FLN JUly 1YY EWDs02 -~ O

On a gauntlet thrown by David Gries,

Freshly arrived from the U.S.A. —-they still struggled with the time
shift-- David Gries and his family paid us a visit a few weeks ago. It was
net an occasion for "working together", yet some shoptalk was unavoidable,
and David confronted me with the protlem how to generate the n! permutations
of the numbers O through n-1 such that the transition from one permutation
to the next would c.:ly involve the swapping of two neighbours. He told me the
problem because he had found it a non-trivial task to present an algorithm
solving this protlem in a convincing manrer. He --good boy!-- raspected my
desire nat to be told how he had solved the difficulties of presenting his
sﬁlutiun, and he granted me the opportunity to think about the problem myself.
(Ha told me, that the problem had Leen dealt with in the Algorithms Sectian
of the Camm.ACM, but at the level aof unintelligibility that i$ characteristic
for that Section, and we agreed wholeteartedly that a tradition of clearer

presentation of algorithms is most sorely needed.)

Note. Those of my readers who would like to try to solve this problem *hemselves

should stop readirg here. {End of Note.)

As the swepping of twe neighbours changes the number of inversions --i.e.
the number of pairs in the wrong order-- by 1, it is suggested to try to
characterizé each permutation by its inversions. If we consider an arbitrary
permutation of the numbers O through n-1 , each permutation is uniquely
characterized by the values jnv(i) , with O < inv(i) =i for 0<<3i <n,
where inv(i) equals the number of numbers < i , that are placed at "ihe wrang
side" of 1 ; inv(j) = the number of inversions between the value i and
smaller values, (The total number of inversions of the permutatiocn is the sum
of all the inv(i)—values.) That each permutatior defines the jnu(i)—values
uniquely is obviaus; that the inv(i)—values define the permutation uniquely
is also nct difficult to see, when we consider the algorithm constructing the
permutation from the inv(i)—values -—-processing these values in the order of
increasing i --: this is an algorithm that leaves us' no chpice.

There is, therefore, a one-to-one correspondence betiween the n! poszible
inv-values and the n! permutations, and the question becomes, which modifi-

cations of the inv-value correspond to a swap of neighbours: each swap of two

EWD502 - 1

neighbours changes exactly one inv(i)-value by one, viz. with i = the larger
of the two values swapped. The value of inv(i) is to be increased by ore if
the swap brings the pair into the wrang order, otherwise it has to be decreased

by one.

A feasible sequerce of inv-values to be generated is now reasonably

obvious: it is the generalization of the Grey-code, For n =24 it would begin

0 0 0 0
¢ 0 0 1
¢ 0 0 2
o 0 o0 =
0 o 1 3
0 0 1 2
0 0 1 1
0O 0 1 0
o 0 2 0
o 0 2 1
0 g 2 2
o 0 2 3
o 1 2 3
0 1 2 2
etc.

The rule is as follows: a number is changeable when it may be increased
or decreased by one. It may be increased if the sum of the numbers to its left
is even and it has not reached its maximum value; it may be decreased if the
sum of the numbers to its left is odd and it has pol reached its minimum value

zero. At each step, always the right-most changeable number is changed.

After having established tte value i such that inv(i) has to be
changed and, also, whether the value 1 has to be swapped with its lefi-hand
neighbour (because this is a smaller ore, inv(i) has to be increasad) or
with its right-hand neighbour (a decrease of inu(i) by Dne), we have
to establish the place « in the array, where the element i is positiorned;

this is given by

c = i - inv(i) + (the number of values § such that j > i and inv(j)

EWDH02 - 2

The reason for this formula: i is its original position, inv(i) is the
number of smaller elements to the right'uf it; we have to add to it the

number of larger elements in front of the section with elements <i.

In the following program we have given inv(O) --which should be con-
stantly O-- the funny value -2; this is just the usual, mean, little coding
trick, in order to let the search for the right-most changeable number ter-
minate artificially when there is no more such a number. The value "totinv"
records the total number of inversions in the array a; the variable "liny"

records the sum of the (non-funny) inv-values to the left of ihv(i).

beqin glocon n; privar a, inv, ready, totinv;

8 vir int array := (0, 0) {a initialized wi;h a(0) = };
inv vir int array := (0, -2) {inv initialized with inv(0) = - 2};
do inv.dom £n o azhiext(inv.dum); invihiext(0) od
{a(O),..., a(n-1) = 0,..., n-1 and inv(O),...,inv(n-1) = =2, 0,...,
ready vir boel := false; totinv vir int := 0;
do non ready -

begin glocon n; glovar a, inv, ready, totinv;

privar i, ¢, linv; printarray (a);
. .. . c . . . Y
ivir int t=n - 1; ¢ vir int := 05 linv vir int := totinv - 1nv(:;

do inv(i)‘ i and even(linv) ~ci=c + 1y dr= i -t _.

linvi= linv - inv(i)
[inv(i) = 0 and odd(linv) ~ it= i ~ 1; linvi= linv - inv(i)
od;
ci=c¢c + 1 - inv(i);

ii_even(linv) and i 2-1 - inv:(i): inv(i) + 13 totinvi= iotinv + 1;

a:swap(c -1, c)

==

Ddd(linv) and 1 > 1 -~ inv:(i)z inv(i) - 1; totinv:i= totinv - 1;
a:swap(c, c o+ 1)

li=0- ready:i= true

i
end
od
end
Flataanstraat 5 prof.dr.Edsger W.Di jkstra
NL-4565 NUENEN Burroughs Research Fellow

The Netherlands

