26th November 1975 EWD536 ~ O

EWD536.html
A sequel to EWDS35.

I just realized that in EWD535 I have failed to touch upon the second

point raised in your letter, where you write that you feel compelled to

replace if B- 51 ] non B ~ 52 fi (1)
by iﬁ B then 51 eglse S2 fi (2)

because of the fact that two successive calls of B ™may not return the
same value on two calls because of ancother precessor changing the state".
I had forgetten about it, because in the EWD535-versions of your program

the boolean procedure had disappeared.

In my book "A Discipline of Programming", and in all the theory sbout
semantics that underlies the notion of the guarded commands, all expressions
--not only the guards, but alsc all arithmetic expressions at the right-
hand side of an assigment operator-- are regarded as (possibly partial)
functions af the "current state", which is supposed to change only as a
result of explicit assignments. Furthermore 1 have restricted myself +to
a programming language that trivially admits a sequential implementation,

I have given no further prescriptions about that implementation; in particular
I have not prescribed that the execution of (1) must imply a separate
evaluation of B and another cne of pon B . On the contrary! One can

defend the point of view, that for any boolean expression B the evaluation

of B by definition implies the concurrent evaluation of non B , because

both answers give exactly the same information about the current state.

From that point of view -~ still talk about seguential uniprogramming--

ane can appreﬁiate (2) as a hint to that part of the compiler that optimizes
boolean expressions: it saves it the trouble to recognize that the two guards
are the complement of each other. Needless to say, that all forms of side-
effects are ruled out: they are regarded by me as invalid implementations

as they would violate the axiom of assignment, etc.

The awkward peoint is how to transfer this pattern of reasoning in
order to describe the semantics of a number of mutually unsynchronized
programs that --at a certain grain of interleaving, say: a memory cycle--
fool in the same stcre. I knaw of anly one way (and it is not very attractive!
I shall sketch it nevertheless; the unattractiveness is probably a consequence
of the sad fact that these problems are inherently ugly.) -


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD536.html

EWD936 - 1

Consider programs A and B with the shared variables x and E
consider then separately program A in its private state space extended
with x and y , and the program B in its pfivate state space extended
by x and y. When considering program A we now must admit that at each
semicolon of A so to speak, the total state of A (i.e. including x and
y) may change non-deterministically, only bound by the limitations of what

B may do. If, for instance, B has the trivial form
do true -+ x:= random od

(assuming that B has a private random number generatnr) this means for
program A that at any semicolon the value of x mway be subjected to
a random variation. (A rather terrible form of interference!) If B has

the trivial form do true - xi= 1 od . (3)

it means for program A that at any "semicolon"™ x is either equal to 1

or uncharged. In order to make this a workable system, one has to postulate,
that in each "unit of evaluation" (see below) at most one shared variable

is referenced at most once. Here a unit of evaluation is something about

the internal seguencing of evaluation we don't wish to make any committments.
Without that constraint it could make a difference whether A evaluated

x 4+ x"

or "2 * x": in the second case we could guarantee an even result, .
in the first case we can not! And then, a more or less decent mathematical

system becomes totally impossible.

The problem, eof course, is, that program B has more structure than
(3), and that, when studying program A we have to take that intoc account.

If, in program A we have
do x>0 = s:= x; xt=s5 - 1 od (4)

we cannot guarantee termination with B of form (3) ; we could however,

with B of the form do true - do y >0 - x:= 1 od od (5)

guarantee termination of (4) pravided initially y < 0, because then
B can interfere with the loop (4) at most once. More detail you can find
in the thesis of Susan Speer Owicki from Cornell University, Ithaca, N.Y.

14850 (aceording to my WEbster), Department of Cemputer Science.

It was the experience cf studying her thesis, and the moral of a

number of my own exercises, that caused me —-first thing I did!-- when I



EWD53%6 - 2

tried to understand your solution, to do away with the boolean procedure
INITIALIZERESPONSIBILITY: the value that its call returns is not a function
af the state, but a (very ccmplicated) function of past history. But that
implies that I want to see at this level the semicolons, the sequencing

to be more precise. One can read your observation as a plea for the
Aif-then-else-fi canstruct; another conclusion can be that a function
procedure, the evaluation of which references more than one shared variable
is a misleading construct that we had better regard as "against the rules".
Susan Owicki has made the latter chnice, and she has my blessing. Unless
new arguments emerge I think that I shall stick toc my guarded commands:

I am still quite happy with them!

The most effective way of mastering complexity is avoiding the intro-
duction of complexity in the first place! I would love to know how I could
put more "meat™" into that observation.

Yours ever,

Burroughs prof.dr.bEdsger W.Dijkstra
Plataanstraat 5 Burroughs Research Fellow
NL-4565 NUENEN
The Netherlands




