Copyright Notice

The following manuscript
EWD 563: Formal techniques and sizeable programs
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 205-214 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

.‘

1 EWDSOS - O

html transcription

FORMAL TECHNIQUES AND STZEABLE PROGRAMS

Edsger W.Dijkstra
Burroughs
Plataanstraat 5
NL-4565 NUENEN
The Netherlands

By now we know quite convincing, gquite practical and quife effective methods
of proving the correctness of a great number of small programs. In a number of cases
our ability is not restricted to a posteriocri proofs of program correctness but
even encompasses techniques for deriving programé tha£, by virtue of the way in

which they have been derived, must satisfy the proof's requirements.

This development has taken place in a limited number of years, and has changed
for these who are familiar with such technigues their cutlook on what programming
is all about so drastically, that I consider this development both fascinating and
exciting: fascinating because it has given us such a new appreciation of what we

already knew how to do, exciting because it is full of unfsthomed promises.

This development is the result of a very great numher of experiments: experi-
ments in programming, in axiomatizing, and in proving. It could never have taken
7place if the researchers in this field had not shown the practical wisdom of carry-
ing out their experiments with small programs. As honest scientists they have re-
parted about their actual experiences. This, alas, has created the impression that

such formal techniques are only applicable in the case of such small programs.

Some readers have exaggerated and have concluded that these techniques are
primarxily or exclusively applicable to so-called "toy problems™. But that is too
great a simplification. 1 do not object to describing Euclid's Algeriihm Tor the
greatest common divisor as a "toy problem" {in which capacity it has been a very
fertile DnE!). But I have also seen perfectly readable and adequate formal treat-
ments of much less "toyish" programs, such as a binary search algorithm and a far
from trivial algorithm for the computaticn of an approximation of the square root,
which would be ideal for a microprogram in a binary machine. I ecall this last al-
gorithm "far from trivial" because, although it can be described in a few lines of

code, from the raw code it is by no means obvious what the algorithm accomplishes.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD563.html

2 LWDHbs ~ |

The question that I would like to address here is what we may expect beyond

those "small examplcs". Hence the adjective Msizeable" in my title.

The crude manager's answer to my question is quite simple: "Nothing.". He
’ will argue that difficult problems require large programs, that large programs can
only be written by large teams which, by necessity, are composed of people with,
on the average, n-th rate intellects with n sufficiently large to make formal

technigues totally unrealistic.

My problem, however, is that I don't accept that answer, as it is based on two
tacit assumptions. The one tacit assumption is that difficult problems require
large programs, the second tacit assumption is that with such a Chinese Army of
n—th rate intellects he can solve the difficult problem. Both assumptions should

be challenged.

On challenging the second assumption I don't need to waste many words: the
Chinese Army approach --also called "the human wave'-- has been tried, even at ter-
rific expense, and the results were always disastrous. US/36O is, of course, the
best known example of such a disaster, but please, don't conclude from NASA's suc-
cessful moonshots that in other cases it has worked. There is plenty of evidence
that the data processing associated with these NASA ventures was full of bugs, but
that the total organization around it was, however, so redundant that the bugs
usually did not matter tee much. In short, there is plenty of experimental evidence
that the Chinese Army approach does not work; and as a corollary we may conclude
that the perfection of Chinese Army Generals is a waste of effert. At the end of
my talk I hope that you will agree with me that, in order to reach that conclusion,
said experimental evidence was superflucus, because a wore careful analysis of the

tasks at hand can teach us the same.

* *

for my own instruction and in order to collect material for this talk I con-
ducted and experiment that I shall describe to you in some detail., I do so with
great hesitation because I know that, by doing so, I shall sow the seed of misunder-
standing. The problem of a speaker is that, if he does nol give examples, his audi-
ence daes not know what he itz talking about, and that, if he gives an example, his
audience may mistake it for his subject! In a moment T shall describe to you my
experiment and you will notice that it has to do with syntactic analysis, but,
please, remember that syntactic analysis is not the subject of my talk, but only

the carrier of my experiment for which I needed an area for computer application in

2 CWh5H63 - 2
which I am most definitely not an expert.

I wrote a paper with the title "A more formal treatment of a less simple exam—
ple.”. Admittedly it was still nat a very large example: the final solution con-
sisted of four procedures, of which, in beautiful layout with assertions inserted,
three were only 7 lines long and the last one 18 lines. But the whole document
is 19 typed pages, i.e. about 14 times as long as the raw code. It took me sev-
eral weeks of hard work to write it, and when it was completed I was grateful for
not having been more ambitious as far as size was concerned. It dealt with thé de-
sign of a recognizer for strings of the syntactic category < sent > , originally

given by the following syntax:

< sent > ::= << gxp > ; (1)
< exp > :<term>|<exp>+<term> < exp > -~ < term >

< term > ::= < prim > | < term > * < prim > ’
<prim>::<iden>[(<exp>)

<iden > 1:= < letter > | < iden > < letter >

That was all!

My first experience was that, in order to give a more precise statement about
the string of characters that would be read in the case that the input was not an
instance of < sent >, I needed hew syntactic categories, derived from (1) and
denoting "begin of...": for each syntactic category < pqr > I needed the syntac-
tic category < bopgr >, characterizing all strings that either are a < pgqr >

or can be extended at the right-hand side so as to become a < pqr > or both,.

< bosent > ::= < gent > I << hoexp > (2)
< bcexp > ::= < boterm > l < exp >+ < boterm > | < exp > - < boterm >
etc.

(In an earlier effort I had _also used the notion "proper begin of a < pgr > ", i.e.

at the right-hand side extensible so as to become a < pqr > but not a < pqr >
by itself. This time I cbtained a simpler and more uniform treatment by omitting

it and only using "begin of..." as derived syntactic categories.)

The next important step was the decision to denote the fact that the string K

belangs to the syntactic category < pgr > by the expression:

par(K) .

This decision was an immediate invitation to rewrite the syntax as follows:

4 EWD5S63 - 3

< sent > 1:= << exp > << semi > - (3)

< semi > i@

-

1

il

< egxp > ::= < term > i <X exp > < adop > < term >

< adop > 1:= + | -
. <term>::=<prim>|<tarm><mult><prim>
< mult > 1= ¥
< prim > 1:= < iden > | < open > < exp > < close >
< iden > ::= < letter > | < iden > < letter >
< open > 1:i= (

< glose > ::=)

The invitation, however, was only noticed after I had dealt with the first
line of the syntax, dealing with < sent > ; when dealing with <exp >, it was
the occurrence of both the + and the - that inducéd the introduction of
< adop > , because without it my formulae became full of insipid duplication. It
was only then that I discovered that the boolean procedure *semi(x)}" -—-only true
if the character x is a semicolon-- and the other boolean procedures that I need-
ed for the classification of single characters were a specific instance of the con-
vention that introduced “pqr(K)" . Finally I realized that the usual BNF y as

.sed in (2), is an odd mixture in the sense that in the productions the characters

stand for themselves; in (3) this convention is restricted to the indented lines.

A next important decision was to dencte for strings (named K, L, ...) and
characters (named x, Yy ...) concatenation simply by juxtaposition, e.g. KL , Ky
ylLx , etc. Now we could denote the arbitrary nonempty string by yL or Ly and

could derive from our syntax formulae like

(exp(L) and semi(y)) = sent(Ly) .
It also enabled me to define the "begin of...":

bopar(k) = (E L: par(KkL)) .

I mention the apparently trivial and obvious decision to denote concatenation by
juxtaposition explieitly, because in the beginning my intention %o do a really neat
formal job seduced me to introduce an explicit concatenation operator. Its only

result was to make my forfulae, although more impressive, unnecessarily unwieldy.

terms of the string of characters read. With "5$" defined as the string of input

From my earlier effort I copied the convention to express posi-conditions in

characters "read" --or "moved over" or "made invisible"-- by a call of "sentsearch”,

EWDS63 - 4

v

and with "x" defined as the currently visible input character, we can now state the

desired post-condition for our recognizer "sentsearch™:

RS(S, Xy c): busent(S) and non bosent(Sx) and ¢ = sent(S) (4)

. The first term expresses that not too much has been read, the second term ex-
presses that S is long enough, and the last term expresses that in the global
boolean "c" --short for “correct"-— the success or failure to read a < sent > from

the input should be recorded.

In short, we treat S and x as variables (of types "character string" and
"character" respectively) that are initialized by a call of sentsearch . I mention
this explicitly, because for a while we departed from that convention, and did as
if the "input still to come" were defined prior to the call of sentsearch. We
tried to derive from cur pest.condition weakest pre~c5nditions in terms of the
"future" input characters, and the result was a disaster. At some time during that
exercise we were even forced to introduce a deconcatenation operator! The trick to
regard as "post-defined output"™ what used to be regarded as "pre-defined input"
cannot be recommended warmly enough: it shortened our formulae with a considerable

factor and did away with the need for many dummy identifiers.

with respect to the input string. In my earlier trial I had had as a primitive to

Another improvement with respect to our earlier effort was a changed interface

read the next character
x:= nextchar

where "nextchar" was a character-valued function with the side~effect of moving the
input tape over one place. (If S is the string of characters read, the above
assignment to x should be followed implicitly by the "ghost statement" S:= S5x .)
Prior to the first x:= nextchar ’ thé value of the variable x was supposed to

be undefined. In the new interface, where x is the currently visible character
and S the string of characters no longer visible, I chose the primitive "move",

semantically equivalent to the concurrent assignment
5, x := Sx, new character .

This minor change of interface turned out to be a cunsiderable improvement! In the
w interface, the building up of 5§ lags one character behind compared with the
“old interface. Formula (4) shows how we can now refer --via concatenation-- to two

sirings, one of which is a character longer than therother. With the cld interface

we would have needed a notation for a string one character shorter than S , some-

6 EWNS63 - 4

thing so painful that in my earlier effort a different specification for sentsearch
was chosen, with the old interface more easily described, but logically less clean

than (4).

. I wanted to write a body Tor sentsearch in terms of a call on expsearch and
the boolean primitive semi(x) which was assumed to be available. I wished to do so
only on account of the syntax for <Isent > and discovered that I only could do so
under the assumption --to be verified later when the full syntax was taken into
account-- that

sent(L) => non (E ¥ bosent(Ly)) (5)

would hold. Confronting this with the specification (4) we conclude that if

sentsearch establishes a final state with ¢ = true , i.e. sent(S) , the second
term --nan bosent(Sx)—— is truwe for all values of x ! in other words, postulate

(5) states that the end of an instance of the syntactic category < sent >> can be

establi.niod "without looking beyond™.

We assume the availability of a primitive expsearch . Defining "E"™ %o be the

string of input characters mover over by it, it establishes, analogous to (4):

Re(E, X, c): boexp(E) and non boexp(Ex) and c = exp(E) . (6)

Called by sentsearch, it implies S:= SE {as "move" implies S:= Sx). A possible

body for sentsearch is now:

proc sentsearch: {5 = empty string}
expsearch {RE(S, X, c)};
c — {RS(S, Xy c)} skip {RS(S, Xy c)}
semi(x) - {Rs(S, x, false}} c:= false {Rs(S, x, c)}

if no
ﬂ no
I c and semi(x) -~ {Rs(Sx, y, c)} move {Rs(S, x, c)}
fi {RS(S, Xy c)}

J

3J

cor

For its correctness proof I needed three thecrems:

Theorem 1. (RE(L, X, c) and non g) => RS(L, x,)
Theorem 2. (Re(L, X, c) and non semi(x)) = RS(L, Xy false)
Theorem 3. (RE(L, X, c) and c and semi(x)) = Rs(Lx, Vs c)

The proofs of these three theorems and also of
. boexp(L) == non sent(L)

that I needed in these proofs took more than one-and-a-half page.

In the meantime the first 6 of the 19 pages had been written. The primitive

7 . EWD563 - 6

expsearch asked for another three theorems to be proved and was finished 4 pages
later; by analogy termsearch took only half a page; the primitive primsearch re-
quired another six theorems to be proved and was completed 6 pages later. The re-

‘:ining two-and-a~half page were needed to prove assumption (5) and the similar

(term(L) and adop(y)) = naon butcrm(Ly)

and] (prim(l_) and mult(y)) = non boprim(Ly)

and for some closing remarks.

1 shall not go with you in any detail through these proofs and programs. I only
mention that I had to replace

< gxp > 1:= < term > < exp > < adop > < term >
first by
< exp > :::{<term><adnp>}<term>

in order to open the way for a repetitive construct in the body of expsearch. There-

after I had to replace it by

< pxp > ::= < adder > < term >

< adder > :1:= { <term><adnp>}

because I needed the expressian "adder{L)" in my proofs and assertions. The syntax

for < term > and < prim > were subjected to similar massaging uvperations.

* *
*

5o much for the description of my experiment. Let me now try to summarize what

seem to be the more relevant aspects of the whole exercise.

1) The routines 1 designed this time were definitely more beautiful than the ones
1 had written three years ago. This confirms my experience with the formal treatment
of simpler examples, when I usually ended up with more beautiful programs than I had

originally in mind.

2) A slight change in the interface describing the reading of the next input
character caused a more serious change in the overall specifications chosen for
sentsearch: the formal treatment exposed the original interface as a seed of com-

plexity.

.3) To treat a program absarbing imput L formally as a nondeterminstic program
assigning, as it were, a "gquessed" value to L is a very useful device, so useful,
in fact, that all by itself it is probably a sufficient justification for including

nondeterminacy in our formal system. (Independently and in anothex context, also

8 EWDS63 - 7

C.A.R.Hoare was recently led to treat input in this fashion.)

4) Nearly 11 of the 19 pages don't deal with the programs at all! They are
exclusively concerned with exploring the given syntax and proving useful theorems
about strings, theorems expressed in terms of predicates derived from the given

. syntax, |
4.1) My earlier treatment of this example took only 7 pages: most of the theorems I
proved this time were in the older treatment regarded as "obvious".
4.2) Several patterns of deduction appear in more than one proof; the introduction
of a few well-chosen lemmata could probably have condensed somewhat what now took
11 pages,
4.3) The formal treatment of a program requires a formal "theory" about the subject
matter of the computations. The development of such a theory may be expected to re-
quire the introduction of now concepts that did not occur in the oiriginal problem
statement.
4.4) In the development of such a theory the choice of notation is crucial: (In this
exercise the struggle of developing the theory was mainly the ‘search for an adequate
notation; once that had been invented, the development of the theory was fairly
straightforward and I don't think that the final document contains wmore than a single
line ~-at the end, where I was getting tired and lazy-- that could cause a serious

.reader serious problems.)

5) There is a wide-spread belief that such formal proofs are incredihly long, te-
dious to write and boring to read, so long, tedious, and boring as a matter of fact,
that we need at léast a camputer to verify them and perhaps even a computer to gener-
ate them. To the idea that proofs are so boring that we cannot rely upon them un-
less they are checked mechanically I have nearly philosophical objections, for I
consider mathematical proofs as s reflection of my understanding and "understanding"
is something we cannot delegate, neither ta another person, nor to a machine. Because
such philosophical objections carry no weight in a scientific discussion, I am happy
to be able to report that my experiment completely belied the said wide-spread be-
lief.
Since many years I have found that when I write an essay in which a program is
developed, the total length of the essay is a decimal order of magnitude greater
than the length of the program in which it culminates. The transition to & highly
formal treatment has not changed that ratio significantly: ii{ has only replaced the
.Jsual handwaving and mostly verbal arguments by more concise, much wore explicit and,
therefore, more convincing arguments. The belief that formal proofs are longer than
informal arguments is not supported by my experiment.

The belief that the writing and reading of such proofs is tedious and boring

9 EwDses - 8

has also certainly not been confirmed: it was an exciting challenge to write it and
those who have seen it have confirmed that it was fascinating to read, because it
all fitted so beautifully --as, of course, in a nice formal proof it should!-- . I
am tending to regard the belief that these formal proofs must be long, tedious and
.oring, as a piece of folklore, even as a harmful --because discouraging-- piece of
folklore that we had better try tc get rid of., The fact that my formal treatment
was in all respects to be preferred asbove my former, informal treatment has been
ong of the most encouraging experiences from the whole experiment, and I shall not
try to hide the fact that 1 am getting very, very suspicious of the preachers of the
refuted belief: they are mostly engaged on automatic verification or proving systems,
By preaching that formal proofs are too boring for human beings they are either try-
ing to create a market for their products and a climate favourable for their funding,
or only trying to convince themselves of the significance of their work. The misun-
derstanding is aggravated by the complicating circumstance that their own activities
seem to support their beliefs: I have seen a numl->r af correctness proofs that have

been produced by (semi—)mechanized systems, and, indeed, these proofs were appalling!

6) The design consisted of a set of procedures; ignoring the possibility of a re-

cursive call --as would have been the case when the second aliernative production

for < prim > had been omitted-- they form a strict calling hierarchy of four layers
.Ezep. It is worth noticing that all through that calling hierarchy the specification

of the procedures is of the same simple nature. The fact that, when we go up the

hierarchy, we create in a sense more and more "powerful" machinery is not reflected

in greater complication of the treatment, more elaborate interfaces, or what have

you. This, too, is a very encouraging observation, as it gives us some clue as to

what we might expect when we would undertake a more ambitious experiment with a still

less simple example.

Somewhere in his‘writings ~--and I regret having forgotten where-- John von
Neumann draws attention to what seemed to him a contrast. He remarked that for simple
mechanisms it is often easier to describe how they worklthan what they do, while for
more complicated mechanisms it was usually the other way round., The explanation of
this phenomencn, however, is quite simple: a mechanism derives its usability in a
larger context from the adequacy of its relevant properties and when they are very
complicated, they are certainly not adequate, because then the mechanism is certain
to introduce confusion and complexity into the context in which it is used.

As a result of this observation I feel that there is a reasonable justification

'Ur the expectation that a next more ambitious experiment will just confirm my ear-

lier experiences.

10 EWD5635 - 9

As you will have noticed I have accepted as some sort of Law of Nature that
for the kind of programs 1 tslk about, I accept a documentation ten times as long
ags the raw code, a Law of Nature that relates how we think to the best of our abil-
ity when we progrem to the best of our ability. Those struggling with the maintenance
.f programs of, say, 100,000 lines of code, must shudder at the thought of a docu-

mentation ten times as bulky, but I am not alarmed at all.

My first remark is that for the kind of programs I am talking about, the actual
code is apparently a very compact deppsit of our intellectual labours. In view of
the various --and considerable!-- costs caused by sheer program length, this com-
pactness should be a reason for joy! DBut then we cannot complain at the same time

about the factor ten! You cannot have your cake and eat it....

My second remark to console the man struggling with the 100,000 lines of code
is, admittedly, still a conjecture, but a conjecture for which I have not the slight-
est indication that it might be wrong. The conjecture is tha? the actual size of
100,000 lines is less dictated by the task he seeks to solve than by the maximum
amount of formal text he thinks he can manage. And my conjecture, therefore, is
that by applying more formal techniques, rather than change the total amount of
100,000 lines of documentation, he will reduce the length of the program to 10,000

.ines, and that he will do so with a much greater chance of getting his program

free of bugs.

* *
*

As a result of this exercise I discovered an cmission from all computer science
curricula that I have hkeen familiar with: we don't try to teach how to invent notat-
ions that are efficient in view of one's manipulative needs. And that is amazing, for
it seems much less ambitious than, say, trying to teach explicitly how to think ef-
fectively. When teaching standard mathematical subjects, they get acquainted with the
corresponding standard notations and these are fairly effective; so they have good
examples, but that is all! I think that it could help tremendously if students could
be made aware of the consegquences of various conventions, consequences such as forced

repetition, or all information sinking into the subsubsubscripis, etc.

My last remark is added because you may have noticed quantitative concerns from
my side, such as worrying about ihe length of formulae and proofs. This is partly
Wihe result of a small study of elegant sulutions. The study is not completed yet,

but one observation slands out very clearly: the elegant sclutions are short.

A EWD563 - 10

ARppendix.

By way of illustration I include an excerpt from EWD550 "A more formal
treatment of a lessg simple example." After the establishment of formulae (7) through
(11) --as numbered in EWD550!-.) the choice in the case of (7), (8), and (11),

i.e.
and the derivation in the case of (9) and (10):

Rs (s, X, €}t bosent(S) and non bossnt(Sx) and ¢ = sent(S) (7)
| <sent>::=<exp>;) (8)

< bosent > ::= < sent > | < boexp >) (9)

hnexp(L) => pon sent(L) (10)

Re(E, X, c): bDexp(E) and non baexp(Ex) and ¢ = exp(E) (11)

the text continues as follows,

"Designing sentsearch in terms of expsearch means that we would like
to have theorems, such that from the truth of a relation of the form Re the truth

of relations of the form HRs can be concluded. There are three such theorems.

Theorem 1. (RB(L, X, c) and non c) == Rs(L, X, ©)

Proof. Assumed:

0. Re(L, x, c) and non ¢
Derived:
. 1. boexp(L) with (11) from O
2 bosent (L) with (9) from 1
3. C = exp(L) with (11) from 0
4, non c from Q
5 non exp(L) from 3 and 4
6 non sent(ix) with (8) from 5
7. non boexp(Lx) with (11) from O
8. hon bosent(Lx) with (9) from 6 ang 7
9. non sent(L) with {10) from 1
10, c = sent(L) from 4 and 9
11. Rs(L, x, c) with (7) from 2, 8, and 10

(End of Proof of Theorem 1,}n

(End of Appendix)

