gEwnez2? - 0

-

A position paper on Software Reliability.

The term "software reliability" does not occur in my active vocabulary
--by which I mean that I almost never use it-- , although I think that it ucc&rs
in my passive vocabulary --by which I mean that I believe to know what people
mean by it when they use it-- . The only conclusion that I can draw from this
observation, is that "software reliabiiity“ as I understand it is in my opinion
not a very fruitful notion. .

I call & tool "reliable" when it is safe to use by virtue of the fact that,
when used, it acts as intended, or, more precisely, reacts upon our inputs as
intended. With this meaning of "reliability™ I assume all of us to agree that
"reliability™ is a great, esven indispensable virtue of all taocls worth building.'
Consequently, "software reliability" would certainly be a notion, important
enough to devote a panel discussion to.

But is the notion fruitful? We can try to decide that by dissecting it,

by snalysing what we can conclude when a tool is not reliable.

When we try to do that, we come to the conclusion that there sre two
vastly different kinds of tools. On the one hand we have tools like a hammer
or even a bicycle, tools that we learn to use without explicit knowledge of
their properties: being able to snlvg the differential equations of motion is
Dot a prerequisite for the ability to use a hammer or to ride a bicycle. We
learn to use those tools by the experience of using them. At the other end of
the spectrum we have tools like mathematical theorems. Although their virtueosic
use again requires experience in using them, this time "just experience® is in-
sufficient: +the safe usage of a theorem requires explicit knowledge of it, we
need to know precisely under which conditions we are allowed to draw which con-

clusion, for that is all the theorem is about!

the tools at both ends of the spectrum are so radically different that
there i& little point in trying to abstract from that difference. Hence we
have to make up our mind: is a piece of software more like a hammer or more
like a mathematical theorem? For various reasons [am convinced that it is

more appropriate to consider a piece of software, in its capacity of a tool,

EWD627 - 1

-

like a mathematical theocrem than like a hammer.

Bver the intended range of its applications the hammer's reacticns are a
continuous function of its inputs; besides that, in his choice of inputs the
user of a hammer has very few degrees of freedom. These two circumstances make

it possible to learn subconsciously, i.e. from experience, how to use a hammer.

In the case of a typical program, where the input typicelly consists of
character sequences, it is exceptional when the intended reaction is anything
like a continuous function of fhe inputs, and the tremendous proceasing'powar
of machines has increased the number of degrees of freedom in the possible
inputs in the typical application considerably. As a consequence I don't regard
the kind of tool as embodied by a computer program as one that, like a hammer or‘

a bicycle, one can learn to use by the experience of using it. A computer pro-

gram, considered as a tool, is a very different kind of tool indeed!

A computer program is a tool that one can use by virtue of the knowledge
of its explicitly stated prapertles. Those stated properties are known as "its
functional specification" or "its specification™ for short. The specification
specifies, in one way or another, what the execution of the program achieves,
yithout fixing how this desired ne£ effect is being achieved. In this sense the
specifications have been described as " logical firewall between user and imple-
mentor®™: it is a contract between the_program composer and the program user.
The program user is in his right as long as his use of the program is justified
by its specifications, the program designer is not to b;ame as long as correct
executions of his program meet the specifications.

This indispenseble division of responsibilities, however, reveals why
"software reliability" is too crude s term to be of much usefulness. For its
reveals two very different ways in which a program can manifest itself as an

unsafe tool to use.

Firstly, it may be that the specifications are to blame. The specifications
may be poorly stated --in which case the program user can be written down as s
‘fool, for no one should build his application on quicksand-- or the specifications,

although quite clear and unambiguous. describe a tool that is either clumsy to

EwDe27 - 2

use in general, or just hardly adequate for his task --in the second case the

user is probably regarded best as a victim of circumstances—-— .. ‘

Secondly, the specifications may be perfect, but even correct executions
of the program may fail to meet them --and in this case certainly the program

designer has to be blamed-- .

{(In the case of poorly stated specifications, both program designer and
program user share the blame for any disastrous application: both of them

should have realized the ambiguity of the specifications.)

We can carry the analogy between program user and program designer one
stage further: in the same way as in which the specifications allow the user v
to rely upon the program regardless of how the executions achieve the specified
results, the specifications allow the program designer to design a program
weeting them, regardless of how , that is in which interpretétinn and in which

environment, his program is going to be used. But here the symmetry between

program user and program designer ends dramatically.

As soon as in the specifications the inputs and the outputs are treated
as values that are divested from the interpretation given to them in the intended
environment of program usage, the specifications are indeed "a logical firewall",
and the question whether or not the program meets the specifications can, in
principle at least, be settled by mathematical means. The rigorous separation
of responsiblities isoclated for the program designer a task that is within the

realm of applicability of scientific methods.

At the other side of the interface provided by the specifications, the
program's user.can never justify the program's usage any better than he under-
stands the environment in which he employs the progrem. As the vast majority
of those envircnments is miles away from being formally definad, the question
whether or not a program has been used adequately or not is nearly always a

question that is too vague to be amenable to scientific treatment.

And now we see, why "software reliability" is a fruitless notion. Thanks

to the existence of the interface as should be provided by the functieonal

EWD627 - 3

specification it covers two completely different questions: the formalized
question whether a program is correct. , i,e. whether it meets iés specifications,
and the unformalized question whether a tool meeting those specifications is in
such-and-such unformalized and ill-understood environment a pleagant tool to

use. CLorrectness is a scientific issue, pleasantness is a non-scientific one,

and its therefore confusing to try to deal with both of them in a single sweep,
And that is why the term "software reliability" has been banned fraom my active

vocabulary.

Finally, for those who haven't observed it. I would like to draw attention
to the fact that I have refused to call the one issue more important than the
ather: I have refused to do so hecause I wouldn't know how to justify such a
judgement. I state this, because at gatherings like this I have often seemed
to observe the general féeling that, the scientific issue nbw being well-isoclated,
the non-scientific issue now remains as the key problem; I would like to point
out that such a general feeling is no more than a reflection of the circumstance
that at such meetings --like nearly everywhere, for that matter-- the truely

scientificly inclired are a minority.

Scientists largely prefer to confine their attention to the scientific
issue, and as long as they don't ignore the existence of the non-scientific
issues, I think that that constraint is correct. The scientific issue may have
been well-isclated, we are far from having solved all its problems, and the
scientist's attention is primarily required where he can contribute mare than
anybody else. As far as the non-scientific issue of plepasantness is cancerned,
there is little reasan to assume that the scientist is much better equipped to
contribute than others. As furthermore no scientific fruits are to be expected
from desling with fundamentally non-scientific issues, the scientist is justified

in experiencing dealing with the non-scientific issue not anly as a neglect

of duty, but even as a waste of time.

P.5. The reader is mistaken if he thinks that he can send me a copy of Imre

Lakatos's "Proofs and Refutations™ for my education.

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN ‘ Burroughs Research Fellow

