EWDE56 -~ 0

An Introduction to Implementation Issues.

The immediate cause of these essays is an elective course on Implementa-
tion Issues that I intend to give in the not toeo distant future to students
of the Departments of Mathematics and of Electrical Engineering at the Eind-
hoven University of Technology. They are written for seQeral reasons: there
is the altruistic consideration that it is always nice for students to get
some underlying material that they can study at leisure, there is the purely
persanal consideration that the writing of lecture notes is for me one of the
most effective ways of preparing a set of lectures. They are written in Eng-

lish because I hope that eventually they will interest a wider public.

The course is "ap introduction" in the true sense of the word. It is
a true introduction because no prior knowledge of implementation technigues
is assumed, and a general familiarity with the structure of automatic compu-
ters and with the main characteristics of programming languages should suffice.
It is a true introduction also because it does not aim at "producing" all-round
implementors. (Such a goal would require a much more encyclopsedic course.)

On the contrary!

These essays are addressed primarily to three types of computer profes-

sionals --whether still student or graduated-- .

They are addressed to the hardware designer., Without making him an im-
plementor they should give him a better understending of the nature of the
problems an implementor faces and of the ways in which machine characteristics

can alleviate or aggrevate implementation problems.

They are addressed to the general computer user. Without making him an
implementor they should give him --in particular if he cannot resist the temp-
tation to suggest programming language improvements-- a better feeling of the
nature of the processes evoked --"behind the scenes" so to speak-- by the ex-

ecutions of his programs.

Thirdly they are addressed to the man that is or hopes to become engaged

in system design or development. They should give him a framework in which


../transcriptions/EWD06xx/EWD656.html

EWD656 - 1

to appreciate the main aspects of that activity that is more coherent than
the mere enumeration of 811 the techniques that together constitute estab-

lished practice.

At first sight it may seem presumptuous to hope to be able to write a
text addressed at so varied an audience. Yet I don't Dniy think that such
a text can be written, I think that it should he written. Over the last
two decades implementation —--rightly or wrongly-- has become a very elaborate
and intricate art, and the basic software in which the naked hardware is
wrapped up has become almost impenetrable for the nonexpert, impenetrable to
the extent that todey it is equally well possible to meet a hardware designer
that hasn't the foggiest notion what recursion is all about, as to encounter

a computing scientist that has never seen a single bit.,

The purpose of this course is the penetration of this "wrapper" of
basic software. From the wealth of material collected in a period of twenty
years of systems programming, I intend to mention as little accidental detail
as possible, for it is exactly the overwhelming amount of accidental detail
that has made the wrapper so difficult for the layman to penetrate. 1 shalln't
shun detail wherever the subject matter doesn't allow me to do so, but it is
my firm intention to reach my goal by abstracting from whatever can be iden-
tified as accidental. (Being abstract is something profoundly different from
being vague: by abstraction ——from what is uncertain or should be left open-—-

one creates a new semantic level on which one can again be absolutely precise.)

0f course 1 cannot avoid mentioning facts entirely; for the sake of
self-consistency I have even to mention facts that can be assumed to be very
familiar to some of my readers. Those readers I can only ask %o bear with
me, hoping --as I do-- that my way of presenting the familiar will give them

a fresh appreciation of it.



EWD656 -~ 2

The emergence of "basic software".

In the old days the general purpose automatic computer consisted of a
processor that did the work, a store that kept the program and the intermediate
results of the computation, an input deviee for feeding in program texts and
data, and finally an output device for returning the results that were of
interest in the outside world. Such was the naked machine and it was handed
over to its user community almost as such. It was not unusual that the fead—
ing in via the input device of a program text to be stored in the computer
store for later execution was itself a program—-controlled activity of the
computer. If this were the case the machine had some special means of
loading the "basic input program" —--usually no more than several tens of

instructions-— under control of which the remaining programs necessary could

be read in.

Several tens of instructions of the basic input program wes all that
was provided. Right from the start, however, the strategy for the intended
use of the machine has included the notion of a so-called "library of standard
subroutines". People immediately recognized subtasks that would occur in
almost any application, conversions from decimal to binary number system during
input and from binary to decimal number system during output being the obvious
examples. Further examples were: the approximation of a quotient (for a
machine without a built-in divisiun), of the square root, of the logarithm,
exponential, trigonometric, and other mathematical functions of general
utility, programs for performing arithmetical operations on numbers in a
fleating-point representation (for machines without floating-point hardware)
etc. And it was envisaged that from then onwards such a library of standard
subroutines could be extended in a way which unavoidable would reflect more
and more the specific characteristics of the intended area of application:
programs for the numerical integration of differentisl eguations, sorting
programs, programs for matrix operations, complete linear programming packages,
etc. The latter library extensions, which are so clearly application depen-—
dent, fall outside the scope of this lecture course that tries to concentrate
upon the general (technical) issues that are pertinent to almost any computer

application.



EWD656 ~ 3

An example of such a general technical issue would be the following.
Given that user communities like to teilor the neutral machine to the needs
of their specific applications via a library of standard subroutines, ob-
serving that such subroutines are not complete programs in themselves but
components from which complete programs should be composed, what are the
techniques for composing programs from such standard combonents as a library

can provide, and what should be our yardstick for evaluating such techniques?

For some of the "basic software" mentioned above, the need has disappeared;
for instance, division and all the arithmetic operations on numbers in a
floating-point representation are now quite commonly fairly directly built-
in operations of the arithmetic units of the processors. (That they are
often built in by ﬁeans of a technique called "micropragramming" need not
CONCErn us here.) Several other circumstances, however, have caused a dramatic
increase in the amount of basic software ——now easily amounting to several
hundred thousands instructions—- modern general purpose computers are equipped
with before they are handed over to the user community. I mention the main

ones.

1) The introduction of unsynchronized, concurrently active peripheral
devices. Under control of special purpose subprocessors —-called "“channels"—-
large amounts of information can be transferred between primary store and
peripherals or secondary storage devices; because the exact moment when

the channel will signal to the processor the completion of such a transfer

is unpredictable, this form of concurrency has introduced nondeterminacy

as a new element into the installation as a whole. The need to absorb the
major part of this nondeterminscy, so that the total installation again pre-
sents itself as a (nearly) deterministic automaton, was one of the major
reasons for the introduction of a new component of the basic software, called
"the operating system”, It took a considerable number of years before the
nature of this task was sufficiently well understood. (Even in the early
seventies it was unusual to consider concurrency and nondeterminacy as
different issues, and it was a minor eye-opener for guite a few that both
highly concurrent but structurally deterministic and purely sequential but
structurally nondeterministic systems could be conceived and were a worthy

subject of investigation.)



EWD656 - 4

When the logicel hurdles involved were taken, the extension to instal-

lations with two or more identical "central® Processors was only a minor step.

2) In the older "batch mode" the machine executed the programs one after
the other and always at most ane computation was in an intermediate state of
progress. In a multiprogrammed system the resocurces of the installation may
be distributed over a larger number of independent computations that have
been initiated hut not yet completed. Multiprugramming has been introduced
with the dual Purpose of increasing the resource utilization and reducing the
turn-around time af small jobs; as such it has been successful. (So—called
"time-sharing systems" in which the central computer is coupled to a possibly
large number of keyboard terminals are g later extension of the same idea:
the added requirement of quick response defeats the goal of high resource
utilization, but hefore this was discovered a lat of effort had been wasted
in trying toc combine the incompatible.) The scheduling of the resaurce
sharing between independently conceived programs has caused a considerable
complication of the Dpérating systems, the more so because some logical
problems --such as the prevention of deadlock and individual starvation-—

were insufficiently well understood.

3) The introduction of (high-level) pProgramming languages, such as FORTRAN,
ALGOL 60, and COBOL to mention but a few of the first. Historically speaking
the programming languages were an butgrowth of the so-called "auto-coders",
The auto-coders were a mechanizatiaon of part of the clerical work involved

in the production of machine caode programs for a specific machine: they
allowed variahbles to be denoted by identifiers, they allowed arithmetic
expressions to be written down in the normal infix notation, they allaowed
subscription in one-dimensional arrays, and mechanized the incorporation of
standard subroutines from the library. The use of autocoders was a greaf
improvement over the writing of Programs in machine code, a process in which
all sorts of irrelevant decisions have to be taken —=-such as which storage
locations to allocate to which variables-- , decisions the consequences of which,
however, permeate all through the pProgram text. Autocoders were primarily
the result of the recognition that that trivial clericzl labour had better be
done by the machine itself, Their tonsequence that via the autocoder the

machine could be used by people with a less detailed knowledge of the machine



, EWD656 - 5

was regarded as a fringe benefit, it was pot their primary purpose.

The later "programming languages" were more ambitious; some of the hopes
with which they were developed weie, however, unrealistic., Their main purpose
was to make the available computers "accessible to the nonprogrammer". It
was at a time that a programmer's expertise was consideréd to be his intimate
knowledge of the machine he was programming for, so that he could cunningly
exploit the specific (and sometimes weird) machine characteristics, And it
was hoped that specific machine characteristics could be hidden from the pro-
gramming user to the extent that his programs written in a high-level program-
ming language would be "machine independent", i.e. could be executed an any
machine for which that programming language had been implemented. As in the
case of autocoders, such an implementation consisted primarily of a trans-—
lator or compiler that would accept a program text written in the programming
language (ﬁsnurce code") and would produce an equivalent program in machine
code (“target code"); the latter program in machine code -—-sometimes supported

by @ so-called "run-time system™-- could then be executed by the machine.

I mentioned that some of the hopes were unrealistic. The hope that
now non-programmers had easy access to the machine turned out to be vain., It
became clear that the programmer's expertise had been misjudged: it is not
his intimate knowledge of the machine and his willingness to incbrpmrate
tricks, but his ability to conceive large algorithms in such an orderly fashion
that the various cost aspects of program execution are predictable and the
results produced trustworthy. And being up to this conceptual challenge
intrinsically requires besides brains a professional training. Complete
machine independence hasn't been achieved either. Some programming languages
(early FORTRAN AND PL/I, for instan:e) were designed with a specific machine
in mind, and indeed reflect their features. Other programming languages
(ALGOL 60 and EDBDL) were not so explicitly designed with a specific machine
in mind, but either their definition left details --such as the arithmetic
for floating point numbers-- to the implementors, or implementors were by
economic considerations forced ito deviate from the definition and to implement
"a dialect". Furthermore, various programming language constructs influence
in different implementations the cost of program execution differently, thereby

making the notion of "the most efficient program" implementation dependent.



EWD656 - 6

It seems that the majority of programmers appreciate the programming language
they use less on sccount of its definition and more via the implementstion of

it they daily work with.

The above enumeration of circumstances that led to the emergence of

basic software should not be regarded as complete.

* *
*
The above mentions the circumstances that make the emergence of basic
software understandable. It does not explain its dazzling complexity, nor

its frightening size.

One way of explanation is viewing the final product as the result of
the development process and of concentrating upon the latter. The complexity
is then understandable as the compound effect of a few major and thousands of
little mistakes, as the unavoidable compromise caused by the changing and
incompatible pressures from the market place, etc.. Valid as such an analysis
may be, with one noticeable exception I shall leave it to the expert in indus-

trial sociology and the sociology of science.



EWD656 - 7

On economy.

At irregular intervals --and sometimes not without reason-- the quesiion
is publicly raised why, and if so how much, society should support scientists
in their endeavours, and at such moments scientists wonder --also sometimes
not without reason-- why their fellow human beings toleréte them at all. Such
questions are always asked in terms of the at the moment prevailng prejudices
and tacit assumptions. {The answers proposed today are definitely quite

different from those that were acceptable during the Enlightment.)

I have come to the conclusion that the average (and perhaps even ihe
not-so-average) scientist feels less secure than he likes to believe, and
that he yields more to the pressures of the prevailing prejudices and tacit
assumptions of his fairly direct environment than is generally assumed. (1
have come to this conclusion ss it seems to be the only explanation for the
phenomenon that some research topics are heavily pursued in some countries
and practically ignored in others, despite the availsbility of the resources
and the awareness of the tDpic.) The current tendency to justify research
in terms of "usefulness" only adds to the scientist's feeling of uncertainty:
the problem with "usefulness" as a criterion is that, besides being noble
--and therefore hard to challenge—- the notion of "usefulness™ is too much
dependent on changing fashions to be of great value as a guiding principle
for the long-range activity that scientific research always is. 5o much for

the justification of scientific research in general.

In our particular area of automatic computing, efficiency considerations
have always played a major role, even to the extent that sometimes efficiency
seems to have become the sole concern. The great weight given to efficiency
concerns is only too understandable. Firstly, big cemputers have always been
very expensive. Secondly, experience has shown that the inadvertent introduc-
tion of gross inefficiencies is only too easy --and when I say "gross" I mean
"gross"-- . Thirdly, the growth of the computer industry coincided with the
more wide-spread introduction of quantitative techniques of industrial manage-
ment, techniques which the young computer industry --unhampered by other tra-
ditions—- was one of the first to adopt. Fourthly --and this is probably the

most profound reason-- avoiding waste is a core problem of computing science,



EWD656 - B

a8 subject that would ‘evaporate into nothingness (nr symbolic logic) if infinite
computing resources were available (in very much the same way as the medical

profession would collapse if mankind turned into & race of immortal guds).

I repeat: avoiding waste is & core problem of computing science, but let
no reader translate "avoiding waste" inadvertently as "finding the mast efficient
solution". I most emphatically urge my readers not to do so, firstly because
it is so commonly done, and secondly because it is a mistake, for on closer
scrutiny the unqualified notien of effieiency is tao vague to be helpful and

more qualified notions of efficiency are too arbitrary to be of much significane,

Even the simplest batch mode environment, so simple that the cost of
executing a program is proportional to itg execution time, suffices tp illus-
trate this. In that environment one might think that of the programs to pro-
duce one specific result the one that can he executed in the least time should
be regarded as the best program, but carrying this argument through ad absurdum,
we would conclude that the best program is the one that doesn't use the machine
at all! The point is clear: in the latter case we have moved the interface
between "preparation" and "program execution™ to the extreme that nothing has
been left for the latter stage. In other words: computation times can only
decide when all other things are equal, and this is seldom the case. In a
program it may be observed that the full precision of a standard function
routine that is called frequently is not needed and we may replace it by a
special purpose routine that computes that function with less precision but
faster. Even if that special purpose routine has been verified as thoroughly
as the standard routine, theicredibility af the result produced with the new
program now depends in addition on the argument that the full precision of the
standard routine was, indeed, not needed!

So much for & specific program made to be used once. For programs to
be used with many different input data, the notion of "the most efficient pro-
gram" -usually becomes even more blurred. The execution times of two alternative
programs may depend differently on the input data and the notion of the (on
the average!) most efficient program may then depend (in a usually unknown way)
on the (usually unknown) distribution of the input data to be expected in the

future.



EWD656 - G

In the simple batch-processing system just considered, program execution
time was in so far still a significant measure that it measured the extent to
which the machine was not available for other tasks. In a multiprogrammed
system the situation becomes even more confused, because the "cost" aspects
of execution now include not only processor requirement but also storage re-
quirement --in the sense that storage space needed for the execution of one
program is not available for the concurrent execution of other programs. When
now one program is derived from another by trading storage space against com-
putation time, the guestion which of the two programs is "“the more efficient"
becomes entirely fictitious, as would be a statement of the nature that this

cup of coffee is sweeter than that cup of tea is warm.

Une way out of this dilemma --we might call it: the manager's approach--
is to reduce the multidimensional comparison to @ one-dimensional one by only
considering & linear composition with a chosen weight-factor —;price, of course--
for each aspect. To quote from “Cnst/UtilizatiDn: A- Measure of Gystem Per-
formance™ by Israel Borovits and Phillip Ein-Dor [CDmm.AEM, 20, 3 (Mar.1977),
185 - 191]:

"Cost is a common dimension which allows us to integrate utilization
deta for all the components of a system. We can then develop a single
measure of cmst/utilizatimn for an entire system. While it is impossible
to develop meaningful figures of total system performance directly from
physical utilization, the common dimension of cost makes a single measure
of merit both feasible and meaningful.

The cnst/utilization factor measures the extent to which the outlay
on the total system is actually utilized., It is computed as F =2:i Pi Ui
where Pi is the cost of the i-th component as a percentage of total

cost and Ui is the percentage utilization of the i-th comporent."

The above quotation is included on the principle "Audiatur et altera pars".
I do not share the authors! high expectation of the meaningfulness of their

cust/utilizatiun.factmr F.

Firstly, I am not always sure how to define "the percentage vtilization"
of a component. How do I define it for my watch? How do I define it for my
telephone if I use that for outgoing calls for 864 seconds a day? 1Is its per-

centage utilization then 0.01 or is it 0.99 becesuse for 0.99 percent of the



EWD6E56 - 10

time I have been reachable for callers from outside? (0r, to take an example

from computing: what is the percentage utilization of a bounded buffer?)

Secondly, the authors suggest that high values for F are desirable,
apparently unaware of the circumstance that (when utilization cen be defined
meaningfully) high resource utilization is in general incompatible with other

desirable system properties such as fast response.

Thirdly, even in their own article the authors don't show how to use
F-values and in their interpretation don't go beyond remarking that F = O

corresponds to complete idleness and F =1 to full utilization.

(To be continued)

Plataanstraat S prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow

The Netherlands



