EWD550 - O

A mcre formal treatment of 2 less simple example.

For obvious reasons, most programming experiments that have been carried
out in the exploration of formal techniques, dealt with simple, algehraic
examples. For equally obvious reasons, the examples showr in tutarial texts on
this subject are mostly of the same nature. (There has been a time when all of
Computing Science seemed to boil down o massaging Euclid's Algorithm for the
greatest common divisor!)} This paper is primarily directed at remedying this

situatian,

Bur ultimate goal is to develop a program that will transform ex-
pressions fram infix notation to postfix notation. The subject matter to be
manipulated by our program are therefore not integers, but strings of characters
that may, or may not belang to certain syntactic categaries. For variables of
type "character string" we have to have at our disposal the analogon of high-
schaool algebra (buch as (a >b and c )-d) = a+c>hb+d, etc.) that
sufficed for the well-known numerical examples. Before embarking on our problem
proper, we shall first introduce the necessary formal apparatus and the notation

needed for its description.

We assume aur syntax given in BNF. Let < pgr > denate a syntactical cate-
gory. We shall then express the fact that a string mamed K belongs to the
syntactical category < pgr > by

par(K) .
Far strings (named K, L, ...) and characters (named ¥y E ,....) we shall de-
note concatenation by juxtapositicn, e.g. KL , Ky , Ky; ete. If L may be
any string and y may be any character, any non-empty string may be dencted by

yL or Ly .

With any syntactic category < pgr > we may associate the syntaﬁtic cate-
gory < bopgqr > --"hegin of & < pgr >".- consisting of all the strings that
either ere a < pgr > or can be extended at the right-harnd side so as to become
a8 < pgr > or both, According to that definition the statement that the syniactic
category < pgqr > is not empty --i.e. contains, as most useful syntactic cate-
gories, at least one string-- is equivalent with the predicate

bopqr( empty string) .


../transcriptions/EWD05xx/EWD550.html

EWD550 - 1

The formal definition of the predicate bopgr in terms of pgr ~-with

K and L1 denoting arbitrary strings-- is
bopar(K) <= (£ L: par{KL})) (1)

Separating the case that L is empty and the case that . is not empty, we

can rewrite (1} as

bopar(K) <=> (par(K) oz (€ vt paz(kyt)))
which, thanks to (1), can be reduced to

bopgr(K) <=> (pqr{K) pr {E y: bopqr(Ky))) (2)
from which we immediately derive

(bupqr(K) and (ﬂ ¥: non bopqr(Ky))) = pqr(K). (%)

from (1) we derive further

bopar{Ky) <= (E L: par{KylL))
= {E yL: pgr(kyL))
= bopqr(K) .
from this result
bopgx(Ky) => bopgr{K) (4)
fellows that < bopgr > = < hobopgr >

Because pqr(K) ==> (E Lt pqr(KL)) --L = the emptystring does the joh--

a further consequence of (1) is

pqx(K) ﬁ>’bnpqr(K) {5)

From our informal description of what we intended the notion “begin of"
to mean, the above is all intuitively ubvious, and by now the reader may wonder
what a2ll the fuss is about. The point is that we need such formulae as soon as

we wish to give a more rigorous treatment of a parser.

* *
*
We intend to develop a mechanism called "sentsearch" that is intended
to recognize strings from the syntactical category < sent > . More precisely,
we sgsume that the input siring can be scanned in the order from left to right

and reserve the identifier "x™ for the next visible character of the input

string. If the input string starts with ™a + b ...." , then we have initially



EWDS50 - 2

x = "a" ; after the execution of "move" the relation x = "+" will hold. Besides
assigning a new value to x , the primitive "move" can be viewed as also append-
ing the old valus of x to the right to "the strings of characters moved aver"

or “the string of characters read"™ or "the string of characters that are no langer

visible.™

Let S be the string of characters "moved overhy an activation of

sentsearch .

Note 1. When developing the body of sentsearch we may assume that a laocal
so~called "ghost variable" S is initialized a% the beginning as the empty
string, that each call on "move"™ is implicitly preceded by "5:= 5x" , and

that upon termipation S is handed back as a "ghost function value™ to the

calling environment. (End of Note 1.)

In the case that the input sequence does not start with a < sent >,
we want S 4o be the sequence that is insufficient to establish this fact,

while Sx is long enough to make this conclusian. That is, upon termination
bosent(S) and non bosent(Sx)

will hold. The first term expresses that not toc much has been wmoved over, the
second term expresses that enough has bheen moved aver. In the case that the
input string does start with a <{sent >, we wish S5 to be equal to that

< sent > and assume our syntax for < sent > --about which nothing has been

given yet-- to satisfy

sentkL) => nan (E y: bosent{Ly)) (6)

Whether ar not a < sent > hag been found is te be recorded in the
global boolean ¢ --short for “correct™-- and our complete specification of
sentsearch is that it has to establish Rs{S, X, c) ; where Rs(S, Xy c) is given

by busent(ﬁ) and non hosent(Sx) and c© = semt(S) (7)

Note 2. The consequence of assumption (6) is that when the input string starts
with a < sent > and the analysis has progressad to § equ&l to that < sent >,
the term nan bosent(Sx) is true for zll possible values of x , i.e. sentsearch
can then terminate without inspecting the next visible character. The end of a

< sent > is assumed to be detectable without looking beyond it. (End of Note 2.)



EWD550 - 3

We naw gilve the eyntax for <Isent > :
< gent > :1:= << exp > (8)
From this we have to derive the syntax for the syntactical category < bosent > :
< bosent > :i= < sent > | < hoexp > (9)

Each < bosent > can be derived by taking a < sent > and removing at the
right-hand side zero or more characters from it. Removal of zers characters
gives the first alternative, removal of one or more charachters from "< exp > ;"
boils down -~because the semicolon is a single character-- to the removal of
zero or more characters from < exp > : but that is by definition the syntactic
category called < boexp > . Hence (9). The two alternatives are mutually

exclusive, for we have for any string L :
baexp(L) => non sent(L) (10)

This can be proved by deriving a contradiction from bsexp(L) and sent(L) .

From boexp(L) follaws --according to (2)--
exp{L) oz (£ y: boexp(Ly))

We deal with both term separately:
exp(L) => (on account of (8))
sent(L;) = (Dn account of (5))
bosent(L;} i>r(g E bnsent(Ly)) ;
the second term gives
(E y: boexp(Ly)) = (on account of (9))
(E y: bosent{Ly)) .
As bath terms of the disjunction imply the same, we conclude that also
buexp(L) => (E y: bosent(Ly)) .
According to (6), however,
sent(L) => pan (Q vt bosent(Ly)) .

The desired contradiction has been established and (10) has been proved.

Syntax rule (8) strongly suggests that the body of sentsearch should
start with a call of expsearch. In order to design sentsearch in terms of
expsearch we only need to know the net effect of expsearch and we propose
in analogy to (7) that --when E is the string of charactsrs moved over by
expsearch-- the primitive expsearch will establish Re(E, x, c} , where

RB(E, Xy c) is given by



EWD550 - 4

boexp(E) and non beexp(Ex) and ¢ = exp(E} (11)

Designing sentsearch in terms of expsearch means that we would liks
to have theorems, such that from the truth of a relation of the form Re the

truth of relations of the form Rs can he concluded. There are three such

theorems.
Thecrem 1. (Re(L, %, c) and non c) = RS(L, X, c)

Proof. Assumed:

0. re(L, x, c} and nogn c©
Derived:
1. boexp(L) with (11) from O
2. besent{L) with {9) fram 1
3 c = exp(L) with (11) from O
4 non c© from O
5. non exp(L) from 3 and 4
6. non sent(bx) with (8) from 5
T. nen boexp{Lx) with (11) from O
8. non bosent(Lx) with (9) from 6 and 7
9. non sent(L) with (10) from 1
10. c = sent(L) from 4 and 9
11. Rs(L, x, c) with (7) from 2, 8 and 10
(End of Proof of Theorem 1.)
Theoren 2. (RB(L, X4 c) and c and nan ssmi(x)) = Rs(L, x, false)

Proof. Assumed:

0. re{L, x, c) and ¢ and non semi{x)
Derived:
1. boexp(L) ' with (11} from O
2. bosent(L) with (9) from 1
3. non semi (x) from Q
4. non sent{Lx) with (8) from 3
5. non hoexp{Lx) with (11) from O
6. non bosent (Lx) with {9) from 4 and 5
7. false = sent(L) with (10) from 1
8. Rs(L, x, false) with {(F) from 2, 6 and 7

(End of Preof of Thearem 2.)




Theorem 3. (Re(L, x, ¢) and c and semi(x)} = Rs{lx, y, c)

Proof., Assumed:

0. Re(L, Xy c) and c and semi(x)
Derived:
1, c = exp(L) with {(11) from 0
2, c from O
S exp(L) from 1 and 2
4. semi(x) from O
5. sent{Lx) with (8) from 3 and 4
6. c = sent(Lx) from 2 and X5
T. bosent{Lx) _ with {5) from 5
a. non bosent(ny) with (6) from 5
g. Rs(lx, vy, c) with {7) from 7, 8 and 6,

And now a possible body of

(End of Proof of Theorem 3.)

EWD550 - §

sentsearch is evident, when we realize

that its call on expsearch implies for the ghost variable § the assignment

"5:= SEV

proc sentsearch:

corp

{ 5 = empty string}
expsearch {RE(S, Xy C)};
Af pob ¢ - skip

c and non semi(x) - ci= false

and semi(x) - move

]
3]

Note 3.Instead of Theorems 1 and 2 we could have discevered

Thearem 1'. {(Re(l, x, ¢} and non e) = Rs(L, x, false)

Theorem 2¢, (Re(i, x, c) and non semi(x)}) = Rs(l, x, false).

This would have directed us towards the design of the body

proc sentsearch:

EOT

expsearch;
if non ¢ or pon semi(x) - ci= false
ﬂ c and semi(x) ~ mMOve

fi

which, thanks to de Morgan's Theorem, has no aberting alternative :construct.

(End of note 3.)



EwD550 - 6

We now consider for < exp > the following syntax

< exp > ::= < adder > < term > (12)
< adder > ::= { < term > < adop > } (13}
<X adop > 1:= + | - {14)

where the braces indicate a succession of zero or more instances aof the enclosed.
Because each instance of the syntactic category <'adnp > is a single character,

we derive

< boexp > ::= < adder > < boterm > (15)
from which follows (adder(L) and therm(K)) = boexp(LK) (16)

But this gives us no way of proving that a string is not of the syntactic

category << hoexp > . In particular, the conclusian
(adder(L) and non botarm(K)) = naon bDexp(LK) is not justified.

We must make --in analogy to (6)--— an assumption about < term > and < adop > ,

and we assume (term(L) and adop{y}) => non boterm(Ly) {(17)

This means, to start with, that with term(L), term(L'), adup(y), and
adop(y'), we can conlude from LyS = L'y'S" , that L =L" and y = y' . In
other words, for every << boexp > that starts with an instance of < term > <adop > ,
that instance is uniquely defined., By remcving it from the front end , we are
still left with & string from the syntactic category << boexp > , and therefore

we are allowed to conclude
(adder(L) and pon boexp(K)) = non bosxp(LK) {18)

This does not solve our problems yet, because, in order to use (18) in order
to prove non boexp(LK) , we still have to prove non boexp(K) g be it only for
a possibly shorter string K . We can do it, however, for a string related to the

syntactic category < term > , as we can prove
(therm(L) and non baterm(Ly) and boexp(Ly)) = (term(L) and adap(y)) (19)

The nonempty string Ly , satisfying bDexp(Ly) can have one of three differsnt
forms:
1} < term > < adop > < nonempty boexp >
This would imply, that L itself is of the form
< term > < adop > < boexp >

which, on account of its first two elements and (17) is incompatible with



EWD550 - 7

boterm(L)

2) < term > << adop >

Because all instances of < adep > are single characters, this case implies
indeed term(L.} and adop(y)

3) < boterm >

This case is incompatible with non boterm(Ly).

Hence, formula (19) has heen proved.

Similarly, we should ask ourselves how to prove that some string is

not an element of the syntactic category < exp > , From (12) we can derive

(adder(L) and term(K)) = Bxp(LK) (20)
but, again, the conclusion
(adder(L) and non term(K)) => non exp(LK) is not justified,
only ;-simil%'ar' to (18)-—-
(adder(L) and non exp(K)) = non exp (LK) (21)
Analogous to (19) we have
(bntem(L) and exp(L)) = term(L) (22)

The term exp(L) tells us that the string L can have one of two different forms:
‘l) < term >

This case indeed implies term{L)

2) < nonempty adder > < term >

On account of (‘I'?) ——and also (4)—— this case is exluded by boterm(L)}.

Hence formula (22) has bsen proved.

Finally we can conclude that

(exp(L) 2nd adop(y)) = adder{Ly) (23)
The left-hand side tells us on account of (12) that Ly is of the form
< adder > < term > < adop >

and therefore (13) alows us to cenclude adder(Ly)-, and {23) has been proved.
Syntax rules (12) and (13) strongly suggest that the body of expsearch
should call --possibly repeatedly-- a new primitive termgearch. In order to

design expsearch in terms of +termssarch we only need to know the net effect



EWD550 - 8

of termsearch and we propose --in analegy to (7) and (11)-— that, when T is
defined as the string of characters moved over by termsearch , the primitive

termsearch will establish Rt(T, Xy c) , where Rt(T, Xy c) is given by

boterm(T) and nen boterm(Tx) and ¢ = term(T) (24)

Designing expsearch in terms of +termsearch wmeans that we would like to
have theocrems allowing us to draw conclusions from the truth of a relation of

the form Rt .

Theorem 4. (adder(L) and Rt(T, Xy c) and c and adop(x)) £>-adder(LTx)

Proof. Assumed:

0. adder(L) and Rt(T, %, c¢) and c and adop(x)
Derived:
1. c = term(T) with (24) from 0
2. c from O
3. term(T) from 1 and 2
4. adder(L) from O
5. exp(LT) with (20) from 3 and 4
6. adop(x) from O
7 adder(LTx) with (23) from 5 and 6
(End of Proof of Theorem 4.)
Thegrem 5. (adder(L) and Rt(T, X4 c) and non c) > RB(LT, x, c)
Proof. Assumed:
Q. adder(L) and Rt(T, x, ¢) and non ¢
Derived:
1. c = term(T) with (24) from O
2. hon c© from O
. 322 tern(T) from 1 and 2
4. boterm{T) with {24) from O
5. non boterm{Tx) with {24) from O
6. non boexp({Tx) with {19) from 3, 4, and 5
7. adder{L} from O
8. non boexp(LTx} with {18) from & and 7
9. boexp(LT) with {16) from 4 and 7
10. non exp(T) with (22} from 3 and 4
11. ngn exp(LT) with (21) from 7 and 10

12. c = exp(LT) from 2 and 11



EWD550 - 9

13, Re(LT, x, c) with (11) from 8, 9, and 12
(End of Proof of Thecrem 5.)

Theorem 6. (adder(L) and Rt(T, Xy c) and non adnp(x)) =>-Re(LT, X, c)

Proof. Assumed:

0. adder(L) and Rt{T, x, c) and non adop{x)
Derived:

1. baterm(T) with (24) from O

2 adder(L) fram O

2 boexp(LT) with {16) from 1 and 2

4 non boterm(Tx) with (24) from O

5. nan adop(x) from O

6. non boexp{Tx) with (19} from 1, 4, and 5

7 nan boexp(LTx) with (18) from 2 and 6

8 c = term(T) with (24) from O

9. c = term(T) from 8

10. c = exp(LT) with (20) from 2 and 9

1. Egﬂlc => non term(T) from 8

12. mon ¢ => non exp(T) with (22) from 1 and 11
13, non ¢ => non exp(LT). with {21) from 2 and 12
14. c = exp(LT) frcmlio and 13

15, Re(LT, x, c) with (11) from 3, 7, and 14

(End of Proof of Theorem 6.)

A corgllary of Theorems 5 and 6 is
(adder(L) and Rt(T, X, c) and nnn(: and adnp(x))) £>‘Re(LT, Xy c) .

A possible body for expsearch is by now pretiy obvious when we realize that its
calls on tiermsearch imply for its ghost variable E the assignment E:= ET (as
"move™ implies E:= Ex). In the post-sssertions for calls on termsearch the

relation E = LT has been given in order to define L in terms of E and T.

Droc expsearch: {adder(E) because E = empty string}
termsearch {E = LT and adder(L) and Rt(T, x, c)};
do o gggradnp(x) a-{addBr(Ex)}
move {adder(E)};
termsearch {E€ = LT and adder(L) and Rt(T, x, c)}
od {Re(E, x, )}
carp



EWD550 - 10

We now consider for < term > the following syntax

< term > ::= << plier > <{ prim > (25)
< plier > ::= { < prim > < mult > } (26)
< mult > 1= ¥* (27)

and assume about << prim > and < mult >

(prim(L) and mult(y)) = nan prrim(Ly) (28)

Formulae (25), (26}, (27), and (28) are similar ta (12}, (13), (14), and (17)
respectively, and all our conclusions since then carry over. With P as the
string of characters maoved aver by a primitive primsearch that establishes

-—in analogy o (24)-- Rp(F’, Xy c) , where Rp(F', Xs c) is given by
hmprim(P) and nan boprim(Px) and c = prim(F') (29)
we can write immediately (')

proc termsearch: {plier(T) because T = empty string}
primsearch {T = LP and plier{l} and Rp(P, x, c)};
do e and mult(x) - {plier(Tx}}
move {plier(T)};
primsearch {T = LP and plier(L) and Rp(P, x, c)}

bd {Rt(T! LY C)}
COT
It is time to "close™ our syntax:
< prim > ::= < iden > ] < paren > (30)
< iden > i:= { < letter > } < letter > (31)
< paren > ::= < open > < exp > < close > (32)
< gpen = 1= ( (33)
< plose > ji= ) (34)
<letter>::=alb|c|d[e’f (35)
The important conclusions from (35) are:
1) that the syntactic category < letter > is nonempty
2) that all instances of the syntactic category < letter > are all

single characters

%) tha't these characters differ from the six previously introduced



EWD550 ~ 11

characters.

From the nonpemptiness of the syntactic category < lebter > we draw
the same conclusien for < idern >, hence for < prim > , hence for << term >
hence for < exp > , and hence far < sent > . In particular we shall need to

fer ta
boprim{empty string) (36)

From {30) we derive
< boprim > 1:= < boiden > | < boparen > (37}

From {31) and (32) respectively, we derive

{boiden{y) = letter(y)) 2nd non iden{empty string) (38)
{boparen(y) = opsn(y)) and non paren(empty string) (39)
and hence
boprim{y) = {letter(y)} ar open(y)) (40)
non prim{empty string) (41)
From {31) we derive
< boiden > ::= { < letter > } “(42)

and, because instances of < lstter > are single characters

nan letter(y) = non huiden(Ly) {43)

From (32) we derive

< boparen > ::= empty string | < cpen > < hoexp > | < paren > {44)

The three aliernatives for < hoperen > are mutually exclusive: for
the first ene versus the two others, it is ohwious. For the last two I ecan

prove the mutual exclusion only by using the technique of the bracket count.

Lemma 1. ax.p(L) implies that the pumber of instances of < uopen > in L

Bquals the number of instances of < clese > in L .

Lemma 2. boexp(L) implies that the number of instances of < open > in L

equals at lesast the number of instances of << elose > in L .

Lemma t follows from the fact that in the criginal syntax --i.e. without the
"hegin-af"~derivations— the only rule using < open > or < close > , wviz.
(32), introduces thew pairwise. Lemma 2 follows from the observation that

-~

in this only introduction, the instance of < open > precedes that of < close =



EwWD530 - 12

(Presumably official syntactic theory has more formal proofs for these twc
Lemm=ta; I am fully convinced of their correctness by the preceding four

lines of argument.)

The last two alternatives of (44) are mutually exclusive, because from
Lemma 2 we can conrclude that in a string of the form < open > < hoexp > the-
number of instances of < open > exceeds the number of ingtances of < close >,
while in a string of the form < paren > these numbers are equal on account

of Lemma 1. In other words:

(apen(y) and boexp{L)} => non paren(yL) (45)
or, equivalently
paren(yL) => (open(y) and non boexp(L)) (451)

Expressed in terms of paren and beoparen only, alsc holds

paren(L) = non(g_z: boparen(Lz)) (46)
This formula can be derived by deriving a contradiction from the truth of
the left-hand side and the falsity of the right-hand side. From paren(L)
and (39) we concliude that L 1is nonempty, and we may write L = yK ,
such that, on account of (45‘), we deduce

open{y) and non boexp(K) )
On the other harnd, (g z: bnparen(sz)) is, according to (1), equivalent

to (; z,M: paren(szM))

oF Q; M,z: paren(yKMz))
Rule (32) ther allows us to conclude

upen(y) and (E_H: exp(KH)) and (g z: close(z)) .
The second term is equivalent to basxp(K), we have the coniradiction we were

looking far, and hence, (46) has been proved.

Theorsm 7. (L = empty string and Egﬂ(letter(x) or Dpen(x))) £>-Rp(L, Xy False)

Proof. Assumed:

0. L = empty stving and ggg(letter(x) ar open{x)}
Derived:

1. L = empty string from C

2. boprim(L) with (36) from 1

z. ggg(letter(x) EE_Dan(X)) from O



non huprim(x)

x = Lx
ﬂgg.boprim(Lx)
false = prim(L)
Rp(L, Xy False)

EWNs50 - 13

with (40) from 3

from 1

from 4 and 5

with (41} from 1

with (29} from 2, 6, and 7
(End of Proof of Theorem 7.)

Theorem 8. (iden(yL) and letter(x)) £>-iden(ny)
Proef. Evident from (31)

(iden(yL) and non letter(x)) ﬁ>-Rp(yL, X, true)

from O
with (5) from 1

with (37) from 2

with {4) from 2 See Note 4 on page
with (38) from 4 EWD550 - 15

from 5

with (39) from 6

with (4} from 7

from O

with (43) from 9

with (37) from 8 and 10

with (30) from 1

with (29) from 3, 11, and 12
(End of Proof of Theorem 9.)

X, c) and c and,close(x)) = Rp(yEx, Zy c)

and c and close(x)
with (11) from 0
from O

from 1 and 2

from O

from O

Jheorem 9.
Proof. Assumed:
0. iden(yL) and non letter(x)
Derived:
1. iden{yL}
2. beiden{yL)
3. boprim(yL)
4. boiden(y)
5. letter{y)
6. non open{y)
7. non boparen(y)
8. hon boparen{yLx)
9. nen letter{x)
10. non boiden{ylx)
11. non baprim(ylx)
12. true = prim(yL)
13. Rp(yL, Xy true)
Theorem 10. (open{y) and Re(E,
Proof. Assumed:
0. open(y) and RE(E, X, c)
Derived:
1. c = exp(E)
2. c
3. exp{E)
4. open{y)
5. close(x)
6. paren{yEx)

with (32) from %, 4, 5



with
with
with
from
with
with
with

(%0) from 6
(5) from 7
(46) from 6

4

(z8) from 10
(4) from 11
{37) from 9 and 12

from 2 and 7

with
(End

with

(29) from 8, 1%, and 14
of Proof of Theorem 10.)

(11) from O

from O

with
with
from
with
with
with
with
from
from
with
with
with
with
with
with
with
from
with
(End

{44) from 1 and 2
(37) from 3

2

(38) from 5
(4) from 6
(11) from O
{11) from O

0

9 and 10

(32) fram (2 and} 11

(44) from 8 and 12
(%7) from T and 13
{4) from 6

(5) from 15

(45) from 1 and 2
(30) from 16 and 17
10 and 18

T. prim{yEx)

8. boprim (yEx)

9. non baparen(yExz)
10. non letter(y)
1. non boiden(y)
12. non boiden(yExz)
135, non poprim{yExz)
14, c = prim(yEx)
15. Rp(yEx, z, c}
JTheorem t1
Proof. Assumed:

Q. open(y) and RE(E, %K, c) and non c

Derived:

1. bnexp(E)

2. open(y)

3. boparﬁn(yE)

4, boprim(yE)

5. nan letter(y)

6. non hoiden(y)

T. nen boiden(yEx)

8. non bnexp(Ex)

9. c = exp(E)

10. hon c

11. non explE)

12. non paren(yEx)
3. haon boparen(yEx)
14, non boprim{yEx)
15. non boiden(yE)
16. ngn iden(yE)
17. non paren(yE)
18. non prim(yE)
19. c = prim(yE)
20. Rp(yE, x, ©)

(29) from 4, 14 and 19
of Proof of Theorem 11.)

EWDS50 - 14

1. (Upen(y) and Re(E, x, c) and non c) = Rp(yE, X, C)



EWD550 - 15

Theorem 12. (ﬂpen(y) and RE(E, x, ¢} and non olose(x)) == Hp(yE, x, false)

Proof. Assumed:

0. apen(y) and RB(E, X, c) and non cluse(x)
Derived:

1. buexp(E) with (11) from O

2. open(y) from O

3. boparen{yE) with (44) from 1 and 2
4, boprim{yE) with (37) from 3

5. nan letter(y) from 2

6. non boiden{(y) with (38) from 5

7. nen boiden{yEx) with (4} from 6

a. nen boexp(Ex) with (11) fram ¢

9. non close{x) from Q
10. non paren{yEx) with (32) from 9

1. non boparen(yEx) with (44) from 8 and 10
12. non boprim(yEx) with (37) from 7 and 11
13, non -boiden(yE) with (4) from 6

14, non idan(yE) with {5) from 13
15, non paren(yE) with (45) from 1 and 2
16. false = prim(yE) with (30) from 14 and 15
17. Rp(yE, x, false) with {29) from 4, 12, and 16

Mote 4. In proofs 9 through 12, T refer a number of times to formula (4), but
it is not really that one that is needed, but the obvious gereralization
bnpqr(KL) £>'bopqr(K) H
sometimes it is used in the inverted, but equivalent, form
non bopqr(K) => non bopgr(KL) .
fy;@%grﬁﬁre_ﬁ"nf%éf ﬁy'apolngi§s for fhe great similarity between the'proufs af
mfﬁenrem 11 aﬁd Thénrém 12, Thev¥u£al text could have heen shortened by first
stating a Lemma 3 that captures the intersection of the two proofs. It is just
too expensive to change in this respect this document, which is not intended

to be submitted for publication. (End of Note 4.)

With Theorems 7 through 12 we have prepared the way for the following

design of a body for primsearch .



EWD550 - 16

proc primsearch : {P = empty string}
if non(letter{x) or open{x}) - {Rp{P, x, false}}
ci= false {Rp(F’, X, c)}
ﬂ letter(x) - move {P = yL and iden(F‘)};‘
letter(x) - {F' = ylL and iden(Px)}
move {P = yL and iden(P)}
bd {Rp(F, ' true};
cs= true {Rp(P, X, c)}

do

o

ﬂ Dpen(x) - move {F' =y and Dpen(y)};
expsearch {F’ = yE and npan(y) and Re(E, ®y c)};
if c and close(x) - {Rp(Px, 2z, c)}
move {Rp(P, Xy :)}
Hn_cnﬂ c - skip {Rp(F’, Xy c)}
ﬂ_r_!g_tl :luse(x) - {Rp(P, Xy False}
c:= falss {Rp(P, Xy c)}
fi {Rp(P, x, c)}
fi {rRp(P, x, c)}

cor

Now our syntax has been "closed" by (%0) through (35), we can at last

fulfill our obligation of praoving what up till now have been assumptions, viz.

sent{L) = non (E y: bosent(Ly)) (6)
(term(L) and adop(y)) = non boterm(Ly) (17)
(prim{L) and mult(y)) => non boprim(Ly) (28)

Relation {6) follows from the fact that busent(Ly) implies boexp(L} , and
from our syntax for <<exp >, < term > , < prim >., and < iden > , this
implies that L does not contain a serrficnlnn;__ ﬁsent(L) implies according to
(8) that L does econtain a semienlon., This is the contradiction that follows
from the assumption that (5) does not hold; hence (6) has been proved. In

order to prove (17) --under the agsumption af (28)!—- we obzerve that with

< term > ::= < plier > << prim >

< boterm > ::= < plier > < boprim >
the negation of (17)

tem(L) and adnp(y) and bcterm(Ly)

would imply that < prim > < adop > could be of the form < boprim >, It



EWD550 - 17

therefore suffices to prove that

(prim(L) and up(y)) =>> nan boprim(Ly) with
<Up>::=<adﬂp>|<mult> .

This last implication can be proved by deriving a contradiction from its negation:
prim(L) and Dp(y) and buprim(Ly) H

it can be done using Lemma 1 and Lemma 2, and I gladly leave this detail to

the reader.

In view of the lenth of this report, the transformation from infix to
postfix notation --on page EWD550 - O announced as "our ultimate goal™!-- will

be postponed and left for sowme later document,

History.

Nearly three years ago I wrote & seven-page report, EWD375 "A non
algebraic example of 8 constructive correctness proof." in which (Essentially)
the same problem has been tackled as here. Last January, while I was lecturing
in la Jolla, Jack Mazola urged me io show a more complicated example; I tried

to reconstruct the argument of EWD375 on the spot and failed.

Last February, when I was home again, I reread EWD375 and it left me
greatly dissatisfied. I remembered that EWD375 had been a cause for great en-
thusiasm when it was written, and I could not understand that enthusiasm anymore.
I found EWD375 very hard to read and hardly coenvincing: what three years ago I
had considered as "a proof"™ now struck me at best as "helpful heuristics". (A
strange experience ta be nearly ashamed of what had been & source of pride only

a few years ago!l)

It was now clear why, last January in La Jolla, I was unable ito give
on the spot a formal treatment of the syntax analyzer: it was not just a failure
of memory, it was also a profound change in my standards of rigor (undnubtedly
also caused by the fact that over the last few years I burned a few fingers!).
I decided te forget EWD375 and to start again from scratch., This document is
the result of that effort.



EWD550 - 18

It has been surprisingly hard to write. After the first six pages had
been written --~I had only dealt with sentsearch-- there has been a long pause
before I gathered the strength and the courage to tackle expsearch, and for
a few weeks I put the unfinished decument away. To undertake the treatment of

primsearch proved to be another hurdle.

What the final document does not show is that the notation eventually
used for the assertions, the theorems and the proofs is the result of many
experiments. Before we invented, for imstance, the trick to use the predicate
par(K} to denote that the string K belongs to the syntactic category < pgr >
all our formulae becams unwieldy; so they did, as long as we indicated concate-
nation of strings with an explicit operator instead of --as eventually-- just
by juxtaposition. I hesitated, when I wrote --as on the middle of page EWD550 - 3--
sent(L;) because I saw problems coming by the time that I had to write such
predicates for strings containing unmatched parentheses; the trick of introducing
< open > and < close > solved that problem. Instead_of (8) I shoq;d have

written .
< sent > :1:= < exp > < semi >

< semi > i1i= ;

Again, at the time of writing, also this report has been a source of
great excitement. This is somewhat amazing as it does not contain a single
desp thought! Is it, because we now still remember how much more beautiful it
is than all the rejected'effurts? I wonder how I shall feel about it in a few

years time!

Acknowledgement.

I am grestly indebted ioc W.H.J.Feijen, M.Rem, A.J.Martin and C.5.5chalten,
whose encouragement and active participation have been absolutely essential. And

I am grateful to Jack Mazola for prividing me with the incentive.

19th of March 1976 prof.dr.Edsger W.Dijkstra
Burroughs Burroughs Research Fellow
Platsanstraat 5

NUENEN - 4565

The Netherlands



