EWD650.html

Copyright Notice

The following manuscript
EWD 650: A theorem about odd powers of odd integers
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 349-350 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD650.html

EWD650 - O

A_thepbrem sbout odd powers of odd integers.

Theorem. Ffor any odd p > 1, integer K >1 , and add r such that

K
that 1 <r <2 , a value x exists such that

R: 1 <x <12K and 2K|(xp—r) and add(x) .

Note. For "a|b" read: "a divides b". (End of note.)

Proof. The existence of x is proved by designing a program camputing x

satisfying R .

Trying to establish R by means of a repetitive construct, we must
choose an invariant relation. This time we apply the well-known technique
of replacing a constant by a variable, and replace the constant K by the
variable k . Introducing d = 2k for the sake of brevity, we then get

P: d = 2k and 1 <x <d and dl(xp-r) ﬂ‘ndd(x) .

This choice of invariant relation P is suggested by the observation that
R is trivial to satisfy for K =1 ; hence P 4is trivial to establish

initially. The simplest structure to try for our program is therefore:

x, k, d :=1, 1, 2 {P};

do k £ K = "increase k by 1 under invariance of P" od {R} .
Increasing k by 1 (tngether with doubling d) can only viula{é the
term d|(xp—r) « The weakest precondition that d:= 2%] does not do so
is ~-according to the axiom of assignment-- (E*d)l(xp-r) . Hence an
acceptable component for "increase k by 1 under invariance of PY

is (2%2) | (xP-x) = k, d := k+1, 2%d

In the case non (E*d)](xp-r) we canclude from dl(xp—r) that xp—r is
an odd multiple of d . Because d is even, and p and x are odd, the
binomial expansion tells us that (x+d)p—xp is an odd multiple of d ,

and that hence (x+d)p—r is a multiple of 2% . Because also d is doubled, -
x <d remains true under x:= x+d , because d is even Ddd(x) obviously

remains true, and our program becomes:

EWD6S0 - 1

x, k, d :=1, 1, 2 {P};

do k £ K - if (2%) | (xP-r) —~ k, d := K+, 2%d {P}
[non (2#d) | (xP-r) ~ x, k, @ := x+d, k+1, 2%d {P}
£i {P}

od {R}

Because this program obviously terminates, its existence proves the theorem.

(End of proof.) * x

With the argument as given, the above program wss found in five minutes.
1 only mention this in reply to 7ohar Manna and Richard Waldinger, who wrote
in "Synthesis: Dreams => Programs" (SR1I Technical Note 156, November 1977)

Wgur instructors at the Structured Programming School have urged us

to find the appropriate invariant assertion before introducing a loop.

But how are we to select the successful invariant when there are so

many promising candidates around? [...] Recursion seems to be the ideal

vehicle for systematic program construction [...]. In choosing to

, emphasize iteration instead, the proponents ef structured programming
have had to resort to more dubious (sic!) means.”

' Although I haven't used the term Structured Programming any more for at least
five years, and although I have a vested interest in recursion, yet 1 felt
addressed by the two gentlemen. S0 it seemed only appropriate to record that
the "more dubious means" have ——again!-— been pretty effective. (I have
evidence that, despite the existence of this very simple solution, the problem
is not trivial: many computing scientists could not solve the programming

problem within an hour. Try it on your colleagues, if you don't believe me.)

Plataanstraat 5 prof.dr.bEdsger W.,Dijkstra
5671 AL Nuenen Burroughs Research Fellow
The Netherlands

