Copyright Notice

The following manuscript
EWD 629: On two beautiful solutions designed by Martin Rem
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 313-318 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

EwWD629 - 0O

- html transcription

Do _two besutiful solutions designed by Martin Rem.

(In recent correspondence with dr.Martin Rem --currently at the Department
of Computer Science (mail code: 256-80), California Institute of Technology,
PASADENA, California 91109, U.S.A.-- he sent me two solutions which I think
both so beautiful, that they deserve a wider distribution; hence their inclusion
in the EWD-series; apart from some historical informaticn and formal elaboratians
that have been added, and some cosmetic changes, I have essentially presented

*
Rem's snluticns.)

A P/U—implementatinn of conditional critical regions.

Since (by an acéident of histury) the P- and V-operations on semabharas .
have more or less acquired the status of "canonical® synchreonization primitives,
inventors of new synchronization concepts have related their inventions to P-
~and V-operations in two different ways. Either --see, for instance, Hoare[1],
Eoncerning monitors-- the new concept is shown to be equally powerful by demon-
strating that it can be used to implement the P-and V-operations; or --see,

for instance, Hoare [2] » when introducing the (simple) critical region

"with r do 5 od"-- the feasibility of its implementation is argued by shawing

how to implement it with P~ and V-operations, The latter possibility has now

been demonstrated by Rem for the conditional critical region "with r when B do 5 od"
ss well. (In [2] » Hoare remarks about the simple critical region "If we assume
that 2 Boolean semaphore mechanism is "built-in", the implementation is trivial."
(as indeed it is). ‘When in [2] Hoare introduces the conditional critical regions,
he adds "Some care must be exercised in the implementation of this new feature."
and follows with 8 two paragraph verbal sketch, explaining what has to be done
with a queue of processes waiting for r . In [3] » Brinch Hansen gives a slightly
more detailed sketch of an implementation involving two queues -~"queues™ that

can be recognized in Rem's solution (if looked at abstractly enough)-- but it

is 5till no wore than a sketch. Ironically enough, Rem now solves the problem

by a method --later called "splitting a binary semaphore-- that a few years

ago.... Hoare has taught us!)

In processes so-called “conditional critical regions” may occurr of the

form "with r when Bi do Si od" .

Here r denotes a shared variable --or more generally: a cluster of shared

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD629.html

EWD629 - 1

-

variables-- , such that r is only accessible from within sections of the text
of the form '"when Bi do Si og" that are prefixed by "with r". (That this con-
straint is naot violated is easily checked by a compiler, a circumstance thet is

itg major justification.)

As with the simple critical regions "with r do Si od", the implementation

has to ensure that the executions of the statements Si --prefixed by the same

"with r"-- as they may occur in the different processes, exclude each other in

time. In addition, a statement 5i , —~like what later would become known as
*a guarded command"-- ig only eligible for execution in those initial states
where Bi holds. The implementation has to ensure that thess constraints are
met by delaying, if necessary, the further execution of the process in which

Si oecurs.

A further requirement is that no such delay accurs without Justificatian,
more precisely: '
1) if no statement Si is ynder execution --i.e. the requirement of mutual
exclusion would not cnnsirain the selection of a next Si for execution--,and
2) if for one or more processes the Si of a conditional critical region
is the next statement to be executed and at least one of the corresponding Bits
is true,)

then the selection of such an Si with a true Bi is obligatary,

Ta make the implementation of ihis last requirement feasible, a further
constraint ensures that activity of one process, but well outside its regions
critical with respect to r Lleaves the "non Bi" for all other pProcesses in-
variantly true. This further constraint is that r is the only shared variable
Bi may depend upon. The whole set of constraints now ensures that ths obligation
to inspect whether a false Bi of & delayed process has turned true, can be
concentrated at the point where the executian of an 5j (Df another process!)

has been carried to completion.

The technique of the "split binary semaphore" consists of the introductian
of & set of hinary semaphores --in this example of the three semaphores m , bt ,
" and b2 -- of which at most one equals 1 . This can obviously be ensured by

seeing to it that in each program ' P- and V-operations --regardless of on which

EWD629 - 2

-

of the three semaphores they operate-- altérnate dynamically: each P-operation
decreases their sum by 1 , each V-operation increases their sum by 1 . Further- -
more we csn assert that between each P-operation and dynamically subsequent V-
ngration the sum m + bl + b2 = 0 ; hence the executions of the program sections
between such a P-operation and its subsequent V-operation can be viewed as ex-
cluding each other mutually in time (if so desired by the traditional argument

of Dijkstra [4]).

Rem's solution uses three semaphores m (=1), b1(=0), and bE(:O), and two
counters n(:O), and nt(:O) ~-initial values being given between parentheses-- ,
The integer n counts the number of processes "eager" to perform their S5i's ;
during testing, the counter nt is equal to the number of Bi's » the falsity
of which is not guaranteed. The whole critical activity can only end with nt = 0
--otherwise impermissible delays could result-- . When an Si has been per-
formed --and, therefore, all Bi may have bscame true-- nt has to be increased
until nt = n before testing can begin. In this latter process the semaphore b1
plays a signalling role; the semaphore b2 is used to admit processes to their
Bi-test one at & time. With this informal sketch of meaning and function of the
semaphores and variables I shall present Rem's solutian without further anno-

tation; thersafter I shall present a more formal treatment.

P(m); ni=n 4 1;
do non Bi ~ if nt =0 - V(m) [nt >0 - v(b2} fi;
‘ P(b1); nti= nt + 1; l
if nt <n = v(b1) [ot =n-v(b2) fi;
P(b2); nt:=nt - 1
od;
i=n-1; 5i;
ifn =0 - v(n) '
[n>0-ifnt<n-v(bt) ot =n-v(b2) fi
fi

For our more formal treatment we introduce angle brackets in order to
indicate that each action extending from an opening bracket until a next (closing)
" angle bracket denotes an atomic action. Atomic actions can be viewed as excluding -
each other in time. This is 0K if each atomic action starts with a P-operation,

ends with a V-operation and has no such operations in between,

EWD629 - 3

-

For sach process we introduce two bc:nl-ean ghost-variables ai ("in the
antichambre") and wi ("in the waitingfoom"). They are initially false; we
| shall use the notations (_h_{ Jj: aj) and (ﬂ Js wj) respectively to denote the
number nf.processes for which ai and wi respectively are true. Furthermore
we introduce @ global ghost-boolean ¢ ——initally false-- , the truth of which
marks the states in which the implications aj = non Bj need rot hold. Labels
have been inserted for later discussion. The annotated text of the program is
as follows: ' | .
LO: < P(m) {Lc_rlcgg_0=nt_<_n}; ni=n + 1 {non ¢ and 0 < nt < n};
do non Bi - {lqgcg_q_q0_<_nt<nﬂgﬂgr_:Bi} ai:= true;
gnt=0-{5_o_ncﬂ0=nt5n} v(m)
N nt>0-{_n_a_ncﬂ0<nt_<_n} v(b2)
1>
L1: <P(b1) {c and 0 < nt < n}; ait= false; wii= true;
nt:=nt + 1 {cg_n__d_0<nt5n};
‘;i._f_nt<n-{ c_a_nAOSnt<n} v(bl)
ﬁ nt = n - ci= false; {_:}__o_rl c and O <nt < n} v(b2)

1> - _
L2: < P(b2) {non cand 0<nt < n}; wii= false;
. nti= nt ~ 1 {non ¢ and O <nt < n}

ni=n - 1 {Bi‘_an_d0_<_nt_<_n};
Si; c:= (nt <n);

if n =0~ {non c and 0 = nt <n} v(m)

. In>0-if nt<n-{cand 0<nt <n} vibl)

lrt=n- non ¢ and O < nt < n} v(b2)

fi

L3

.

Indicating atomic actions by start- and end-label, we can denote the five
atomic actions we have to consider as follows: L0-L1, LO-L3, L1-L2, L2-L1, and
L2-L3. With the initialization m =1, bl = b2 = 0 » we readily establish fcr

all five the invariance of

PO: m+ bl + b2 =1 .

EWD629 - 4

-

This establishes the property of the "split boolean semaphore" and tells us that,
indeed, we are entitled to regard the five actions ~-each of which starts with
a P-gperation on one of the three semaphores and ends (dynamically) with a V-
operation on one af the semaphores-- as "atomic™. In particular it guarantees
tha.t the Si are executed under mutual exclusion and under the initial truth

of Bi .

Having established the atomicity, and taking the further ipitial values
nt =n=0 and c = false into account, we next establish the invariant truth

of . "

Pl: (m=1=>(noncand O=nt<n)) and
(bt =1 = (c and 0 <nt <n)) and
(b2 =1 :‘:-(ncmcand0<nt5n))

The invariance of P1 is essily established, as is indicated by the assertions
that annotate the program text. (Note that it seems to be the function of the

ghost-boolean c to make the three consequents mutually exclusive.)

With the further knowledge that initially all the wi are false, we esasily

establish the invariant truth of
pP2: (ﬂ j: wi) = nt .

Because (ﬁ j: wj) = the number of processes at L2, ready to perform P(b2) s
we conclude now that on account of the third implication of P1 , a deadlock

cannot occur after the execution of V(b2) .

. With the further knowledge that initially all the ai are false, we easily

establish the invariant truth of
P3: (ﬂj: aj) =n - nt . ,

Because m s aj) = the number of processes at L1, ready to perform P(b‘l) ’
we conclude now that on account of the second implication of P1 , a deadlock
cannot occur after the execution of V(b1) -

(A "temporary™ or "partial" deadlock can occur after the execution of V(m) ;
" then, however, the state m = 1 holds, and the assumption is that sooner or

lster another process will "join the game" via LO)

EWD629 - 5

it :;‘ ~
-

Finally we establish the invariant truth of

FP4: Q& j: aj = (pon Bj or c)) ’

which holds initially because then 211 antecedents are false. We shall check
its' invariance explicitly.

LO~L3 and L2-L3 could make all Bj's true as a result of Si's modification
of r ; +the assignment ci= (nt <n) , howaver, makes all implications of P4
hold: if c is established by it, all consequents are true, if pnon c is
established by it, we conclude nt =n , and P3 then tells us,'that all ante-
cedents are false; in both cases all implications of P4 hold vacuocusly.

LO-L1 and L2-L1 could only B%FBCt the i'th implication, but they don't do

80 as ai:= true is executed under the truth of iis consequent, viz. non Bi.
In L1-L2 , the assignment ai:= false strengthens an antecedent, and therefore,
is safe; the sssignment c:= false may strengthen any consequent, but --see
P3-- is executed under falsity of sll antecedents and, therefore, is safe as

well, This concludes our demonstration of the invariance of P4 ,

Combining (the first implication af) Pt, P3, and P4 we cnﬁclude
m=1 =>'((ﬁ hES aj) = n and Qi j: aj = non Bj)) ,.

thus expressing that no avoidable delay is introduced.

* *
*

[1] Hoare, C.A.R. "Monitors: an Operating System Structuring Concept",
STAN-C5-73-401, Navember 1973

[2] Hoare, C.A.R. "Towards a Theory of Parallel Programming", in Operating
Systems Techniques, C.A.R.Hoare and R.H.Perrott (Eds.) London and New
York, Academic Press, 1972

[3] Brinch Hansen, Per, "Operating System Principles™, Englewood Cliffs,
Prentice~Hall, 1973

[4] Dijkstra, Edsger W., "Hierarchical Ordering of Sequential Processes” in
Dperating System Techniques, C.A.R.Hoare and R.H.Perrott (Eds.) Lﬁndnh

and New York, Academic Press, 1972

Note. I"have changed my mind and postpone the other solutian's presentation to
a later EWD-report. (End of nnte.)

APlateanstraat 5 : prof.dr.Edsger W.Dijkstra
5671 AL NUENEN . Burroughs Research Fellow
The Netherlands

