at most two outgoing
edges. (By introducing a virtual target, called NIL, each node can always
be given exactly two outgoing edges, a left-hand edge amd a right-hand edge.)
As a result the storage requirements for each node can be regarded as constant
in time and equal for sach node, The whole data structure has one node --called:
the root-- with a constant place in memory; at any moment only those nodes
that via the edges can be reached from the root are significant for the progress
of the computation. The computation exists essentially of two operations:

either replacing for a node one of its outgoing edges by one with (anuther)

EwD492 - 1

eﬁisting node as its target, or by one pointing to a new target, i.,e. a new
node is to be added to the data structure. In the latter case the number of
nodes of the data structure is increased by one: the new node is taken from
the so-called "free list" --i.e. a linked list of node locatioﬁs that are
currently not used for storing a node of the data structure--. In the first
case the number of nodes either remains constant or it decreases by a rather
unpredictable amount: the removed edge may have been the last connectiaon

from the root to a possibly elaborate subgraph. It is the purpose of the
so-called garbage collector to detect such disconnected and therefore ohsolete

nodes and to append them again to the free list.

In classical LISP-implementatians the computation proceeds until the
free list is exhausted (Ur nearly s0). Then the LISP-computation comes to a
grinding halt, during which the central processar is devoted to garbage col-
lection, i.e. starting from the root the transitive closure as given by the
current edges is estahlished and all the nodes in memory outside this transitive
closure --i.e. not reachable from the root and therefore obsolete-- are appended
to the free list, after which operation the LISP-computation can proceed. The
minor disadvantage of this arrangement is the central processor time spent on
the collection of the garbage, its major disadvantage is the absolute unpre-
dictability of these garbage collecting interludes, which makes it virtually
impossible to design such a system so as to meet real time requirements as well,
It Qas therefore tempting to investigate whether a second processor --called
"the collector"-- could collect garbage on a more continuous basis, concurrently
with the activity of the other one --for the purpose of this discussion called
"the mutator”-- which is dedicated to the LISP-computation proper. Two additional
constraints have to be obeyed: the (microscupic) interference between collector
and mutator should be minimal --i.e. no highly frequent mutual exclusion of
elaborate activities-- and, also, the overhead on the activity of the mutator

(as required for the cuuperation) should be kept as small as possible.

A certain amount of overhead for the mutator, alas, is unavoidable.
Suppose that nodes A and B are permanently connected to the root via a
constant set of edges, while node C is only connected to the roﬁt via an
edge from A +to C . Suppose furthermore that from then onwards the mutator

performs with respect to [repeatedly the following four operations:

EWD492 - 2

1) make an outgoing edge from B pointing to C
2} make the edge from A to C pointing to another node
3) make an uutgoihg edge from A pointing to C
4) make the edge from B to C pointing to another node.

The collector, which observes nodes one at a time, will discover that A and
B can be reached from the root, but pever needs to discover that C can be
reached as well: while A is observed, C may be connected via B and the

other way round.

Suppose that all nodes may have one of four colours; white, grey or black
for nodes in the dats structure and green for all nodes in the free list.
(Whether the colour green is necessary is a question that I leave open: it
certainly eases the description.) Suppose that all nodes in the free list
are green and all other nodes are white. Collector and mutator will now start
to colour nodes that canm be reached from the root black, but in general this

will happen via grey as intermediate colour. They do so, abserving two rules:

a) nodes will only darken monotonically (where green is regarded as light
as white)
b) no edge will ever point from a black node to a white one.

The mutator will act as follows. If it adds a new node to the data
structure --i.e. takes a green node from the free list-— the mutator will
make the source node of the new edge grey if it has observed it to be white
and will leave the colour of the source node of the new edge unchanged if-
it has observed it to be grey or black; it changes the colour of the target
node of the new edge from green to black. If the mutator makes an edge pointing
to a node already in the data structure (i.e. currently pointed at by another
edge), it will subject both source and target node of the new edge to the same
treatment: make it grey if it has been observed to he white, otherwise leave
its colour unchanged. fcr an increase of the number of grey nodes as @ result
of mutator activity, the presence of at least one white reachable node is

therefore a necessary condition.

The collector starts by making the root grey. It the ldoks for grey
nodes: for each grey node it inspects its two successors (i.e. target nodes

of its outgoing edges): if a white successor is found, it is made grey, other-

EWD492 - 3

wise its colour is left unchanged; when both its successors have thus been
processed, the originally grey node --which could be its own successor!-- is

made black.

Note 1. Several times we have said "if the node has been observed to be white
it will be made grey, otherwise its colour will be left unchanged", We have
intentionally avoided to say if its colour has been cbserved to be grey (or
black) its colour will be made grey (nr black). In that case the mutator
could observe a grey node and make it drey, just after the collector has made

it black, thus undoing the collector's activity. (End of note 1.)

Note 2. We have assumed that the observation of a node colour will never
lead to the observation "white" while the other partmer changes it from

grey to black. (End of note 2.)

Note 3. The collector inspects the successors of a node observed by it to be
grey. The mutator may simultaneously change the outgoing edges of that naode.
It is assumed that the collector will be directed towards either an old or a
new successor and everything is safe pro@ided that the mﬁtator first adjusts
the colours of the end nodes of the new edge and only places the new edge

afterwards.(End of note 3.)

Besides (possibly) belonging to the data structure or the free list, the
nodes are linearly aordered by their order in store. The collector can therefore
inspect them all, in cyclic order, say. When during a eyclic inspection of all
nodes, the collector has found no grey node, all reachable nodes (and possibly
more, viz, nodes that have been reachable in the past) are black --the preoof
of this statement is not fully trivial-- and the mutator can create no new
grey nodes anymore. Any nodes now white, will remain white: the collector
can therefore add the now white nodes to the free list (by cﬁlouring them
green Btc.). After having done so, the nodes in the free list are green and

all other nodes are black. In synchronism --but this is a8 relatively infrequent

occurrence-- collector and mutator now invert their white/black interpretation

(grey remaing grey and green remains green) and the game starts all over again.

To fill im the further details --such as arranging the free list as

EWD492 - 4

as first-in~first-out list so as to make simultaneous extension by the
collector and consumption by the mu{ator possible, etc.-- and to prove
that it is all safe and sound requires great care, but it can be done. (I
know even people, who could certainly do it, such as Alain J.Martin of
Philips Research Laboratory, Leslie Lamport of Massachusetts Computer
‘Asscciates Inc. and probably also Severo M.Ornstein of Bolt, Beranek and

Newman Inc. or ane of his colleagues.)

* *
*

As said in the introduction, a claim of economic significance is no£
made. The significance of the above snlution lies in the fact that it displays
a way aof non-trivial cooperation between loosely coupled processes which
differs rather radically from the usual communication via messages or
mutually exclusive access to common variables. As the reader will have
realized, the monotonicity argument (rule a) is as essentail as the invariance
(rule b). Fihally, in order to enable to collector to detect termination,
it is essential that the mutator colours green nodes immediately black (as
far as rules a and b are concerred, grey would have been permissible

as well). Isn't it fascinating?

2nd April 1975 prof.dr.Edsger W.Dijkstra
Plataanstraat 5 Burroughs Research Fellow
NUENEN - 4565

The Netherlands

