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Finding the correctness proof of a concurrent program.

(Those who have seen EWD622 will recognize the following as an improved
treatment of ane of the versions of the concurrent program developed in that
report. The main improvement consists of the heuristics for finding the
correctness proof: the heuristics effectively buffer the shack of invention

which, in EWD622 - 11, was indicated by "A bold guess is to interpret....".

For the benefit of those who have not seen EWD622, this note is written
as a self-contained text that fully redescribes the problem,  They have further-
more the advantage that they won't be confused by changed notations and meanings

of variables.)‘

In the following y denotes a vector of N compongnts y[i] for
0<i<N. With the identifier f we shall denote a vector-valued function

of a vector-valued argument, and the algorithm concerned salves the equation:

y = f(y) (1)

or, introducing 0, f1, f2,.... for the components of f

v[i] = vi(y) for 0<i<N_ . (2)

It is assumed that the initial value of y and the function T are

such that the repeated assignments of the form
<ylili= ri(y) > (3)

‘will lead in a finite number of steps to y being a solution of (1). In (3)

we have used Lamport's notation of the angle brackets: they enclose "atomic
actions which can be implemented by ensuring between them mutual exelusicn

in time {when they are considered "to take iime").iln order to guaranies
termination we must assume that the sequence of i-values for which the
assignments (3) are carried out must be one of some sort of "fair random

order" in which, for instance, a finite upper bound is known to exist for

the number of consecutive assignments ~-i.e., i-values—- in which a given j

(O =< <CN) does not occur: in other words, we assume the absence of in-
dividual starvation someshow guaranteed. (He who refuses to make that assumption

can read the following as a proof af partial cDrrectnass.)
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For the purpose of this note it suffices to know.tﬁat,functimns f
exist such that with a proper value of y equation (1) will -be solved by a
finite number of assignments (3). How for a given f and initial value vy
this property can be established is Dot the subject of this paper. (He who
refuses to assume that the function f has that delightful property is free
to do so: he can, again, read the following as a proaof of partial corrsctnress
that stetes that when our concurrent program has terminated, (1) is satis-

fied.)

Besides the global vector ¥y there is a global boolean array h ,
with elements h[i] for O <i <N, all of which afa true to start with.
We now conuider the following program of N-faold concurrency, in which each
atomic sction modifies at most one global array element. We giﬁe the program

first and shall explain the notatian afierwards.

The concurrent program we are considering consists of the following

N  components (O <i <IN):

comp.i:

Lo: do < (E j: h[j]) >~

L1e <if y[i] = fi(y) - h[i):= false >
D yla] # £ily) = y[il:= ri(y) > ;
L2j: (& 3: <h[i]i= true >)
fi
od

In lire 9, (E j: h(i]) is an abbreviation for (E J: 0 < j <N: h[j]) ;
for the sake of brevity we shall use this abbreviation throughout this note.
By writing <C(§_j: h[j]) > in the guard we have made the inspection whether

a true h{j] can be found into an atomic action.

The opeming angle bracket " <" ip L1 has two corresponding closing
orackets, corresponding to the two "atomic alternatives"; it means that in
the same atomic action the guarde are evaluated and either "h[iJ:: fulse" or
"y[i]:: fi(y)" is exncuted. In the latter case, N separate atomic actions
Jollow, each setting an h[j] to true: in line L2 we have used the abbre-
siatian (ﬁ.j: <lh[j]:m true > )  for the program that performs the N atomic

wtiuns <Ih[0]:= true > through <fh[N—1]:= true > in sume arder which we
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don't specify any further.

Our target state is that y is a solution of (1), or, more explicitly
(a 5: v[3] = ri(y)) . (4)

We first observe that (4) is ao invariant of the repeatable statements: in
the alternative constructs, always the first alternative will be chosen, leaving

y , and hence (4) unaffected. We can even conclude a stronger invariant

fi(y)) (5)

non {E j: h{3]) ama (A j: y[il

i

or, equivalently

50yl = #3660 (5°)

for, when (5) holds, no assignment h[i]:: false can destroy the truth of

(A j: non h[3]) and (

|=

i

(ﬁ.ji non h[j]). When (4) holds, the aseumption of fair random order implies
that within & finite number of steps (5) will hold. But then the guards of
the repetitive constructs are false, and all components will terminate nicely
with (4) holding. The critical point is: can we guarantee that none of the
components terminates too socon? In order to prove that termination implies

that (4) holds, we have to prove the universal truth of

(€ i: h[3D oz (A §: y[3] = fily)) . (6)

Relation (6) certainly holds when the N components are started because
initially we start with 21l h[j] true. We are only left with the obligation !
to prove the invariance of (6); the remaining part of this report is devoted '

to that proof, and to how it can be discovered. |

We get a hint of the kind of difficulties we may expect when trying to
prove the invariance of (6) as soon as we realize that the first term is a

compact notation for
h[0] ez h[1] or h[2] ax -.. oz h[N-1]

which can become false when, as a result of "h[i]:: false" the last true

h[j] disappears. That is ugly!

Proving a mathematical theorem is often only feasihle by proving a
sfrunger ~-but, somehow, more manageable-- theorem instead. In direct analogy:
instead of trying to prove the invariant truth of (6) we shall try to prove

the invariant truth of a stronger assertion that we get by xzeplacing the con-
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ditions y[j] = Fj(y) by stronger ones. Becauss under the universal truth
of (Q_g£ R} , the relation npnon R is stronger than O , we can strengthen

(6) into

(&3¢ n[3]) ax (& 5+ non Ry) | (7)
provided .
(& 32 y[3i] = £3(y) oz Rj) : (8)

holds universally, (Someone who sees these heuristics presented in thisg
manner for the first +time may experience this asg juggling, but I am afraid that

it is quite standard and that we had better get used to it. )

What have we gained by the introduction of the N predicates R_}'-A?‘E
Well: the freedom to choose them! More precisely: the freedom to define them
in such a way that we can prove the universal truth of (8) ——which is stryc-—
turally qu1+b pleasant-— while the universal truth of (7) --which is structur-
ally equally "ygly" as (6)~- follows more or less directly from the definition
of the Rj's : that is the way in which we may hope that (7) is more "manage--

able" than the original (6).

In ordar to find a proper definition of the Rij's , we analyse our ob-

ligation to prove the invariance of (8).

If we only looked at the invariance of (8), ane might think, that a

cefinition of the Rj's in terms of y:

= (v[3] £ £i(y)

would be a sensible choice. A moment's reflection tells us that that definitian
does not help: it would make (8) universally true by deflnltlon and the r»ight-—
hand terms of (6) and (7) would be identical, whereas (7) was intended to ha
stronger than (6),

For two reasons we are loocking for a definitiom of the Rj's in whigh the
Yy does not occur: Firstly, it is then that we can expect the proof af the
universal truth of (8) to amount to something --and, therefore, to contribute
to the argument-- s secondly, we would like tg conclude the universal truth

(7) —~which does not mention y @&t all-- from the dafinition of the Rjts,

-4

a
In other word., we propose a definition of the Rj's which does not refer

to y at all: oanly with such a definition the replacement of (6)‘by (7) and



EWD640 ~ 4

(8) localizes our dealing with y completely to the proof of the universal

truth of (8).

Because we want to define the Rj's independently of vy , because initially
we cannot assume that for some j-value y[jJ = fj(y) holds, and because (8)

must hold initially, we must assume that ihitially

(& 32 83) (9)

holds, Because, initially, all the h[j] are true, the initial truth of (9)

is guaranteed if the Rj's are defined in such a way that we have
(E 5: non h[3D) ez (A s Rj) : (10)

We ebserve, that (10) is again of the recognized ugly form we are trying to
get rid of. We have some slack -~that is what the Rj's are being introduced

for-- and this is the moment to decide to try to come away with a stronger

—~-but what we have called: "structurally more pleasant" —— relatian such as
(A 3: non h[j] oz Rj) (11)

from which (10) immediately follows. We can already divulge that, indeed,
(11) "will be one of the defining equations for the Rj's .

From (11) it follows that the algorithm will start with all the Rj's
true. From (8) it follows that the truth of Rj  ecan be appreciated as "the
equation y[j] = fj(y) need not be satisfied", and from (7) it follows that

in our final state we want to have all the Ri's equal to false.

Let us now look at the alternative construct

Li: <if y[i] = fily) = h[i]:= false >
I yli] # fily) — y[i]:= rily) > ;
L25: (A 5: <h[jl:= true >)
fi
We cbserve that the first alternative sets h[i] falge, and that the second
one, as a whole, sets all h{j] +true. As far as the universal truth of (11)
is concerned, we therefore conclude that in: the first alternative Ri is al~

lowed to, and hence may become false, but that in the second alternative as a

whole, all Rj's must become true.
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Let us now confront the two atomic alternatives with (8). Because, when
the first alternative is selected, enly y[i] = fi(y) has been ohbserved, the

universal truth of (8) is not destroyed by it, provided:
In the execution of the first atomic alternative
<y[i] = fily) - h[i]:: false >

no Rj for 3 # i may change from true to false.; (12)

Confronting the second atomic alternative
<yli] # rily) - y[i]:= rily) >

with (8), and observing that upon its completion noneg of the relaticons
y[j] = fily) needs to hold, we conclude that the second atomic alternative
itself must already cause a final state in which all the Rj's are true, in
spite of the fact that the subsequent assignments h[j]:# true --which
would each force an Rj +to true an account aof (11)—— have not been executed
yet. 1In short: in our definition for the Rj's we must inelude besides (11)
another reason why an Rj should he defined to be true.

As it stands, the secand atomic alternative only medifies vy , but we .
had decided that the definition of the Rj's would nat be expresséd in terms
af & ! The only way in which we can formulate the additional reason faox
an Rj +vwo be true is in terms af an auxiliary variable (tn ne introduced in
a mmment), whose value is changed in conjunction with the assignment’to y[i] .
It has to force each Rj to true until the subsequent assignmsnt
<Zh[j]:= true > does so via (11). Because the second atomic alternative is
followed hy N subsequent, separmte atomic actions <Ih[j]:= true > ~—one
for each value of j -- it stands to reason that we introduce for comp.i
an auxiliary local boolean array ri with elements ri[j] ' for O =3 <N,
Their initial (and "neutral“) value is true. The second atomic alternative of
L1 sets them all te false, the atomic statements L2] will reset them to true

one at a time.

In the following annotated version of comp.i we have inserted local
assertions between braces. In order to understand the local assertions about
ri it suffices to remember that . 4is local to comp.i . The local assertion

Ri in the second atomic alternative of L1 is justified by the guard
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. y[i] % fi(y) in conjunction with (8). We have further incorporated in our
annotation the ccnsaﬁuence of (12) and the fact that the execution of a second
alternative will never cause an Rj to become false: a true Ri can only
become false by virtue of the exscution of the first atomic alternative of

L1 by comp.i itself! Hence, Ri is true all through the execution of the

second alternative of comp.i .

comp.is ' '
LO:  do < (E j: h[3]) > = {(& i: =i[3])}
L1 <if y[i] = fi(y) - h[ile= falee > {(a j: x:[3]))

0 y(i] # rily) ~
{Ri} y[il:= £ily);
(ﬂ hE] ri[j]:: false) 2'{Ri and Q& Jjt+ non ri[j])};
L2j: (ﬁ_j:{Ri and non ri[j]} < h[j]:= true; rifj]:= true > )
i {{a 5 =i[iD}

ed

On sccount of (41) Rj will be true upon completion of L2j. But the
second atomic alternative of Li _ should already have made Rj true, and it
should remain se until L2j is executed. The precandition of L2j, as given

in the annotation, henc: tells us the "other reason besides

(& 3: non n(j] ex RY) (1)
why an Rj should be definzd to be true"ﬁ

(& i, 3¢ non A3 or ril5] oz RJ) : (13)

Because it is our aim tu get eventually all the Rj's false, we define

the Rj's as the minimal sclution of (11) and (13), minimal in the sense

of: as few Rj's true as possible.

A second look shows how the minimal solution is found. It is a sort of-
transitive closure: starting with the set of Rj's forced true by (11) ——on
account of falsity of non h[j]—~ » if necessary we extend this set ——passibly

in cascades-- with the Ri*s forced true by (13) -—on account of falsity of

non Ri gz rifj]-- .

For a value of i , for which

(@ §: =[5 | (14
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halds, the truth of Ri  forces no further true Ri's uia'(13); consequently,
when such an Ri becomes false, no other Rj-values are then affected. This,
and the fact that the first atomic aliernmative of L1 is executed under the

truth of (14) tells us, that with our definition of the Rj's requiremant

(12) is, indeed, met.

We have proved the universal truth of (8) by defining the Rj's as the
minimal solutian of (11) and (13). The universal truth of (7) » however, is

now ohvious. If the left-hand term OFI(T) is false, we have
(& 52 non n[31), |

and {11) and (13) haue‘as.minimal solution all Ri's false, i,e.
(& : non RY)

which is the second term aof (T).
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