13th August 1979 . EwWDS07 - O

EWD507.html

On & gauntlet thrown by David Gries.

by
Edsger W.Dijkstra

It is requested to design a program that will gererate the N! permutations
of the values from O through N-1 in such an order that the transition from
one permutation to the next is always performed by exactly one swap of two

neighbours.

In a permutation each pair of values such that the larger value precedes
the smaller one, presents a so-called "inversion", (In particular: the one and
only permutation with zero inversions is the one in which the values are placed
in monotenically increasing order.) The notion of inversions can be expected
to be relevant because the swapping of two neighbours changes the total number
of inversions by (plus'or minus) 1, and it is, therefore, suégested to
characterize each permutation by its inversions. This can be done by introducing
N inversien counters inv[i] for 3 <i<N, where inv[i] equals the number
of inversions between the value i and the values smaller than i . (From this
definition O fginv[i] < i follows; the total number of inversions of a per-
mutatiorn is the sum of the corresponding inu[i]«ualues.) That each pérmutation
defines the inv[i]—values uniquely is obvicus; that the inv[i]—values define
the permutation uniquely is easily seen by considering the algorithm comstructing
the permutation from the inv[i]—values --processing these values in the order

of increasing i -- : this algorithm leaves us no choice.

There is, therefore, a one-to-one correspondence between the N! possible
inv-values and the N! permutations, and the gquestion hbecomes, which modification:
of the inv-value correspond to a swap of neighbourst each swap of two neighbours
changes exactly one inv[i]—value by T , viz. with i = the larger of the two
values swapped. The value eof inv[i] is to be increased if the swap increases

the number of inversions; otherwise it is to be decreased.

A feasible sequence of inv-values to be generated is now reasonably

obvious: it is the generalization of the Gray-code. For N =4 it would begin

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD507.html

EWD507 - 1

inv[O] inv[1] inv[2] inv[3]

) 0 QO 0
0 C ¢ 1
8] 0 0 2
o] o 0 3
o] o 1 3
0 0 1 2
0 0 1 1
0 0o 1 o
o o) 2 0]
0 .0 2 - 1
0 2 2
0 2 3
0 1 2 3
C 1 2 2
etc. |

The rule is as follows: a number is changeable when it may be increased.
or decreased by 1 . It may be increased if the sum of the numbers to its left
is even and it has not reached its maximum value; it may be decreased if the
sum of the numbers to its left is odd and it has not reached its minimum value
zero. At each step, always the right-most changeable number is changed. It is
not difficult to see that in the permutation, the value i is, indeed,

swapped with a smaller value.

After baving established the value i , such that inv[i} has to be
chanyed, and, also, whether the value i has to be swapped with its predecessor
in the permutation (correspunding ta an increase of inv[i]) or with its
successor in the permutation (correspnnding to a deciease of inv[i]) , we
have to establish the place ¢ in the permutation, where the value i is locates

because for all j >1i , inv[j] has an extreme value, ¢ is given by

c=1i- inv[i] + (the number af values j such that j > i and inv[j] = j)

In the following program we have given inv[O] —-which should ke constantly

0-~ the furny value -2; this is the usual, mean, little coding trick, in order

to let the gsearch for the right-most changeable inv[i]—valué terminate ar-

EWD507 - 2

tificially when there is no more such an inu[i|-velue. The value "totinu"
records the total number of inversions in the array a , that is used to record
the permutation; the variable "linv" records the sum of the (non-funny) inu[j]-

values to the left aof inv[i] (i.e. with j <i).

begin integer array a, inv [0:N-1]; boolean ready; integer totinv, i, c, linv;

ji=0; do i <N =« ali]:= i;_inv[i]:: 0; it= 3 + 1 od; inv[0]:= - 2;
ready:= false; totinvi= O
do non ready - printarray(a);

irt= N - 1; c:= 0; linvi= totinv - inv[i];

da inv{i] = i and even{linv) =

—

ci= ¢ - 1; linvt= linv - inv[i]

[invfi] =

it= 3 - 1

HEt

i
and odd{(linv) -

o +

linv:= linv - inv[i]

e

cit=c + i - inv[i];
if euen(linv) and i >0 =
inv[iJ:: inv[i] + 1; totinvi= totinv + 1; swap(a, c-1, c)
[| odd{1inv) and i >0 -
inu[i}:: inv[i] - 1; totinv:= totinv - 1; 5wap(a, c, c+1)_
[i =0~ ready:= true
fi
od

—

en
Post Scriptum.

The problem solved above has been posed to me by David Gries, who told
me that he had found it a non-trivial task to present a solution to it in a
cﬂnvinﬁing manner. The argument shown led quickly to the above solution,

whiech is submitted for publication upon his regquest. (End of Post Scriptum.)

Burroughs prof.dr.Edsger W.Dijkstra
Plataanstraat 5 Burroughs Research Fellow
NUENEN ~ 4565

The Netherlands

	Button3:

