20th August 1974 EWD508 - O

EWD508.html

A synthesis emerqging?

”Intrcduction.

This document dees not contain language proposals; at a later stage they
may be inspired by it. It has no other purpose than the recording of discussions
and programming experiments, It is exciting because it seems to open the possibili
of writing programs that could be implenented
a) either by normal sequential techniques
b) or by elepbhants built from mosquitos
c) or by a data-driven machine.

That prugrams intended for the second or third implementation ceuld be
"inefficient" when regarded as sequential programs, is here irrelevant. The
important result would be that the same mathematical technigue for the intellectusa
mastery aof sequential programs can be taken over —~hopefully leck. stock and
barrell-- for the intellectual mastery of those, as yet less familiar designs.
Finally --and that seems the most important promise-- it introduces the possibilit
of concurrent execoticon in a non-operational manner.

From the past, terms as "sequential programmirg" and "parallel programming”
are still with us, and we should try to get rid of them, for they are a great
source of confusion. They date from the period that it was the purpose of gur
programs to instruct eur machines: now it is the purpose of the machines to
execute our programs. Whetker the machine does so sequentially, one thing at
a time, or with a considerable amount of concurrence, is a matter of implemen-
tation and should nct be regarded as a property of the programming language.

In the years behind us we have carried out this program of non-operational
definition of semantics for a simple programming language that admits (trivially)
& sequential implementation; cur ultimate goal is a programming language that
admits (highly?) concurrent implementations equally trivially. The experiments
described inp this report are a first step towards that goal.

27th and 31st July, 1975.

It all started on Sunday 27tk of July 1975, when Tony Hoare explained to
me in the garden of Hotel Sepp in Marktoberdorf {Western Germany) uFon my reguest
the class-concept of SIMULA (including the so-called igﬂ§;~concept); at least
he explained his version of it. I had always stayed away from it as far as
Fossible, in order to avoid contamination with the extremely operational point
aof view as practiced by Dahl c.s., and, after some time I could not even (Lnder—}
stand their mechanistic descriptions anymore: they just made me shudder. Late
1974 Tony sent me a paper, that looked better, but s+ill made me shudder; 1 read
it once, but doubting whether I could endure the exposure, I cousciously refused
to study it at that moment. On Satirday 26th I decided that the moment to be
courageous had come, and asked Tony to explain to me what he was considering.
He was a tolerant master, allowing me to change terminclogy, notationm and 2 way
of looking at it, things I hac to do in order to make it all fit within my - frame
of mind., To begin with I shall record how our discussions struck root in my mingd.
(Whether a real SIMULA-fan still recognizes the class-concept, is something I
just don't krow: maybe he gets the impression that I am writing ahbout something
totally different. My descriptionms in what follows are definitely still more
operational and mechanistic than I should like them to be: it is hard to get

rid of old habits!)
+* *

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD508.html

EWD5083 -

Suppose that we consider a natural number, which can te introduced with
the initial value zero, can he increased and decreased by 1, provided it re-
mains non~negative. A non-deterministic, never ending program, that may generate
any history of a natural number is then

nn begin privar x; x vir int := O;

do true - x:= x + 1
ﬂx>0-.x:=x-1

od
end .

Suppose now, that we would like to write a main Program operating on two
natural numbers y and z , a main program trat "commands" these values to be
increased and decreased as it pleases. In that case we can associate with each
of the two natural rumters y and z a non-deterministic program of the above
type, be it, that the non-determinacy of each of +hesc two program executions
has ot be resolved ("settled", if you prefer) in such a way that the two historiecs
are in 2ccordsnce with the "commands" in the main program. For this purpose we
consider the following program, (Please remember that the chosen notations are
not a proposal: tkey have been irtroduced only to make the discussior pcssible!)

nn gen begin privar x; x vir int = 0;
do ?inc - xi= x + 1
[x>0 cand 7dec — x:= x - 1
od

end

main program
begin privar y, z; vy vir nn; z wvir nn;

y+inc; ...; y.dec; ...; z.inc; ...; z.dec;

end
Notes.
1) We have written two programs, eventually we shall have three sequential
processes, two of type "nn" --one for y and one for 2 -— and one of type

"main program™. The fact that the first ore can be regarded as a kind of "template’
I have indicated by writing qgen (suggesting "generztor") in front of its begin.

2) The main program is the only one to start with; upon the initialization
"y vitr nn" the second one is started --and remains idling in the repetitive
construct-- , upon the initialization "z vir nn", the last ope is introduced.
in an icdentical fashion., It is assumed --e.g. because the "main program® is
written after "nn"-- that the main program is within the lexical scope of the

1 "

identifier "nn".

3) The two indentitiers inc and dec -preceded in the text of pn by

a question mark-- are subordinate to the type rr , thet is, if ¥ is declared
and initialized as & variable of type nn , the operations inc anmd dec --
invoked by "y.inc" and "y.dec" respectively-- are defined on it and can be
implemented by suitable synchronizing and sequencing the execution of the
y-program with that of the main program,

4) When in the main program "v.inc" is commanded, thtis iz recozvded in the
prog y :

y-program as the guard "?inc" being true (once). Otherwise guards {or guard
corporents) with the question mark are regarded as undefined. Only a true

guard makes tre guarded statement eligible for execution.

EWD508 - 2

5) The block exit of the main program, to which ihe variables y and z

are lecal, implies that all the "query guards" are made false: when 7inc and
?dec are false for the y-program, the repetitive censtruct termirates and

that locel block exit is performed: the "x" loeal tn ihe y-program may cease

to exists. It is sound to view the implicit termimetion of the l:locks associated
with the variables y and =z to he completed before block exit if the block

to which they are local --the main program-- is completed. (Fnd of Notes.)

* *
*

In the preceding section we have assumed that the main program was somehow
within the scope of "nn"., But ore can argue what funny kind of identifier this
is: on the on= 'and it is the name of a program text, there are, however, as
many nn's as the main program inirodu-==5 ratural numbers. The decent was to
overcore this is to introduce a fourth program, ome "natural rumber maker"
say peano . Suppose that it is tke purpose of peano not only to provide
--i.e. to create and to destroy-- natural numbers, but alsoc 1o ;print at the
end of its life the maximum natural number value that has ever existed.

peano
begin privar totalmax; totalmax vir int := Q;
do ?nn - gen begin privar x, localmax;
x vir int, lecalmax vir int ;= Q, O;
(//do 7inc — x:= x + 1;
do localmax < x — localmax:= x od
x>0 cand 7dec — x:= x - 1

od//);

do totalmax < localmax — totalmax:= localmax od

end
od;
print(tntalmax)
end

main program
begin privar y, z; y vir peano.nn; z vir peano.nn;

y.inc; ...; y.dec; ...; z.inc; ...; z.dec
end ‘

The idea was, thai the program called peano is read in and started, until
it gets stuck at the repetitive construct with the (undefined) query "?nn", With
the knovledge of the identifier peano (and ite sutordimate peanm.nn) the
main program is read in and started, and because inc is subordinate to
peano-nr, it becomes subordinate to y by the initializing declaration
"y vir peanc.nn".

Notes.,

?) In the above it has not been indicated when peanc will terminrate and print
the value of totalmax.

2) The generator describing the natural rumter exists of three parts:

its opening code; '

(// its local cude//);

its closing code .
Only in *he opening code --here the facility is not used and in "ni" the "(//*
could have been moved forward-- and the closing code access io totalmax , the

local variable of peano 1is permitied. Different natural numbers mey “inc"

EWD508 - 3

simultaneously, only their opening and clesing codes are assumed to be performed
in mutual exclusion. :

3) If the main program is a purely sequential one, y.dec immediately after
initialization will cause the main program to get stuck. If the main program
consists of a number of concurrent ones, the one held up in y.dec may
pracedd after another process has performed y.inc. Our natural numbers would
then provide an implementation for semaphores!

4) It is now possible to introduce, besides the peano given above, a
"peanodash" that, for instance omits the recording of maximum values., The
main program could then begin with

begin privar y, z; y vir peano.nn; z vir peanodash.rn;

The importance of the explicitly named "maker" in the declaration/initial-
ization lies in the fact that it allows us te provide alternative implementatiors
for variables of the same (abstract) type. (End of Notes.)

The above records the highlights of Sunday's discussion as I remember
them. Many of the points raised have been recorded for the sake of completeness:
we may pursue them later, but most of them not in this report, as the discussion
took another turn on the next Thursday.

* *
*

On Thursday a couple of hours were wasted by considering how also in the
local code onstances of generated processes --natural numbers-- could be granted
mutually exclusive access to the local variables of their maker. Although we
came up with a few proposals of reasonable consistency, Tony becamse suddenly
disgusted, and I had to agree: ths whole efforts had been "to separate” and now
we were re-introducing a tool for fine-grained interference! Qur major result
that day was the coding of a recursive data structure of type"sequence”. The
coding is given on page EWD508 - 4 (nmitting the type of parameters and functien
procedures). It is not exactly the version coded on that Thursday afternoon,
but the differences are minor.

It is a recursive definitior of a sequence of different integers. Let
§ be & variable of type seguence.

s.empty is a boolean function, true if the sequence s is empty,
otherwise false

s.has{i) is & boolean function with an argument 1 of type integer;
. it is true if i occurs in the sequence, otherwise false

s.truncate is an operator upon s, which also returns a boolesn value;
if s is nonempty, the last value is removed and the value
true is returned, if s is empty, it remains so ard the
value false is returned '

s.hack is @n operator upon s that returns a value of type nint
(i.e. the integers, extended with the value nil); is s
is nenempty, the first value is returned ard removed from
s, if s is empty, it remains so and the value nil is

returned
s.remove(i) is an operator upon s with an argument i of type integer;
if i does not occur in s, s is left unchanged, otherwis

the value 1 is remaved from the sequerce s without chargi-

Ewns08 - 4

sequencemaker

begin
do 7sequence —

(//gg ?empty - result = true
?has(i) - result := false

ﬂ ?truncate - result := false
ﬂ Tback -- result = mil

B ?ramuve(i) - skip

==

?insert(i) -
begirn privar first, rest;
first wir nint := ﬂiﬂ; rest vir sequencemaker.sequence;
do first # nil cand 7empty - result := false
first £ nil cang 7has(i) -
if first = i - result := true
' first f i - result := rest.has(i)
fi
ﬂ first £ nil gand ?truncate -
result := true;
begin pricon absorbed;
absorbed yvir beool := rest.truncate;
if absorbed - skip
ﬂ non sbsorbed - first:= nil
fi
end
] first £ nil cand 7back —
result := first; first:= rest.back
[first # nil gand 7remove(i) -
if i # first - rest.remove(i)
|l i = first - first:= rest.back
fi
f first £ nil card ?insert(i) -
if i % first — rest.insert(i)
i = first - skip

T fi
od
end

od//)

end
o
end

the order of the remaining elements in the sequence

s.insert(i) is a operator upon s with an argument i of type integer;

if i does occur in s , s is left unchanged, otherwise
s is extended wt the far end with the value 1i.

(The above is a set of rather crazy specifications: they grew in an alterrmation
of simplification --we started with a binary tree-— in order to reduce the
amount of writing we had to do, and complications, whern we pecame more am-
bitious and wanted to show what we could do.)

Note. I am aware of the lousimess of the notation of an operator upon s which

returns a value, I apolegize for this lack of good iaste. (End of Note‘)

EWD508 - 5

The seguencemaker is very simple: it can only provide as many sequencies
as it is asked to provide; the storage requirements for a Sequence are very
simple, viz. a stack. (In our rejected example of the binary {iree, although
lifetimes are, in a fashion, nested, life is not so simp]e.) The sequencemaker
has no local variables (like peano); accordingly, each sequence is simple:
its opening and closing codes are empty. The ouvter repetitive constructs
describe the behaviour of the empty sequence: all its actions are simpte
with the exceptior of ?insert(i) y 85 8 result of which the sequence becomes
nonempty. In an inmer block, which describes the bebaviour of a sequence that
contains at least one element, two local variables are declared: the integer
"first" for that one element, and the sequence "rest” for any remaining cnes.

It is illustrating to follow the execution of the call "remove(i)".
Suppose that i does not occur in the sequence: in that cese we have constantly
"i £ first", the task to rerove i is constantly delegated to the rest, until
it is delegated to an empty rest, fro which —-Sth line-- remove(i) reduces to

‘a skip. If, however, the value i occurs in the sequence, it occurs in a
nonempty sequence and "i = first" is discovered; the command then propagates
in the form "first:= rest.back". The last non-empty sequence that performs
"first:= rest.back" gets --see 8th line-- the value "nil"™ from its successor
and establishes for itself "first = nil", As a result the repetitive construct
in its inmrmer block is terminated, an inner block exit is performed, prior to
the completion of which all query-guards for its successor are set false,
and its successor performs an exit from its outer hlock ang ceases to exist.

It is also instructive to follow how upon the block exit from

bBegin privar s; s vir SEqUeNncemaker.SEQUENCE; wuvveersnsseses.. Bnd

at a moment that s may contain many elements, the sequence s tisappears.

All guery-guards to s are set false, which forces termination cf the inrer
repetitive construct for s which results in block exit from its inner block
(which first requires deletion of its rest); upon campletion of this block exit,
the query-guards still being false, termination of the outer repetitive comstruct
and block exit from the outer block of s are forced. This is very beautiful:
the hini to delete itself, given to the head of the sequence, propagates up to
its end, reflects there, travels back, folding up the sequence in a rice
stack-wise fashion, as, of course, it should. In its elegance --or should I

say: completeness?-- it had a great appeal to us,.

* *
*

It was at this stage, that I realized, that tte same program could be
visualized as a long sequence --long enough, to be precise-- of mosquitoes:

TR T

where each mosquito is essentially a copy of the text between (// and /7),
and each mosquito is the "rest" for his left-hand neighbour, The execu=ior

of the declaration “rest vir sequencemaker.sequence" can be interpreted as a
commanc to one's right-hand neighbour to initialize its instruction counter _
to the begin of the program. Fach mosquito is ready to accept a next command
from the left as soon as it has nothing more to do, i.e. its control has
successfully returned to one of the sets of query-guards. Giving a command

ta the right lasts until the command has been accepted when no answer is
required, and until the answer has been returned when an ancwer is reguired.

rd

[74

EWD508 - 6

It is instructive to follow the propagaticn of activity for the various
commands.

?empty is immediately reflec+ted.

?has(i) pPropagates up the sequence until i has been detected or the
sequence is exhausted, and from there the boolean value (true or false res-
pectively) is reflected and travels to the left until it leaves the sequence
at the front end. All the time the sequence is busy and cannct accept another
command. The time it takes to return the answer +true depends or the distance
of i from the begin of the sequence, the time it takes to return the answer
false is the longest one, and depends on the actual length of the chain (not
on the number of mesquitoes availahle).

?truncate and Thack propagate in practically full speed to the right:
at each mosquito, there is a reflection over one place back to absaorb the
answer. Note that ?truncate (in the inrer block} starts with "resulti= true”
and 7hack starts with "result:= first" --actions which can bte taken to ke
completed when the mosquito to the left has absorbed the value. This is done
in order to allow the mosquito to the left to continue as quickly as possible.

?remove(i) aropagates still simpler (until it becomes a ?back).

?insert(i) propagates also quite simple, until the wave is either ahbsorbed
--because i = first is encountered-- or the sequence 1is extended with one
element. The fascinating observation is that any sequence of ?remave(i), ?insert(:
?hback and ?truncate may enter the sequence at the left: they will propagate
with rovghly the same speed along the sequence, if the sequence 1is long, a
great number of such commands may travel along the sequence to the right, It
is gusranteed impossible that one command "overtakes" the other, and we have
introduced the possibility of concurrency in implementation in an absolutely
safe manrer.)

Note. Originally truncate was ceded differently. It did not return a boolean
value, and was in the outer guarded command set

?truncate - skip
and in the ipner guarded command set

first # nil cand ?truncate —
if rest.empty = first:= nil
non rest.empty - rest.truncate
fi

As soon as we started to consider the implementation by a sequence of mosquitoes,
however, we quickly changed to the code of EWDS08 - 4, because the earlier
version had awkward propagation properties: two steps forward, ore step back~
ward, The versicn of page EWD508 wes coded when we had not yet introcduced 1he
type nint; after we had dore so, we could also have coded truncate with a
parameter of type integer: in the outher guarded command set

?truncate(i) - resulti= nil
and in the inner guarded command set
first # nil cand ?truncate(i)-—
result := i; first:= rest.truncate(First) B

The last part of this note is rather irrelevant. (End of Nete.)

This was the stage in which we were, when we left Marktcherdorf. As I wroie
in my tripreport EWDS0& "A surprising discovery, the depth of which is --as
far as I am concerned-- still unfathomed."

* *
*

EWD508 - 7

What does one do with "discoveries of urfathomed depth™? Well, I decided
to let it sink in and not to think 'about it for a while --the fact that we had
a genuine heatwave when I returned from Marktoberdorf helped to take that
decisionl!-- ., The discussion was only taken up again last Tuesday afternoon
in the company of Martin Rem and the graduate student Pbirters, when we tried
to follow the remark, made in my tripreport, that it would be nice to do
away with von Neumann's instruction counter. (This morning I found a similar
suggestion in "Recursive Machines and Computing Techrology” by V.M.Glushkov,
M.B.Ignatyev, V.A.Myasnikov and V.A.Torgashev, IFIP 1974; this morning I
receiv;d a copy of that artiele from Philip H.Enslow, who had drawn my attention
to it. ’

We had, of course, observed that the propagation properties of "has{i)"
are very awkward. It can keep a whole sequence of mosquitoes occupied, all of
them waiting for the boolean value to be returned. As leong as this boolean
‘'value has not been returred to the left-most mosquito, no new cowmand can
be accepted by the first mosquito, and that is sad. The string of mosquitces
as shown above, is very much different from the elephant structure that we have
already encountered very often, viz. all mosquitoes in a ring.

Nice propsgation properties would be displayed by @& string of mosquitoes
that send the result as soon as found to the right, instead of tack teo the
left! Before we pursue that idea, however, [must describe how I implemented
(recursive) function procedures in 1960 --a way, which, I believe, is still
the standard one-- .

Upon call of a function procedure the stack was extended with an "empty
element", an as yet undefined anonymous intermediate result. On top of that
that procedure's local variables would be #llocated and during the activation
of the procedure body, that location --named "result"-- would be treated as one
of tne local variables of the procedure. A call

?has(i) - if i = first — result:= true
i # first - result:= rest.has(i)
fi

could result in 9 times the second alternative and once the first, so that

the answer is found at a moment of dynamic depth of nesting, equal to 10. In
the implementation technique described, the boolean result is then handed down
the stack in ten successive steps: the onymous result at level n+l becomes
at procedure return the anonymous result at level n , that is assigned to the
onymous result of level n , etc.: a sequence of alternating assignments and
procedure returns. Under the assumption that assignment is net an expensive
operation, this is an implementation techrigque that can very well be defended.

But it is an _implementation choice! When implementing

result := rest.has(i)

no one forces us to manipulate the value of "res.has(i)” as an imtermediats
result, that subsequently can be assigned! An alternative interface with the
function procedure would have been to give it an additiongl implicit parameter,
viz. the destination cf the result --e.g. in a sufficiently glebal terminology,
such as distance from stack bottom, say--. In that cese the implementation of

result = rest.has(i)
would consist of a recursive call on "has" in which the implicit destinatiocn

parameter received would just be handed over to the next activation. When,
‘gt dynamic depth 10, the boolean value would become known it would instantaneousl.

EWDS08 -~ 8

-

be placed at its final destination, after which the stack could collapse.
Because in the case of a fixed number of mosquitoes, always present, needed

or not --that is the simplification I am thinking about now-- there is not

much stack collapse, the configuration that now suggests itself is the following

RLLLOOURILYD

The mosquitoes still have the same mutual interconnection pattern, but I

assume that each request for a value, entering the network at the left at the
question mark, is accompanied by "a destination” for the result. The reason

that I have added the line at the bottom is the following. A sequence is a

very simple arrangement, and in tFat case, also the "external result" as soon

as known, could be handed to the right-hand neighbour for further transmission.
1f, however, we consider the tree that would correspond to a variable cf the
type "binary tree" , the result would then finally arrive in one of the many
leaves. If we associate a real copper wire with each connection between two
mosquitoes, and we wish the result to appear at a single point, then we have

to introduce some connecting network, such that the various paths of the results
can merge. Hence the additional line; the points, marked "m" are binary merge
points, we have arranged them linearly, we could have arranged them logarithmical!
logically --and perhaps even physically-- we can think of "multi-entry merges".

&S0 }-!'

I am now not designing in any detail the appropriate mechanism for
collecting the extermal result as soon as it has been formed somewhere in the
network. My point is that there are many techniques possible, which all can
be viewed as different implementation techniques of the same (r;cursiue) program.
Their only difference is in "propagation characteristics". The reason that I
draw attention to the difference in implementation technique for the sequential
machine {without and with implicit destination parameter) is the following.

In the case of the linear arrangement of mosquitoes, each mosquito only being
able to sernd to his right-hand neighbour wher his right-hand neighbour is ready
to accept, we have a pipeline that, by the nature of its construction, preduces
results in the order in which they have been requested. This, in general, seems
to severe a restriction, and for that purpose, each rejuest is acconparied by

a "destinmation", which as @ kind of tag accompanies the corresponding result
when finally produced. Ubviously, the environment driviny the network, must

be such, that never to requests with the same destination could reside simul-

taneously in the network.
* *

*

True to our principle that about everything sensible that can be said
about computing can be illustrated with Euclid's Algorithm, we looked at good
old Euclid's Algorithm with our new eyes. We also took o fairly recent version,
that computes the greatest common divisor of three positive numbers. It is

Xy ¥y, Z 3= X, Y, Z;
dog x > y = xXi= x - ¥
fy>z-yi=y -2
Z X - 2i=Z - X%
od

with the obvious invariant relation: gcd(x, Yy z) = gcd(X, Y, Z) and x > 0 and
y>0and 2z >0 .

EwDs08 - 9

Our next version was semantically equivalent, but written down a little bit
differently, in an effort to represent that in each repetition, it was really
the triple x, y, Z we were operating upon, That is, we regarded the above
program as an abbreviation of

Xy ¥y X 5= X, Y, Z;
do x>y —-x,y, 2
ly>z-x,y, z
U 2R - K, Yy Z

We then locked at it and said: Why only change one value? This, indeed is not
necessary, and we arrived at the following --similar. but mathematically different-
programs:

X, y, 2i= X, Y, Z; {program 3)
da non x = y zZ -
X, i= (Xy y), f(yr z)’ f(zv x)
od
with f(u, v):r u>v —-result 1= u - v
u<v - result :=u

- ::

lﬁ

or, if we want to go one step further for the sake of argument

f(u, v): if u > v -~ result := dif(u, v)
u<v - zxesult t=u
fi
and dif(u, v): result = u - v .

How do we implement this? We can look at program 3 with ocur traditional sequential
eyes, which means that at each repetition, the function f is invoked three
timesz, each next invocation only taking place, when the former one has returned
its answer. We can also think of three different f-networks, which can be
activated simultameously. We can also think of a single f-network, that is
activated three times in succesion, but where the comparison of the next peir

of arquments can coincide in time with formimg the difference of the preceding
pair, To be guite honest, we should rewrite program 3 in the form

X, y, zi= X, Y, Z; (prngram 4)
donon x =y =2z~
tx, ty, tz := f(x, y), f(y, z), F(z, x);
, X, V¥, 2z 1= tx, ty, tz
od

The reason is simple: we want to make gquite clear that always the.old values

of x, y, z are sent as arguments to the f-network, and we want to code our

cycle without making amy =ssumptions about the information capacity of the

f-network. The above program works also if we have an f-network without pipe-

lining capacity. * £ '
*

1 was considering & mosquito that would have six local variables, x, ¥, 2,
tx, ty and tz; it would first "open" tx, ty and tz. i.e. make them ready to
receive the properly tagged results, and then send the argument pairs in the
order that pleases it to either one or three f-networksm and would then, as
a merge rode, wait urtil all three values had been received. When I showed this
to C£.5.S5cholten, he pointed out to me, that the same result could be obtained

by two, more sequential mosguitoes: one only storing the %, y, z values, and

EwDs08 - 10

another one, storing the tx, ty and tz values, waiting for the three values to
be delivered by the f-network. This is right.

Some remarks, however, are in order, I can now see networks of mosguitoes,
implementing algorithms that I can also interpret sequentially and for wkich,
therefore, all the known rathematical techniques should be applicable. Each
mosquito represents a non-deterministic program, that will be activated by its
"query-guards™ when it is ready to be so addressed and when it is so addressed,
and where the act of addressing in the addressing mosquito is only completed,
by the time that the mesquito addressed has honoured the request. We should
realize, however, that these synchornization rules are more for safety, than
for "scheduling”, because dynamically, such networks nay have awkward macros-
copic properties when overloaded. Take the example of the long string of
mosquitoes, that, together form a bounded buffer, each of them cyclically
waiting for a value from the left, and then trying to transmit this value to
the right. If this is to be a transmiseion line, it has the maximum throughput
when, with n mosquitoes, it contains n/2 values. Its capecity, however
is n . If we allow its contents to grow --because new values are pumped in
at the left, ss long as possible, while no values are taken out at the right,
it gets stuck: taking out values from the sequence filled to the brim empties
the buffer, but this effect only propagates slowly to the left, and the danger
of awkward macroscopic oscillations seems all but excluded,

The next remark is that I have now considered elephantis built from mos-
quitoes, but the design becomes very similar to that of a program for a data-
driven machine. The programs I have seen for data driven machines were always
pictorial ones --and I don't like pictures with arrows, because they tend to
become very confusing--, and their semantics was always given in an operational
fashion, Both characteristics point to the initial stage of unevoidable immaturity
I now see & handle for separéting the semantics from the (multi-dimensional,

I am tempted to add) computational histories envisaged, In a se~se we don't
need to envisage them anymore, and the whole question of parallellism and
concurrercy has been pushed a little bit more into the domain, where it be-
langs: implementation. This is exciting.

* *
*

A sobering remark is not misplaced either, and that is that we have
already considered highly concurrent engines --e.g. the hyperfast Fourier
transform via the perfect shuffle-- that seem to fall as yet outside the
scope of constructs corsidered here. And so does apparently the on-the-fly
garbage collection. We can only conclude that there remains enough work to
be done!

PS. For other reasons forced to go to town, I combine that trip with a visit
to the Eindhoven Xerox branch. The time to reread my manuscript for typing
errors is lacking and I apologize for their higher density.

25th August 1975 prof.dr.Edsger W.Dijkstra
Plataanstraat 5 : Burreughs Research Fellow
NL-4565 NUENEN
The Netherlands

