Copyright Notice

The following manuscript
EWD 501: Variations on a theme: an open letter to C.A.R. Hoare
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 132-140 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

5th July 1975 _ EWD501 - 0

Variations on a theme: an open letter to C.A.R.Hoare.

Dear Tony!

For a variety of reasons I have not yet reacted to yéur article on
Monitors [11. For one thing: it failed to convince me --something I felt bad
about, because I knew that this might have been due to the circumstance that
I had been too lazy to go in detail through your more sophisticated examples--.
Secondly: I was nct too pleased either with the alternatives I could offer
myself --my difficulty in finding good identifiers for the operations I wasz
cansidering was just a symptom of my own mixed feelings--. Eventually I got
interested in what one can do without mutual éxclusiun; and I dropped the
subject --not without remorse, for I had left a task undone: I had failed
to make up my mind!--.

Recently the topic was brought back to my attention by a nice technical
report by Coen Bron [2], and in a Tuesday afterncen discussion with Wim Feijen,
Alain Martin, Martin Rem and Liesheth Steffens I tried, as a result, to redesign
my (Formerly rejected) alternative, in the hope that this time I could do a
more conclusive job. This letter records the quintessence of that discussion
and the following consideratiaons,

About the micreoscopic delays implied by mutual exclusian.

The whole purpese of a monitor is to grant mutually exclusive access to
a bunch of common variables, and this implies two things.

First: the whole monitor concept is only adequate in circumstances such
that a monitor will only be "active" during a negligible fraction of time. {And,
on the next higher level of abstraction, we shall indeed ignore the CPU-time
spent on "monitoring"!) Second: ia any multiprocessor installation, attempted
monitor calls while the monitor is active imply delays, but in view of the
first remark I propose to attach no significance whatscever to the arder in
which such " microscopic" delays have been caused. Such microscopic delays
will last until the moment when otherwise the monitor would have become inactive,
and one of the micriscopically delayed processes will be granted access to the
monitor. Our anly (logical!) requirement is the exclusion of the (in view of
our first remark highly improbable) danger of individual starvation. (Round
Robin, for instance, would do!) In the following the microscepic delays will
not be mentioned anymore, legically it is as if "hy magic" no process attempts
to call a monitor while it is active. (Early in the discussion [had failed
to make a clear distinction between microscopically delayed processes eager
to call the monitor, and macroscopically delayed processes that, being woken
up, were eager to contipue an interrupted execution of a monitor procedure
--in what follows the latter class will disappear--; this confusion was so
disastrous that it did not last lcng!)

Note.At the lowest level I expect no cbjection to implementing the micros-
copic delays by means of the busy form of waiting. (End of Note.)

About the macroscopic delays introduced by a monitoer.

The further purpose of a monitor is to introduce macroscopic delays when
necessary, and, ideally, a monitor is formulated in such a fashion that it does
not reflect the number of partners between which the cooperation is requlated.
It should describe "my" behaviour versus "the others". (In the THE-system the

EWD50% — 1

cooperation was coded in a context in which all partners were individually
known and explicitly referred toj in retrospect I regard that now as one of
the more significant shortcamings of that system.) In order to describe the
~rules of cooperation in a way which was independent of the number of partners
involved, I envisaged to describe it in terms of a finite number of named
gueues of sleeping --i.e. macroscopically delayed-- processes, where the
queues themselves could be of any length, and each sleeping process would
occur at exactly one queue.

Right at the start, our decision that the elements on a queue should
be linearly ovdered, seemed more emphatic than yours. You write: "If more
than one program is waiting on a condition, we postulate that the signal
operation will activate the longest waiting program. This gives a simple,
neutral queueing discipline, which ensures that every waiting program will
eventually get its turn." But if individual starvation is the danger you would
like to excrcize, Round Robin or allowance counts would have done as well,

I propose for the linear order of the elements in each queue a role that
seems to me much more fundamental: “the (sleeping) others" are known to "me"
by virtue of their place in one of the queues. If they were sets instead of
linearly ordered queues, the different "(sleeping) others" would have no

distinct identities.

* *
*

(Continued after an interlude during which I just listemed to Dvorak's Sererade
--mainly for wind instruments-~ in D mall, opus 44: a delightful piece of music!)

I saw --you know my weakness for railroad metaphors!-- the queues as
one-directional railroad tracks of a shunting yard with each “(sleeping) other"
in its own carriage --sleeper, if you so desire!-- somewhere on one of the
tracks of the shunting yard. Waking up a process implies that it leaves the
yard and, therefore, the track on which it is waiting. But why should leaving
a track imply waking up? In this view it comes quite naturally to allaow that
sleeping processes can be shunted from orme track to another withovt being woken
up. Thanks to this metaphor I freed myself of one of the constraints you had
introduced.

Now for some terminology, in order to avoid misunderstanding. A process
is "in monitor state" from the beginning of the execution of the first statement
of a monitor procedure it has called until the end af the execution of the
dynamically last statement of that monitor procedure, when its concurrently
executable code can continue to be oteyed. For a given moniter n processes
may be in monitor state. Either the monitor is inactive: in that case all
n processes are sleeping somewhere on the shunting yard and each process,
when woken up --i,e. removed fram the shupting yard-- will continue the execution
of the monitor procedure it had called at the point, where it had gone to sleep.
Or the monitor is active: in that case n-1 processes are sleeping somewbere
on the shunting yard and one of them has the special status "me", viz. the
process, whose monitor call is continued to be executed. (Associating your
"eonditions" with my "tracks" of the shunting yard, this represents a slight
departure from your proposal, in which a process that is awake --i.e. does
not occur on a queue-- can wake up another by signalling: you then have more
than one process being awake, but only one, whose monitor procedure execution
is continued, 1 preferred to identify "me" with the one and only active process
and to have gll others in monitor state explicitly somewhere on the shunting
yard.)

EWD501 - 2

What I was looking for was a nice set of operations in terms of which
I could describe the shunting, the reallocation of "me" and the leaving of
"me" of the monitor state. I did not like your term "condition" as it evoked
in my mind the wrang associations: it does not reflect a linearly ordered set
of sleeping processes. For lack of a better name I introduced the type "fifoq"
--being an acronym for "first-in-first-out-queus"-- , but this was & very
grave mistake, which led me astray for more than 24 hours! It implies too
much about the long-range history whereas at each moment only the current
value matters! It was a mental liberation when it dawned upon me that I
could stay within the shunting yard metaphor and could just call them "trains".
(For a while I used the term "tracks", but that was discarded on account of
its associations with drums and disks. Eventually the transitions from track
to train turned out to be a8 blessing: whereas the "track" suggest a "place
holder” or a "location", the "train" suggests a value, viz. a linearly ordered
sequence of sleeping processes. It opens the way to "train expressions”, which
describe how new trains are composed out of the cars already on the shunting
yard. It is, by the way, frightening to observe the devious and sometimes ob-
noxioys influence of the terms I tentatively introduce! The wrorg choice can
drag in the wreng associations or deny you the expressive power needed to
describe what you would like to think about, but then are unable to do. Haw
does one avoid falling unaware into the trap of the inadequate metaphor? I
know so many earlier instances of my falling into thet trap and I honestly
try to be aware of the danger: yet I did it again!)

My next problem was with "wait" and "signal"; I tried "sleep" and "wake",
but quickly ran out of pames for more intricatelshunting operations, possibly
to be combined with a redefinition of "me": I found myself forced to cescribe
the ‘operation in which "me" should go to sleep "somewhere", and another
sleeper should take over the role of "me" instead. I even considered horrible
neologisms like "slake", in order to express the cembination of putting one
process to sleep and waking up another. As you can imagine, 1 quickly ranm out
of descriptive names.

The way out seemed the introduction of "train expressions" and an
assignment statement. The train expression would describe the new train as
a concatenation of (cars of) existing trains: its "evaluation" would have as
implicit side-effect taking away the cars used in the new train value from the
train operands: shunting dees not change the number of cars on the shunting yard!
I tried to describe just shunting as an assignment to & train variable, just
changing monitor activity from one process to another by an assignment to "me"
and the combination of the two by a sort of concurrent assignment with at
the left-hand side "me" and a train variable.

It was understood that "me" could occur as component of a train EXPrEssion.
And it was the idea that, by definition, the shunting yard should contain the
sleeping processes, that ceused the need for the concurrent assignment. Composing
a new train, containing "me" could not be the first assignment statement, for
then the active process would sleep before it had assigned a rew value to "me"
I could not invert the order either, because then I would have two "me's". Hence
the idea of the concurrent assignment, which solves such prablems.

It looked pramising and I started to write a manuscript, but after & coupls
of hours at least ten pages were thrown inta the waste paper basket, because,
although it worked after a fashion, the code needed for the monitars became more
and more tortuous as my examples became more ambitious. It was really appalling:
I was coding in a conceptually nice and clean interface, but in spite of its

EWD501 - 3

conceptual simplicity apparently hopelessly inadequate. It was one of those
rare beautifyl days in which one can work in the garden, but in spite of the
shining sun I was close to desparate. There was only one thing ! tould do:
put all papers away, pour myself a glass of beer, look into the blue sky and
figure out where I had got stuck.

One glass of beer --even parts of it!-- sufficed. Although "I" have to
describe "my" behaviour versus "the others"™, "I" am part of the whole community,
and it is extremely awkward if I cannot treat "we" on the same fuoting as "the
others". While during inactivity of the monmitor, all "sleepers" occur on the
shunting yard, it is rash to identify --what I had dane!'-- the contents of
the shunting yard with "the set of sleepers": during monitor activity, “me"
should be allowed to occur (obviously at most ance!) on the shunting yard
as well, just as one of "the others"! This has a few drastic consequences.,

For reasons of safety, one should insist that all semicolons of a monitor
procedure fall into one of two categories: those semicolons where "me"

is somewhere on the shunting yard --and placing "me" on the shunting yard is
hot allowec and redefining "me" implies that the old "me" remains in monitor
state and goes to sleep-- and those semicolons, where "me" is not on the
shunting yard --where placing "me" on the shunting yard is allowed and re-
definition of "me" implies that the old "me" leaves the monitor state--.

To allow during moniter activity "me" to appear --at most once'!-- on the shunting
yard solved all my problems. It is such an obvious generalization: during
monitor inactivity, "me" does not exists and, therefore, cannot occur on the
shunting yard. Yet it took me hours of following of false ideas to discover it!
I shall describe my new solutions at another occasion: tomorrow is Sunday,

so I am pot in a hurry, but in the meantime it is past two o'clock, and I had
better go to sleep. I thank you --although you must be unaware of it!-- for
your patience and your inspiring "presence". My problem is, that I really like
letter writing..... '

me

* *®
*

(Sunday afternoon, 6th July 1975.)

Let 2 train expression enumerate in order from left to right the trains
the cars of which are concatenated to form the new train valie in order from
"headu tU "tail"- wlth

tr0, trt, tr2: train
examples of train expressions are

(trO, trl) : this train consists of the cars of tr0 , followed by
the cars of trl . As a result of this train formation, the trains tr0 and
tr! have become empty, which value is indicated by "mil".

(tr2, me) forms a train one longer tham +tr2 , by appending "me" at the
rear end.

(me, tr2) forms a train one longer than +tr2 , by putting "me" in front
of the train +tr2. ’

Shunting operations 1 shall indicate by means of assignment statements

< train variable > 1= << train expression > B.g.
trQ := (tr1, tr0) tr2 := (tr2, me) tr0 := (tr0, trt, tr2) etc.

After evaluation of the train expression, the train assigned to must

EWh501 - 4

be empty, otherwise its cars would "disappear". One way of imposing this is
to require that in the traim assigrment the train assigned to occurs somewhere
in the train expression. 1 shall not do so, and allow

£r0 1= (tr!, tr2)

~-=-if you 50 desire as abbreviation of "trQ := (tr0, trt, tr2)"—— in those
circumstances that I can assert the initial emptyness of +tz0 .

" "

Potential change of "me" will also be indicated by an assignment statemer

me:= head(trO) me:= nil .

When the value "nil" is assigned to "me", the monitor becomes imactive until .
the next call of a monitor procedure, which implicitly assigns to "me" the
identity of the calling process. The evaluation of the function "head{trO)"
gives for initially non-empty trQ as value the first element of trO , which
is taken away from t10 , (Note that also this is a glorious side-effect: all
problems cen be solved by postulating that the components of a train expression
are evaluated in order from left to right.) If initially +trC is empty, it
remains so, and the value of head(trO) equals "nil".

These two types of assignment statement enmable us to separate completely
shunting on the one hand and process switching on the ether. Note that an
assignment to "me"

1) must be a dynamically last statement of a2 momitor procedure when
"

1t L

me
doss not occur on the shunting yard; the process that was "me" leaves moniter
state and can continue with its concurrently executable code

2) should not be a dynmamically last statement of a monitor procedure when

"me" does occur on the shunting yard; the process that was "me" remains in

monitor state, hut remains asleep until its identity is reassigned to "me",
whereafter the execution of the interrupted wmonitor procedure is resumed

8t the next statement.

Now for some examples. Let me first code your single resource monitaor,
which macroscopically on fifo basis grants the single resource ([1J, page 550)

single resaurce: monitor
begin busy: boolean;
nonbusyt train;
proc acquire:
if busy - nonbusy:= (nonbusy, me); me:= nil
. H non busy - skip
fi;
busy:= true; me:= nil
£orp acquire;
proc release:
if busy - busy:= Talse; me:= head(nnnbusy) fi
corp release;
busy:= false
end

(As you have seen, a call of "release" while non busy leads to abortion.)

The above is a straight transliteration of your text and does not reflect too
clearly, that scquire will only assign the velue +true to busy , when
initially it is false. I offer the following alternative solution for
acnuire:

EWD501 - 5

Proc acquire:
nonbusy:= (nonbusy, me); met= head(nbnbusy);
do busy — nerbusy:= (me, nonbusy); mes= nil od;
busy:= true; me:= nil

COorp acquire

When you see this for the first time, it may strike you as a coding
trick: depending on whether nonbusy is empty to start with "me:= head(nonbusy)"
will leave "me" unaffected or not, The test on "business™ is only performed
by the one which was at the head of the queue, and when it finds busy true,
it places itself back at the head side.

But it allows a nice generalization. Suppose that we have to synchronize
the unbounded buffer, where (with p>0 and c'>-0)

prnd(p): nt=n + p and cnns(c): n:=n - ¢

have to be synchronized in such a fashion that n = 0 remains invariant. Here
we go: (consumers being served on fifo basis)

ubb:monitor
begin n: integer;
cont: train;
proc pde(p: integer):
n:i=n + p; me:= head(cun)

corp prod;

proc ccns(cz integer):
con:= (con, me); mes:= head(con);
don <c - con:= (me, cun); me:= nil od;
n:i=n - 3 me:= head(cnn)

COTp cDns;

nt= 0

end ubb.

Finmally, the same problem, but instead of serving tke consumers on fifo
hasis, they may try on fifo basis.

ubb: monitor
begin n: integer;
con, temwp: train;
proc prud(p: integer):
nt= n + p; temp:= (con); me = head(temp)

corp prod;
proc cons{c: integer):
if n>e ~nt=n - ¢c; me:r= nil

ﬂ n < ¢ —+ con:= (con, me); mes= nil;
do n < ¢ - con:= (con, me); me:= head(temp) od;
Ni=n - ¢; mMes= head(temp)

end ubb

This strategy has, of course the danger of individual starvation: another
strategy with the same danger is ta give priority to the requesting consumer
with maximum value of ¢ . The coding of that one is quite fun and I leave it

as an exercise to you.
* *

EWD501 - 6

If 1T wanted to make a really strong case for my constructs, 1 should,
of course, continue this letter with the coding of all your examples, but
I am not going to do that now: after all, it is Sunday afterncon! For the
time being I have the feeling of having done my share, and I am logking forward
to your comments in particular.

You will have noticed that, for instance, in "release" I reed at the
end an additional "me:= nil", We could allow its omission and make the additional
rule that it will be supplied by defauclt. If you are going to suggest that as
an improvement of my proposal, 1 promise that I shall get very tross with you
(or, for that matter, with anyone else who suggests that "improvement")!

A shortcoming could be that we have only variables local to the monitor
and locals of each ecall: if you look at "temp" it could be a local of &
"monitor activity". Do we think that a serious shortcoming? It could be over-
come by declaring "temp”, "prod" and "cors" inside an special "imner bloek"
of the monitor that is entered upan activation of the momnitor and left at
the moment the monitor becomes inactive. I think that I don't care abcut
this refinement, but I may ke overlooking a forceful arqument in favour.

My dear Tony, it was as 2lways a8 pleasure and a privilege to write to
you. With greetings and best wishes,

yours ever
Fdser

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
NL-4565 NUENEN Burroughs Research Fellow
The Netherlands

[1J Hoare, C.A.R., "Monitors: An Operating System Structuring Concept"
Comm,ACM, 17, 10 (Oct. 1974) 549 - 557

[2] Bron, C., "Description of Conditional Critical Regions in Terms bpf
P~ and V-Operations." Memorandum nr. 84, May 1975, Department of
Applied Mathematics, Twente University of Technology, P.0.Box 217,
Enschede, The Netherlands,

To Professor C.A.R.Heare
Department of Computer Science
The Queen's University of Belfast
BELFAST BTT7 1NN

Northern Ireland

