team ldentificetion 142-48 EWD660 - O

On the GREEN Leanguage submitted to the DoD.

"Parts of it are excellent!®

(Re "The Curate's Egg", PUNCH, vol.cix, p.222, 1895)

1 found the GREEN Language very hard to penetrate. The main source of
my difficulties has probably been that I tried to reconstruct from the docu-
mentation a coherent design philosophy, en effort in which I failed: the
mixture between sense and nonsense ramainedibaffling. Eventually I had to
assume that upon & defensible core, designed by one group, presumably another
group had grafted all sorts of goodies inspired by specific Ironmen requiremants

(or some similar prncess).

It gives one hope to read in the Raticnale (RAT i) "The reference manual
contains a complete and concise definition of the language. Following Wirth
we believe in the virtue of having a rather short reference manual,” I follow
in this respect Wirth too: my main complaint sbout ALGOL 60 is that its syntax
is too baroque and the Report on the Algorithmic Language ALGOL 60 is too
long. Reading the Reference Manusl (RM) for the GREEN Language, however,

ohe discovers to one's disappuintmént that it is neither complete, nor concise.

Its Intrnduction,(ﬂﬂ p.1) expresses "a deep concern for programming as a
human éctivity" and "an attempt was made to keep the language as small as
possible.” But was it kept small? We find (RAT p.1-2) “Reserved words are
distinguished from program identifiers. There is a small list of 72 (sic!)

such words." That is a vocabulary of more than 10 percent of Basic English!?

I thought that it was a firm principle of languags design --put of con-
cern for programming as a human activity-- that in all respects equivalent pro-
grams should have few possibilities for different representations (possibility
for differences ideally not going beyond the arbitrary choice of identifiers
and the arbitrary ordering of semantically unordered components). Gtherwige
completely different styles of programming arise unnecessarily, thereby hamper-
ing maintainability, readsbility and what have you. This requires from the
language designers the courage to meke up their minds! The designers of the
GREEN Lenguage have repeatedly lacked that courage, and have provided'multiple

ways of daing the seme thing,



EWDE6O - 1

Unable to choose between the specification of actual parameters by pasition
or by naming them vie the identifier of the formal parameter, they provide both
options! Unable to choose between “while more_to_do ;gggﬁ and "until goal_
reached loop" they provide both. They do so with the extremely weak justifi-
cation (RAT 1-24) "Its purpcse is to avoid the inconvernience and abscurity
(sic) of negations." From the point of view of honogeneity this proposed jus-

tification is not just "extremely weak", but invalid.

Similarly they have refused to make np their mind with respect to the
ambiguities that may arise when the same identifier happens to be used as
component of different snumeration types. In RAT p.1—14 they suggest "In
some contexts it may be necessary to qualify the type of GREEN by writing
PAINT(GREEN) or TRAFFIC_LIGHT(GREEN).", in RM p.46 they suggest to resolve

naming conflicts by renaming clauses.

* ’ *

Another disturbing feasture of the Rationale is the superficial nature
of many "justifications™. To "justify" the absence of conditional expressions
by noting that (RAT p.1-5) "conditional expressions [...] pose severe prnblems'
for automatic layout" is original but ridiculous. It is for fundemental reasons
very regrettable that the Ironman requiraments seem to require an explicit
statement terminator rather than a separator. (Nobndy seems to have remarked
that all arguments for an explicit terminator can also be turned inito arguments
for an explicit initiator!)‘ However, when they write "Extensive analysis of
programmer errors supports the use of the semicolon as a terminatoxr [EH 75]?
(RAT p.1—5) they damage the stending of their proposal, for the experiments
described in the paper quoted are too lousy tnf3ustify any conclusion at all.
When they write (RAT p.1—25) "It was slsc felt that whereas nondeterminism
is in ibe essence of parsllelism, its introduction for sequential programming
would not appesr natural to most users." (my underlining) they reflect several
misunderstandings in a single sentence. First of all they ignore tha£ it has
been recognized already several years ago that nondeterminism and concurrency
are separate issues in the sense that both nondsterministic programming languages
whose obvious implementation does not introduce concurrency and deterministic
programming languages whose implementation obvieusly admits concurrency are
not only quite conceivable, but sven worth of our attention. Secondly they

confuse in their sppeal to what seems "natural to most users” the notion "con-



EWD660 - 2

venient" with the notion "conventional".
* " *

After having referred to the difficulties of the types in PASCAL, they
write (RAT p.1-8) "These problems sre overcome in the GREEN Langusge with the
notion of subtype.™ Are they? They first explain the introduction of new
types with "type weight = integer; type length = integer" which "define the
new types "weight"™ and "length®" as différant types, both distinct from the
pradefined type "integer" although they have the properties of "integer"."
Thet is & very obscurse sentence: if the new types have all the properties of
the old type, how can they differ? They give two exemples of assignment
statements that are supposed to explain this by their being invelid; however
"two "weights" or two "lengths" can be added in the normal way®. What is
the type of such sums? Presumably agein "weight" or "length" respectively.
Are we allowed to multiply & "weight" with a "length", and is the result
a "torque"? 1 find that section of the Rationale obscure and misleading if
it suggests that a program can be enhanced for greater security with some
sort of "dimension analysis" that will be checked by tﬁé‘cbmpilar. This
problem is much more difficult than suggestad by the remark that you may
not assign a "weight" to a "length". (A recent error analysis of student
programs revealed an unawareness of the difference between "a moment™ and
"a period (of time)" -~a confusion induced. by the Dutch language, in which
the most common term can be used for both~-~ ; 85 & result some students had
failed to realize that the sum of two periods again gives a period, but the
sum of & moment end & period a new moment. It was my original treining as &
physicist that enabled me to grade these programs in a single glance as "wrong",
but I wouldn't venture iu build that in intu"a language and its compiler.)
"In short: the rest of RAT p.1-8 is hopelessly superficial; the pages RM p.23/24
were not of much halﬁ either, a&s the sxpressions "same type™ and "identicel
type" are not definéd. The language seems to be Mstrongly typed", but only
to the superficial readar;aaiit stends this way of introducing new typés does

not seem to serve & single purpose. 1 at least couldn't discover one.

Also the notion of subtype present some problems to me. It is explained
¥
that the declaration "gubtype SMALL_INT = INTEGER range (1..100)" makes

"the declarations:



EWD660 - 3

I: SMALL_INT; case A
J: SMALL _INT;

equivalent (my underlining) to the declarations

1: INTEGER range(1..100); case B
J: INTEGER renge(1..100); *

Consider now in addition
"subtype FUN_INT = INTEGER range (1..100)
K: FUN_INT;
H: INTEGER yrange (1..100)"

Combining H with cese B I am tempted to conclude tha? H, I, and J are

all of the seme type Bnd subtype. 0On account of the equivalence we conclude
that this is also the case when H is combined with cass A ; hence, if we

so desire, we can conclude thet the declarations of cese A and case B asre also

equivalent with

I SMALL_INT; case L

J: INTEGER range (1..100)
In the ssme vein we conclude that the type and subtype of the variables H
end K are the seme. 0On account of the transitivity of the nntioﬁ "the same"
I draw the same conclusion for K and I and J from case A . But how do we

reconcile &1l this with (RM p.18):

"Declarations of distinct type names always denote distinct base types,

even if their definitions are identical." 7

The way out of thig muddle seems to regard my underlined "equivalent"
as a mistake; that would invalidate the ahbove argument. But that does not
help, for the sentence just quoted is also hard to reconcile with what the

Reference Manual says two sentences further

"The base type of a subtype is that of its parent type."

In short: the claims that the Reference Manual gives a "complete and concise"
definition of the GREEN Language, and that PASCAL's type problems "are overcome

in the GREEN Language"™ seem to me idle boasts.

* *
*



EWD660 - 4

One of its nicer aspects is presented by the synchronization primitives,
their "boxes". When I studied the Reference Manual —-RM p.52-- I became very
suspicious because a standard bounded buffer seemed to require three boxes,
one between producer and buffer, but iwo between buffer and consumer. Because
~-a8 is well known for about fifteen years-- as far as synchronization is con-
cerned the relstion between producer and consumer is totally symmetrical, I
became very suspicious indeed. Upon closer scrutiny the asymmetry was not an
unavoidable consequence of the synchronizing primitives used, it was just the
result of lousy coding: it is easy to program a buffer that only needs two

"hboxes" ~-and it is more efficient toof-- .

The lenguage contains an unjustified constraint, which, however, seems
very wise. Local nondeterminacy in communicating progrsms may be resolved
by the timing of occurrences in other paths: the nondeterministic program has
its nondeterminacy concentrated in a select statement, that cen only be con-
trolled by "send"™ and “"receive" , but not by "connect" . This may surprise
readers, the constraint is fully justified: it rules out coincident non-
determinacies in more than oﬁe path, nondeterminacies that have to be resolved

consistently.

So thet is nice. It has 8 few less attractive features too. With

each box a first-in-first-out queue is associated, snd that is very fine when
first-in-first-out is exactly what you need. The major ﬁrablsm for a monitor
addressed via such boxes is that it has only access to the oldest request for
each box: honouring the request implies a coincident waking up of the process
at the other side, whether this is desirable or not. As soon as I tried to
implement & very different scheduling strategy I found myself forced to intro-
duce for the monitor a linear array of boxes of a length at least equal to

the number of processes to he monitored.

From an esthetic point of view that is not attractive: many monitoring
algorithms allow a formulatioh that is absclutely independent of the number
of processes to be wmonitored. Now this number has to appear somewhere in the
text of the wonitor, we have a constraint that will be hard to enforce by the
implementation. Even worse: if the number of processes increases beyond the

maximum that was foreseen, the monitor needs to be recompiled!



EWD660 - 5

Two remarks are to be made in this connection., The queues associated
with each box of the linser array I had to introduce have at most the length 1
--ag in Concurrent Pascsl--~ and one of the people who saw me programming that
monitor immediately recognized the style he had been forced to adopt while
using Concurrent Paécal and that he had learned to dislike very much, It
sesme that most of the ill effects of one of the major shortcomings of Con-

current Pascal have been reintroduced with the boxes of the GREEN Language.

The second remark concerns its implications for Generic Program Units,
In the justification the authors write (RAT p.5-43) "Fortunately during the
same period of time another important question in the language design was |
discussed in detasil: the concept of generic. We had there a very good so-
lution for our practical problem.™ and (RAT p.5-44) "Notice, and it is fun-
damental, that these instantietions of the generic RW are wmade at compile
time, like all generic instantiations, and not at run time: we asre still
consistent with our first design decision.™ (i.e. the decision that the
degree of parallelism is settled at compile time). Well, that first degign
decision is defensible, and I can understand the‘deaignera enthusiasm. They
have failed to point out that the decision of the multipiicity is not
neceasarily only reflected in the number of declarations declaring an instance
but may have 'other consequences, &8s soon as an upper bound for the multiplicity
has to appeer as caompile time constant in other places, other definition modules

even!

According to the bduyant language used in the documents it must be a
pure jsy to recompile separate program components written in the GREEN Len-
guage. From my side of the Atlantic Ocean I can only express the fear that
special constraints incorporated in the GREEN Langusge will make such re-
compilations uncomfortably often necessary. The notion of compile time
constants is of course the villain in the piece ~~see EWD659 for more details—- ;
on account of the above observation I see very little justification %br the
hope that the obligstion to recompile will not frequently propagate all through
the system.

I trust others more cepable than myself of pointing out eloquently that
the pragmat will open Pandora's box, and that the ills esceping will naot be

cured by the comforting knowledge that & pragmat (”M p.6) is "termipated



EWD660 ~ 6

by the end of the line". I must, however, make one exception. I quote (RaT
p.5~45) "Simulation is entirely transparent in the language., When using the
pragmat SIMULATION, the system (sic) runs under simulated time: the real

time clock is implicitly replaced by the simulated time clock." How do the
gentlemen propose to perform a simulation in combination with real-time obli-
gations? They certainly know that such a combination is not unusual at all:

it ie the quintessence of computerized observation of external dynamic systems!
1 em ebsolutely st & loss if 1 try to understand how such a2 pregmat can be
hanestly proposed. I regerd this proposal &s a complete disqualification of

the suthors and, hence, of their proposal.

When I caeme down for dinner and my wife ssked me how things were, I

could only summarize: "Technical incompatence, probably enhanced by dishonesty."

Plstaanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow
The Netherlands I



