+t LWL UL ~ U

EWD562.html

THE EFFECTIVE ARRANGEMENT OF LOGICAL SYSTEMS

Edsger W.Dijkstra
Burroughs
Plataanstraat §
NL-4565 NUENEN
The Netherlands

We all know that when we have to design samething "large™ or difficult™, we
have to apply in one way or another the old adagium "Divide and Rule". Our machines
are made from components, our programs are made from modules and they shﬁuld fit
together via interfaces. That is fine, but it raises, of course, the questions how
to choose the modules and how to formulate the interfaces. This paper explores the
main goals of modularization; being aware of them should assist us in evaluating the

quality of proposed modularization,

* *

An inspiring example of modularization outside our own field is the way in
which human knowledge is divided over the different scientific disciplines. Why do
we teach different disciplines at our Universities? Why don't we teach all our stu-
dents just "knowledge"? The answer is simple: our human skulls are too small and
our days are too short. The amount of knowledge needed for each discipline must fit
into a human head. Besides knowledge there are abilities, and human abilities have
two characteristics: they take a lot of training before they are mastered, and there-
after the maintenance of their mastery requires that they are nearly daily exercised,
for without such daily exercise they fade away. (This, by the way, is one of the ex-
planations why the capable are élways 50 busy.) In this sense, rather quantitative
human characteristics impose a set of equally quantitative limitations on what we

are willing to consider as a single scientific discipline.

But there are also internal, more structural constraints. I mean that just an
arbitrary collection of scraps of knowledge of the right total amount does not con-
stitute a scientific discipline! It must be sufficiently coherent and self-suppor-
ting: it must be possible to study the subject matter of a scientific discipline in
isolation (or nearly sa), largely independent of what is happening or known in other

scientific fields. And the increased insight should enhance our abilities, our en-

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD562.html

4 twihboed -~ 1
hanced abilities should assist us in improving our insight.

The above very rough sketch of how mankind as a whole has parcelled out its
knowledge has been included because it also provides a model of how, on a micfoscop-
'ic scale, a single scientist works when he focusses his attention on an aspect of
his problem. for every problem too large to be solved at a single stroke of the pen
we try to apply a similar technique. We try to isolate various aspects of the prob-
lem ana to deal with them in turn by "concentrating our attention” on them. (The
latter does not mean that we study them in complete isolation: through the corners

of our eyes we usually still lock at all we are temporarily ignoring!)

The usual catchphrase for this technique is "separation of concerns". Although
very adeguate from a descriptive point of view, it raises of course the same sort of
guestions as we raised initially about modules and interfaces, such as "Which con-
cerns should be separated?" and perhaps "After separation, how do they combine
again?". This similarity is a rather clear hint that the successful "modularization®

of a large infurmation processing system is not a trivial matter.

* *
*

The discovery that from a "larger" concern, a few "smaller"™ concerns can be
' successfully extracted usually ranks as a scientific discovery. Let me mention a few

of them from our own field, so that we know, what we are talking about.

a) The isolation of the definition of the syntax in the task of defining program-
ming languages. (John Backus, 1959; as BNF immediately used in the definition of
ALGOL 60.)

b). The isoclation of logical aspects of operating systems via the model of cooper-
ating sequential processes. (Edsger W.Dijkstra, 1961; guickly thereafter used in the
design of the THE Multiprogramming System.)

c) The isolation of prugfamming language semantics computational histories. (C.A.

R.Hoare, 1968; immediately used in the axiomatic definition of semantics.)

I think that the above three examples are fairly typical: all three “separat-
ions" (or "isolations" or "extractions") have been highly rewarding. Firstly it was
quite clear that the pecple responsibie were not just playing a game, they extracted

b what seemed a very relevant and possibly manageable aspect from a large and burnlng
problem. Secondly they created a real of thought rich enough to have many thoughts

int

3 EwWD562 -~ 2

Example (a) opened the way for parsing theory, example (b) for the theory of
syhchronization, deadlock prevention etc., and example (c) has opened the way for
practicable techniques for proving the correctness of programs. In all three cases
the problems addressed can now be dealt with quite professicnally. All three are
easily "rich" enough to be the subject of a one-semester course in a University
curriculum, and all three are so well separated from other concerns that such a one-

semester course could be fairly self-cantained.

Yet another observation should be made. By ignoring, abstracting, generalizing

{or whatever verh you wish to use to indicate the not taking inmto account of some
facts) a dual goal has been achieved: thanks to it the theories are of a wide ap-
plicability and at the same time of an internal simplicity. (Think of ths tremen-
dous simplification of the theory of cooperating sequential processes that was made
possible by not dragging speed ratios into the picture! If knowledge about speed
ratios had been essential, the correctness arguments would have been an awful mix-
ture of discrete and continuous arguments, and it would all have become VETY COmM-
plicated.) It has been said that "everything can be regarded as a special instance
of something more general", but I would like to add that there is only a point in
doing so, provided that the general view simplifies our arguments. This condition
is certainly not met when the more general something can only be understood via a

case analysis ranging over the different special instances.

* . *
*

Another inspiring example is provided by the arrangement of mathematical argu-

ments.

Of our various thinking activities I shall reserve the term "reasoning™ for
all manipulations that are formalized --or could readily be so-- by techniques such
as arithmetie, formula manipulation or symbolic logic. These techniques have a few

common characteristics.

First of all, their application is straightforward in the sense that as soon
as it has been decided in sufficient detail, what has to be achieved by them, there
is no question anymore how to achieve it. And whenever such a techniqus has been

applied, the question whether this has been done correctly is undebatable.

Secondly --and this is not independent of the first characteristic-- we know
how to teach these techniques: arithmetic is taught at the primary school, formula

manipulation at the secondary school, and symbolic logic at the university.

4 EWD562 - 3

Thirdly, we are very good at doing modest amounts of reasoning, When large
amounts of it are needed, however, we are powerless without mechanical aids. To
multiply two two-digit numbers is something we all can do; for the multiplication of
two five-digit numbers, most of us would prefer the assistance-uf pencil and paper;

'the multiplication of two hundred-digit numbers is a task that, even with the aid

of pencil and paper, most of us would not care to undertake.

In order to rearh a conclusion the amount of reasoning needed is often the
stumbling block, and I have yielded to the temptation to relate tHe effectiveness
with which we have arranged our thoughts to the degree in which we have reduced the
amount of réasﬂning needed, A recent experience has confirmed that this seems sen-
sible. I was compiling a eollection of what I thought to be impressively elegant
solutions. The first thing that struck me was the surprising degree of cansensus
among my mathematical colleagues: when I asked them far suggestians they often came
with the same examples. The second thing that struck me was that, when I showed any
of them a solution from the collection that happened to he new for him, I evoked
uniformly the same reaction: laughter! The thrid thing that struck me, however, is
in this context the most important one: all the impressively elegant sclutions were
very short. I therefore ask you to subscribe --at least until the discussion after
this talk-- my thesis that the effectiveness with which we think is closely related

' to the reduction of the amount of reasoning needed, because, as soon as you have
subscribed that thesis, you will agree with me that it is a good thing to know by
what methods we can reduce that amount and by what methods we can increase it: those
of the former category are tha_one; to be applied, those of the latter category are

‘the anes to be avoided.

An obvious method is avoiding repetition. When multiplying two ten-digit num-
bers with pencil and paper we constantly appeal to the 10 by 10 multiplication table
of the products of aone-digit factors. Whether or not we know the multiplication
table by heart or have it written out in front of us for quick reference is unimpor-
tant for the purpose of this discussion., What is important is that while multiply-
ing those two ten-digit numbers, we have 100 theorems at our disposal, of which
T *B =56 is an instance. If we know how to count, or know how to add, we can
brove that the product 7 * 8 equals 56 , but that proof requires a certein amount

'Df reasoning, so much as a matter of fact that we would not like to do it over and
over again, everytime we need the product 7 *8 . Hence the kﬁnwledge that that
product equals 56 is cast into a theorem; together with the other 99 theorems it

forms what is known as the multiplication table.

5 EWD562 - 4

Ancther remark of a directly quantitative nature is that we would not expect
mueh use for a theorem whose statement is longer than its proof: instead of appealing
to the theorem it would be simpler --at least "shorter™-- to mention directly its

proof.

The quantitative remarks in the two previous paragraphs, although of some re-
levance, do, however, not tell the complete story: if they did, there would be no
point in stating and proving a lemma that is used only once, and there is a paint in

doing so.

Suppose that the total proof of a Thec;ém congists of two parts:
A: a proof of the Theorem based on the validity of a Lemma, and
B: a proof of aforementioned Lemma,
If both proofs are correct, the Theorem has been established, but suppose that part
B is shown to contain a flaw. If we cannot correct the flaw, or perhaps even dis-
cover that the Lemma dues not hold, we are in bad shape. If, however, we can correct
the flaw in part B , its correction is the only thing that needs to be done: part
A survives unchanged and unattended. Thinking about the last scenario 1 have come
to the conclusion that its likelyhood is, all by itself, a sufficient justification
_for splitting up the total proof --straight from the axioms, so ta speak—- in part
A relying on a Lemma and a part B establishing that Lemma, even if part A re-
fers only once to it. The conclusion seems to be that we not only seek to reduce
the amount of reasoning sventually needed when all would have gone well, but also

the amount of reasoning to be expected in view of our fallibility.

N

But, again, there is more to it. Splitting the total proof into parts A and
B , connected by a Lemma used in A and proved in B means -
1) that we can study B igﬁoring A, i.e. ignoring the way in which the Lemma
is used: we only need to cnnéider what the Lemma asserts
2) that we can study A ignoring B , i.e. ignoring the way in Jhich the Lemma
is proved: again we only need to consider what the Lemma asserts. Because the
statement of the Lemma can be expectied --see above-- to Be shorter than its proof,
also here we have to take less into account, and that is nice in view of another

human limitation, i.e. the limited span of our attention.

Such a separation of concerns is, however, not enly nice in view of our limit-
ed span of attention, it has a much profounder consequence. It gives us the freedom
of replacing part B by a shorter or nicer proof of the Lemma as soon as we find

one, it gives us the freedomg of replacing part A by a nicer or shorter proof of

6 EWD5be - 5

the Theorem as soon as.we find one. As long as the Lemma remains the same, changing
one part does not invalidate the other. Thia‘observation makes it abundantly clear
--at least in my mind-- that we should not regard the appeal to the Lemma as it
pecurs in part A as an abbreviation of its proof as described in part B . The
'appeal to a lemma is to what the lemma states, and not to its proof: the main pur-
pose of the introduction of the explicitly stated Lemma was precisely to make part

A a consistent whole that is independent of the particular shape of B .

* . *
*

The abocve must sound very familiar to every mathematician that has been trained
always to try consciously to present his proofs both as cancise and as clear as pos-
sible. {That not all mathematicians have been trained that way, is another matter
that need not concern us now.) Computing scientists —--the other designers of what I
called in my title: "logical systems"-- seem, amazingly enough, to be in general
less aware of it. They are in general aware of the circumstance that what on one
level of detail can be regarded as an unanalysed whole, can be regarded at a next
level of greater detail as a composite object, they are often not fully aware of its
implications. The analogy with mathematical proofs tells us that whenever we regard
a whole as composed of parts, the way of composition must define how the relevant

' properties of the whole depend functionally on the properties of the parts, without

the need of taking their internal structure into account.

Let me give you one of my cherished examples. We consider a program part S
for the computation of the remainder, more precisely, a program part 5 satisfying

for constant © and d :
(c203ndd>0)@wp(5,r=cmod d) (1)

(in words: ¢ >0and d >0 implies the weakest pre-condition for the initial state
such that activation of S is certain to establish a. final state satisfying the

post-condition r = c mad d). Consider for S5 the following program part:

.{c20ﬂd>0} r, dd := c, d; (2)
do r > dd - dd:= 2 * dd od;
do dd £ d - dd:= dd / 2;
if T > dd - ri= 1 - dd
ﬂr<dd—oskip

) 5

od {r = c mod d}

7 EWD562 - 6

Many programmers, I have discovered, don't hesitate to consider this program

part S5 as composed (primarily) of three parfs, viz. of the form
T§* = "50; s1; gan

i.e. tHe outermost syntactical decomposition. The point, however, is that nowhere

the properties of these parts S0, 51, and 52 have been stated, on account of which
we can conclude that S satisfies (1). This point becomes a problem as soon as it
is discovered that program (2) is wrong. It contains a well-engineered bug: in those
cases where c divided by d leaves a remainder = 0 and, in addition, the gquotient
is a power of 2 , the final state satisfies T =d instead of r = O . As it stands
we can only conclude that program (2) as a whole is wrong; we gapnot --although re-
garding it as a corcatenation of three statements-- decide which of these statements

is in error. That question is void.

And, as 2 matter of fact, we can repair it in different ways. Either we replace

5t by "do r >dd - dd:= 2 * dd og"

or replace 52 by "do £ >d - ddi= dd / 2;
do r Z>dd - r:= r - dd od

Ud“

If we had chosen the properties

PO =>wp(S0, P1) , Pl =>uwp(St, P2) , and P2 = wp(s52, P3) (3)

with PO: ec¢>0and d>0
P1: rmod d = ¢ mod d and (Qi:igO:dd:d*2l)and0‘_~’.r
P2: P1

nd r <dd
P3: r =¢ mod d

then the bug would have been localized in 51 as it may fail to establish P2 .

Note. On account of the semantic definition of the semicolon
wp("S1; 52", R) = wp(51, wp(S2, R))

we derive

wp("S0; S1; s2%, R) = wp(SO, wp(s1, wp(s2, R)))
and conclude that (3) indeed allows us to derive

' PO => wp{"S0; S1; s2", P3) (End of Note.)

8 EWD562 - 7

The moral of the story is that we can only claim that a whole has been properly
composed of parts provided the necessary prnpérties of the parts have been decided.
Without that specification it is, &5 if we are trying to build up a mathematical
theory while giving only the proofs of our theorems and lemmata, but not the theo-

'rems and lemmata themselves! 1 have, therefore, decided for myself that such speci-
fication of the parts is an absolutely essential Eonstituent of the whole design.
After all I have said, this decision may strike you as obvious, as nesarly trivial.

I am unhappy to report that it is not geneially accepted. Quite reqularly I see
texts arguing that "we cannot impose upon the poor programmer the additional burden
of also supplying the assertions that correctness proofs (still) need". Depending
on the attitude of the writer, either today's proving techniques are blamed for
"still" needing such assertions --in that case the author usually does not mention
what alterpative proving techniques he has in mind-- or the author now proposes to
apply Artificial Intelligence techniques for deriving such assertions mechanicaily.
I hope to have made clear why I regard the lztter as a somewhat nonsensical activity;
the assertions reflect an explicit choice of the designer, a responsibility that
certainly cannot be delegated to a guessing Al-system. (For ingtance: in the above
example we could have replaced in P! and in P2 , ar in P1 only, the term
rmod d =c mod d by the more stringent © = c .) An Mautomatic specification
guesser” that is only fed with a single instance of each part is almost certainly

'bound to be overspecific, and the whole activity strikes me as putting the cart be-

fore the horse.

Example. Given the following proof:
"The theorem is obvious, because
(xt - x0)(x2 - x3) + (x2 - x0)}(x3 - x1) + (x3 - x0){x1 - x2) = 0O " ’

can you gﬁess the theorem? It is --this is a hint-- a very well-known theorem that
is usually proved in a rather indirect way. (End of example.)

* % *
1 have shown you a small example, specially manufactured to illustrate the
nature of the dilemma. Let me now turn to a more grandiose example that has been
provided by "the real world". The original design af the 1BM650 had the very special
feature that the attempted execution of a special little program loop blew one of the
'Fuses of the machine. MNeedless to say, this very special feature was not mentioned
in the manual, but, programmers being as they are, they not only discovered it, they
also used it in at least one organization, where reservations of machine time were

extended with the down-time, when the machine broke down during your period of reser-

9 EWD562 - 8

vation. Programmers who had a one-hour reservation for a debugging session used the
little loop when, after ten minutes of testing, they discovered a bug whose patching

required some peaceful thinking!

The decomposition into the two parts "hardware" and "software" is certainly a
time~honoured ons, but in this case it was defective. As soon as the aggregate whole
was required not to blow fuses while yet it did, none of ‘the two parts could be prov-
ed to be wrong or to be correct. The maintenance enginee£ could arqgue that all pro-
grammers knew that the machine was such that that little loop would blow a fuse and
that, therefore, they should not include it in their programs. The programmers,
from their side, could argue that the manual nowhere stated that upon the attempted
execution of that little loop the machine had to blow one of its fuses! They could
throw the blame on the other party indefinitely, and the only way to end this ping-
pong game is by chogsing a well-defined interface. Either it is decided that the
fuse should not be blown --which means a change in the hardware design-- , or it is
decided that the fuse should be blown, and then all programmers have the obligation

to program arcund it.

I definitely préfer the first alternative, not so much because I am more of a
programmer than of a circuit designer, but because in the interplay between hardware
and software we have the greatest variability at the software side. It is therefore
simpler to propagate the obligation of fixing the bug through the limited number of
machines than through 21! the pregrams that are or will be made for that type of
machine. 1 have the sad impression that in user communities, management often takes

the undesirable decision @nd obliges its programmers to program around such deficien-

cies.

The story about the fuse is old and nearly forgotten. We should, however,
remember it as a paradigm for the sad situation in which the majority of today's
programmerskare supposed to do their work. I know of a respectable colleague who,
in the year of the Lord 1976, is developing the basic software for a machine of a
less respectable design: its hardware specifications are so obscure that quite requ-
larly he has to get access to the prototype im order to discaver experimentally
what some commands are supposed to achieve! He has to do so under the assumption
that the prototype is in perfect working condition, the trouble, of course, being
that, logically speaking, that "perfect working condition" is, as yet, undefined.
Together with the hardware designers he has to decide "after the fact", which machine
they should have had in mind to build. I like to believe that this is an extrems

case, but have no grounds for doing so.....

10 EWD562 - 9

The complete functional specification of a machine must be given Hithuut any
reference to its internal structure if, in the whole system, the machine is to be
recognized as a part of a composite whole. This, however, does not only apply to
hardware --"concrete machines", if you like-- , it is equally applicable to the
'abstract machines known as higher-level programming languages. Only when their se-

mantics are fully defined without any reference to implementation details such as

compilers, binders, interrupts and what have you, snly then has the separation of
concerns been sffectuated that makes any progress possible. It is in this respect
disheartening to observe that many a modern high-level language user is much worse
off than the average programmer a quarter aof a century ago. In the old days pro-
grammers used to have a complete functional description of their machine at their
disposal and, as a result, they could know exéctly what they were doing. This is in
sharp contrast to the majority of the so-called high-level programming languages, the
semantics of which are only so loosely indicated that most young programmers have
lost the sense of complete control that we used to have. They live in a wnolly en-
vironment in which the notion that a program is either correct or not is, by definit-

ion, not applicable.

A politically complicating factor is that the world's largest computer manu-
facturer has probably not the slightest incentive to change this state of woollyness
of the programming languages it supports, because this woollyness only acts at its
advantage as long as its products are accepted as what are euphemistically called
"de facto standards". In the case of a well-defined pragramming language, it would
have the obligation to implement that correctly and would run the risk of a competi-
tor providing a better implementation; as things are its implemzntations are taken as
"the defimition". Such political considerations make its unwillingness to support

such well-defined languages as, say, ALGOL 60 only too understandable.

So much for the ill effects of lacking specifications.

* *
*

I hope that in the above I have convinced you that, in the invention of the
complex composite systems we are considering, a rigorous definition of the essential
properties of the parts is not a luxury but a necessity. In the final part of my
talk 1 would like to tackle the more elusive question "By virtue of what type of
' properties can parts be nice or ugly?®™ It is the question what interfaces to invent.
I called this question "elusive™ because it is as impossible to give a final answer
to it is impossible to teach young mathematicians how %o discover beautiful theorems.

What we can do --and, in fact, do while teaching mathematics—- is explaining why we

1k EWD562 - 10

think that scme theorems are beautiful. In a similar vein we should be able to ex-
plain to young computer scientists what virtues to look for when they are svaluating
or considering a proposed set of interfaces. It is in this connection a good thing
to remember that one of the main roles of the decomposition of a whole into parts was

.the localization of the bug when scmething went wrong.

Again, let me start with a very simple example. Suppose that we have to con-
trol a printing device that accepts 27 different commands ~--say the printing of the
26 letters of the alphabet and the blank--.. If we control this device with a tern-
ary machine, sach command could be specified with three ternary digits because 33=27.
But suppose now that we are tb control such a device with a binary machine. We would
then need five bits for a command. Immediately the question arises what to do with
the nonsensical remaining 32 - 27 = § possible "commands™. One answer would be
that it does not matter because no correct program would ever send any of these five
nonsensical commands to the device. But this would be a very silly choice, for it
would give the designer of the device the licence to make it in such a way that a
nonsensical command could cause @ jam in the printing mechanism, and as soan as he

" has done that it is possible to write erroneous programs that, besides not producing
the right results, may wreck the installation. Such a silly interface would cause
the ill effects of an errcneous program to spread. Another possibility would be to
postulate that such nonsensical commands are ignored by the device. That is safe
as far as the working condition of the device is concerned but it is still 5illy:
presumably it was not the programmer's intention to send such silly skip commands to
the printing device and, if such a command is sent to the device, we may assume that
something in the execution of his pfogram has gone wrong. The sensible reaction is,
on the one hand to protect the device from being wrecked and on the other hand to
signal an error, thus giving the programmer another way of protecting himself. An
alternative way of doing away with the problem would be to extend the character set

of the printing device with another five characters.

This, again, was a simple example, specially manufactured to illustrate the
problem; but it we loeck for it, we can find the silly choice made many times, and on
a much larger scale. A famous example is the coupling to a general purpose computer
of peripherals that may signal te the central processor that they require a certain
service from it within a given number of milliseconds; in the worst situation the
.irrécoverable malfunctioning that results when the central processor fails to meet
its real-time obligation is not even signalled! In any case the real-time obligation
of the central processor with respect to such a peripheral places a heavy and ugly

burden upon the system designer who, for instance, must guarantee that the interrupt

P EWDS562 - 11
is never disabled for too long a period of time.

We find the same flaw when compilers accept syntactically incorrect programs

without warning or when system integrity relies on the correctness of the compilers

'used.

The quoted examples are instances of a general case. We are dealing with
classeé of strings: strings of characters representing source program, strings of
words representing object programs, strings of commands controlling a device, etc.
Either such a class of sirings contains all the strings that are physically possible,
as in the case of coding the 27 commands to the printer with three ternary digits.
In this case there is no redundancy, and we ndte in passing that under many circum-
stances such an absence of redundancy is undesirable. Or --and this seems to be the
much more common case-- the class of intended strings does not contain all the ones
that are physically possible, i.e. our intended strings are reﬁresented by the phys-
ically ones with a certain redundancy. Using the terms "legal™ and "illegal" for
strings within and beayond the intended class respectively, we can formulate the fol-

lowing conclusions.

1) The class of legal strings must be defined precisely. If this already presents

serious problems, this is a warning not to be ignored.

2) Any part processing such a string should establish whether the string is legal

or not. If this presents serious problems, this is a warning not to be ignored.

3) Any part processing such a string should not react upon an illegal string as if

it were a legal one.

4) Processing an illegal string may not wreck the part: none of the relations
which are carefully kept invariant during the processing of legal strings may be

destroyed by the processing of an illegal string. .

Note. If program component B processes a string produced by program component A
without satisfying the ahbove conditions 2 through 4 --for instance because it is
felt to be too expensive to make component B that way-- , we should regard com-

ponents A and B as belonging to the same part. (End of the.)r

*]
*

' To wind up I would like to make two suggestions: I would like to suggest to
programmers that they have a closer lock at mathematics, and to mathematicians that

they have a2 closer look at programming. By virtue of their tradition mathematicians

have a more explicit appreciation for what it means to be rigorous, a@s a result of
the power of currently available machines programmers are more aware of the problems

created by sheer size.

I do not suggest that programmers should stuff their heads with mathematical
results, but I would like them to get a better appreciation for how and how effectiv-
ely mathematics are organized. If they do so I expect them to discover that many
current topics in computing science are in a sense null-problems as they address
problems that should never have been there to start with. I expect them to discover
that if they are problems now, we are suffering from the pains of a hell into which
our own sins have sent us. I also expect them to discover that these problems are
only soluble by starting over again, and that -the perpetuation of some old mistakes
is the worst mistake we can make now. As very likely candidates for null-problems

I mention those associated with compatability, portability and protection.

I also feel that many a mathematician could profit from the exposure to pro-
gramming. I have that feeling because, while studying mathematical texts, I now
very often observe as my reaction towards the author "He must be a very poor pro-
grammer!"., We, as prograwmers, havé, for instance, been so trained toc avoid case-
analysis like the plague that it is not unusual at all to encounter a mathematical

argument, the length of which can be halved, perhaps even be halved a number of

times.

While preparing this invited speech I had to guess what type of audience I
would eventually address. The title of the Symposium's subject "Mathematical Found-
ations of Computing Science" was my only indication. If I have the privilege of
addressing a primarily mathematically interested avdience, it is clear how my ending
note should sound, for in that case I can only urgé you, Mathematicians, not to con-
fine with respect to Computing Science your interest to its foundations! The praxis
of computer programming needs you as much as you needs it challenge, if Mathematics

ig to remain the Queen of Sciences.

May 1976 prof.dr.Edsger W.Dijkstra
NUENEN, The Netherlands Burroughs Research Fellow

	EWD562:
	html:

