EWD527 - O
EWD527.html

On upits of consistency.

(This is a replacement of EWD490 "Detection of malfetching of instructiens",

which never got completed.)

I am getting more and more worried about reliability. My natural
pessimism got new food when T was told that the chips of pocket calculators
are, in general, totally unchecked: the manufacturers deon't know how to do
it, and the rule is, therefore, that, if the customer complains, he gets a

new one., Isn't that a simple solution.....

With regard to the reliability issue with large computers, we can try

similar, but on closer inspection quite different things:

a) reduce the probability of an undetected machine malfunctioning
b) increase the probability that a correct result will be produced
c) decrease the propability that a wrong result will be produced as if it

were a correct one.

Techniques primarily directed towards target (a) are parity checks
and redundant execution of arithmetic operations. They are very popular, and
their popularity is well-deserved. They are neutral -—-i.e. génarally applicable--
built-in checks of great diagnostic value as far as hafdware maintenance is
concerned. They only serve the next two targets under the additional assumption
that detected errors have a much greater probability of occurrence than un-

detected ones, an assumption which, alas, is often unjustified.

Techniques primarily directed towards target (b) combine --an effort at--
error dete:tinnﬂwith --an effort at-- error correction, under the motto "The
show must go on." It may be a very local error correction, it may be a much
wore global recovery procedure. I have limited experience with such techniques,
and, besides that, I have my doubts, because to the possibility of undetected

errors the possibility of erronecusly corrected ertrors has been added.

Target (c) is the most modest one: we sincerely hope, that the machine
performs so well that the correct result will be produced and would be happy
if sach harmful machine malfunctioning would lead to abortion before the

wrong result has heen produced. The latter goal was the one discussed in

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD527.html

EWD527 - 1

L

EWD4B2. We now return to it in a more restricted environment, viz. the

problem of the fetching of instructions,

In order to simplify my discussion I shall assume that programs are
represented with one ‘instruction per word, and that each word is sitored
with a parity bit. (The following is also valid under the assumption of
a more redundant word-wise redundancy.) The question is: how certain are
we, that the correct instructions are executed, i.e. that the correct bit-
patterns appear in the instruction register? There seem to be roughly three
things that can go wrang:

a) while reading the instruction a multiple-bit error has occurred that
has not been caught by the parity check

b) ﬁhe instruction that reached the instruction register is the result
of the perfect reading of the Qrong ward

c) the correct word has been read correctly, but the bit pattern has
been corrupted somewheres on its way from the last checking station to the

ingtruction register.

Error (b) can be caused in two different ways:
b1) the program is correctly stored, but the wrong word has heen read
because something happened in the instruction counter or on the way from
instruction counter to memory selection register ‘
b2) one of the instructions of the stored program has errocneously been

overwritten (with a perfect parity of course!).

At least one svstem has been designed in which the instructions of a
program are stored with a sum-check included, and, regularly, the machine
interrupts its normal activities and inserts a sum-checking interlude in
order to inerease the confidence that all programs are still correctly stored.
This approach, however, has a considerable number of urattractive consequences.
1) because the sum-checking interludes have to be inserted at the expense
of the machine's productivity, we have to settle the conflict, how frequently
these interludes should be inserted
2) in a paging machine, we have to perform the sum-check before a program
page (UF which I assume that it is not dumped) is overwritten by another page
3) it only catches error (b2), and if errors (a), (b1) and (c) can occur

as well —-and why shouldn't they?-- it is not véry‘effectiﬁe in view of our

EWD527 - 2

target (c). (In all fairness I should méhtion that the sysiem in which this
technique was applied had been designed for message switching, and in that
area the usual attitude is that anything may go wrong, provided that the
system comes in the air again. Whether this is a reaslistic and defensible

attitude, is a question beyond the scope of this note.)

The only way to catch errors (a), (b) and (c), all at the same time,
is to perform the sum-check —-or the embellishment of a cyclic redundancy
check as is done with words from a tape-- on the successive contents of the
instruction register, more precisely: each time after the instruction has
been executed. (For the sake of simplicity I assume that during instruction
execution the contents of the instruction register remains unchanged, knowing
full well that there are machines for which this assumption ‘does not hold:
in that case the following can probably be made applicable by extracting
for checking purposes the contents of the instruction register just before

it is going to be modified. In the sequel we shall ignore the cnmplication.)

The considerations in the previcus paragraph tie the checking to the
sequencing of the control; to do justice to this we introduce the notion of
"a chunk": '
8 chunk occupies a number of consecutively stored instructions, of which
the first is always the only so-called "redundancy dummy" in the chunk,
and the last one is the only jump-intruction in the chunk; each execution
of the redundancy dummy of a chunk leads some time later to the execution
of the terminal jump-instruction of that chunk --because no jump-in-
structions ocecur in the interior of a chunk; each execution of a ter-
minal jump-instruction of a chunk has been preceded by a corresponding
execution of the redundancy dummy at the beginning of that chunk, because
no jump-instruction is expected to transfer control to anything else
but a redundancy dummy of a chunk. Note. When for a conditional jump-
instruction the conditien is not satisfied and the jump~instruction
acts like a gkip, it is regarded "to transfer contruol" to the next

instruction in store. (End of note.)

Behind the instruction register an extra register of the length of a
word is introduced, the so-called Instruction Redundancy Register "IRR".
Each instruction, as it has arrived and has heen Exeéuted in the imstruction

register is added --without carry propagation, I presume, i.e. bit-wise

EWDS27 - 3

modulo 2-- to the IRR, after IRR has been "rotated" over one place to the
left; T have put "rotated" between qunté;: a pure rotation means that the
digit pushed out at the left is added at the least significant position at
the right-hand side of IRR, but in a general "rotation™ that addition may
take place at a number of other bit-positions as well. The processing of a
Jump-instruction --which is always a terminal jump-instruction-- has two
additional effecta:

i) _ after the jump-instruction has been processed {its addition to the
"rotated" IRR included) the contents of IRR is required to be all zeros;
with only target {c) in mind, the machine could stop immediately.

2) the next word selected under control of the instruction counter and
brought to the instruction register is by definition a redundancy dummy
and, independent of its bit-pattern, its execution is further semantically

equivalent to a skip.

The additional storage space occupied by each chunk is the redundancy
dummy at its begin; because the interpretation of the redundancy dummy is
independent of its bit pattern, the redundancy dummy can always be determined
such that, when the chunk was entered with IRR = Q0 , it will be left with
IRR = 0. This is the reasan why IRR has been chosen with the length of
one word = the length of one instruction: it may not have more bits than

the redundancy dummy, which was supposed to occupy one word.

Remark. Not rotating IRR would make the check insensitive to the interchange
of any two instructions; pure rotation would make it insensitive to the in-
terchange of two instructiens for which the addresses of the locations
occupied by them have a difference equal to the word-length. "Rotation"

can rule that out. (End of remark.)
* . *

Since the above was written I hage been reading in "Algebraic Coding
Theory™ by Elwyn R,Berlekamp {McGraw-Hill Book Company, New York, 1968},
in particular chapter 4 "The Structure of Finite Fields"; for our purpose
the most important mathematical result is the following. As operation on
IRR we consider the following "rotating" step:

the contents of IRR are shifted over one place to the left and the

bit shifted out is added (modulu 2) at a well-chosen numbher of bit

positions in IRR (among which the right-most one).

Ewps27 -~ 4

-

For any wordlength n the positions where the bit shifted out is added can
be chosen in such a way that the step induces a cyclic order of the 2"
IRR-contents £ 0, in the sense that the step transforms each value into

the next. Starting with a value ﬁ 0, we have to repeat the step 2" times,
before the starting value reappears. The value O is obviously transformed

by the step into itself.

The above made me understand why I was so much attracted by the
"rotating" step as described above: it gives a great protection if there
is a relatively large probability that while reading and executing a
chunk two instructions will be corrupted in the same bit positions --with
a parallel data path transporting the instructions from memory to instruc-
tion register, this is indeed a form of walfunctioning that should be con-
sidersd—— . If we don't shift at all, twoe such egual corrputions will
always cancel; in the case of a pure rotation, such a corruption has
returned to its original pesition in IRR after every n steps, and, there-
fore, two identical misreadings will cancel if they occur in the same
chunk n (or 2n or 3n, etc.) words apart. With the proper choice of a

"rotating" step we can ensure that this distance should be 2" 1,

30 9

With n = %30, we have the probability 2772 10" that the erroneous
reading of a chunk will not be caught. If, for instance, half of the in-
structions of one chunk have been executed and the instruction counter contenis
is disturbed, and program execution is continued somewhere in another churk,
the probability that this error would escape the zero-check at the end of

9

the second chunk is 10 ~.

Note. Under the (unrealistic) assumption that "skipping" an instruction
—-i.e. increasing the instruction counter by 2 instead of by 1-- is the

only malfunctioning to guard against, our "rotating" step has a curious
consequence. For each value of IRR there exists exactly gne next instruction
whose execution would not change the value of IRR. If that were the next
instruction, skipping it would not be detected! And, if all our 109 in-
structions are equally probable, there would be a probability of 10—9

that skipping an instruction would remain undetected. There is, however,

a remedy against that. Let at a given place Q0 be the instruction whose
skipping would not be detected. 1f Q is the skip-instruction, we don't

need to continue our text with it, but we may {skipping the skip-instruction

EWD527 - 5

is a harmless error that we don't need t; detect); if, however, Q is not
the skip-instruction and it so happens that it is the next instruction with
which we would like to continue our code, we can insert a skip-instruction.
The execution of that skip-instruction would then change the contents of

IRR and at the next place it is safe to place the instruction Q . The moral
of this story is that either we accept the probability of 10-9 that the
skipping of an instruction will escape our check, or once every 109 instruc-
tions our compiler weould have to insert a skip-instruction! As for other
reasons we have to be content with the probability of 10-9 for an undetected
error, I would not burden a compiler with that obligation of inserting a
skip; I only mention the result, because it is a remarkable one: I have
never seen this form of trade off between reliability and storage space

before. (End of nata.)

The idea of this form of added protection to the reading of instructions
emerged a year ago (December 1974, Tripreport EWD466:"on the way back I thought
[...] on redundant object code representations. (To think again thoughts
with a possibly direct bearing on machine design is great fun?!) Bu the time
1 crossed the German/Dutch herder I had arrived to a few firm conclusions.
[...] I am not sure when I shall find the time to work this out and write a
readable report about it.“). Now it is eleven months later; the fact that
the above was not written down earlier was, however, not the result of a
lack of time, but was caused by the Tact that I got stuck. As the design
stands, there is one sequencing error that is not caught. At the end of the
execution of & chunk it is checked whether IRR equals zero. (If the IRR-~
contents differ from zere but the check fails to discover it, the non-zero
contents of IRR are "rotated" before the next redundancy dummy is added to
it, so we have at the completion of the next chunk a second chance of detecting
that IRR differs from all zeroes.) If, however, program execution
now proceeds with the wrong chunk, it will not be detected! I tried all sorts
of embellishments, but none of them was convincing. This report is written

now, because I think that. now I understand, why I failed.

The word is the minimum unit of consistency, and is, as such, protected
by the parity check. Even if this check is effective --many parity bits per

word, say-~ , so effective in fact that the risk of undetected corruption

EWD527 - 6

internal to a word can be tolerated, error (b) of page 1: the perfect reading

of the wrong word remains an unchecked risk.

For that reason a next larger unit aof consistency is introduced, viz.
the chunk. The linear execution of all the individual instructions of a chunk
and the check upon IRR = O is the perfect analogy of the parity bit! {Compare
it with the parity bit for a serial store, delivering the bits of a word
one after the cther.) I now tend to consider it as the main function of the
chunk with its redundancy to guard against error {(b); the fact that it also
picks up most of the "left-overs" of the parity check is a nice accidental
feature --on account of which we may tell ourselves that a single parity hit
per word will suffice--, but it is not the essential one: it does as a matter
of fact, blur the picture. (With many parity bits per instruction, we could
have sent them all to the instruction register and have performed the parity

check from there, after imstruction execution.)

But now, IRR and the redundancy dummy per chunk appear as a completely
independent chgck, that is active each time a whole chunk is executed. But just
as this mechanism is independent of the parity bits ~-i.e. the internal
protection of the next smaller unit of redundancy-- in the same way a
mechanism checking that we don't have the perfect execution of the wrong
chunks should-be designed independent of the internal protection of the
chunks themselves. There are a number of reasons in favour of this separation.
1) with a probability of 10_9 of a left-over --i.e. an undetected error
of the internal chunk consistency-- I think that we can afford to forget
about the left-overs
2) IRR and the redundancy dummy are neutral in the sense that they can
be built into any machine that has an instruction counter and a Jumpinstruetion;
I have considered additional techniques for checking the admissibility of
the dynamic successor relation between chunks, but they turned out to assume
some sequency discipline, at least more disciplined than wild goto's. Perhaps
I find a solution without such assumptions; in any way it makes clear that

checking the sequencing from chunk to chunk is a separate issue,

10th November 1975 prof.dr.bdsger W.Dijkstra

Plataanstraat 5 Burroughs Research Fellow

NUENEN - 4565, the Netherlands

