Team ldentification 142-48 EWD662 - O

On _the YELLOW Language submitted to the DoD.

Studying the Preliminary Design Phase Report and Language Specification
was not a pleasure: 1 found the documentation poorly written and chactic.
Sometimes the English is just wrong, as in "a record representation with two
alternate (sic) formats" (p.E-7; I refer the authors for instance to "The
Complete Plain Words"™ by Sir Ernest Gowers). Gometimes a remark is Jjust (p.F-B)
amszing, such as "The User Manmal will be based on the structure and content
{sic) of the language definition report". On what else could it be based! On
the Bible? It is often very carelessly written, such as in the sample of
"errors" that an implementation should detect {L-115); sometimes they state

the violation of a rule, sometimes the rule violated, end we find in succession:

"Illegal symbol.

Index type must be scalar."

a sloppiness I find intolerable for people claiming to design a language!

Another reason for finding the text unpleasant to read was that I found
the text written "down to the programmer" (is that a correct expression?). 1
mean the following. Every tool is always deéigned with a model or picture of
its users in mind -=in the éame way as every text is written with some type
of reader in mind-- . Trying to reconstruct from the yellow text the programmer
its authors have been aiming at, I --as a programmer—- find the text pretty
offensive, such as "The Language Definition Report can be used as a reference
by programmers, but most will find the User's Manual more helpful." {p.F-7)
or ".., did not compensate (sic) for the severe changes in programming style
that would result" (p.D—BO) or "in view of the intended audience for the
language [...] it would be too radical a step to entirely prohibit them" {p.D-24).
I very much doubt whether the attitude displayed is in accordance with the
"spirit of Ironman" —-if such & thing exists!-- in which 1 read an honest
effort to do justice to the intellectusl challenge presented by the programming
task. I found this shift towards greater recognition of the difficulty of
programming one of the more réfreshiné aspects of the Revised Ironman Require-
ments, and in this respect the YELLOW Language seems to set the clock back by

several years.,

Upan closer inspection I found all sorts of unclarities (as is, in view

of the above, only to be expectad). I had a few problems with the example

../transcriptions/EWD06xx/EWD662.html

EWD662 ~ 1

on the top of p.D-39, which defines the module template
TEMPLATE StackTemplate(i, R) .

My first problem was that in the remaining text the formal parameter R daoes

not occur. I have tried to remedy this by replacing (p.D—39, line + 6)

ARRAY(INTEGER[1..i] DF BOOLEAN);

by ARRAY(INTEGER[1..i] OF R); .
But this was not the end of my problems, for the text continues

"Within the scope of this declaration, the user requiring a stack of up to

100 INTs need only write
INSTANCE StackTemplate(100,INT)"

The last line quoted, however, does not contain a new identifier, and I am
at a loss when trying to see how the user can ever refer to the stack of

up to 100 INTs he has just acquired.

* *

My next complaint is a conditional one: it is under the proviso that I
have understood The Language Report caorrectly. (The text is so rambling that

1 am not sure....) From the sectien on Arrays I quote (p.L-28):

"Recall that the anly representational qualifier appropriate to scalars and
integers is range qualification; this range qualification specifies the bounds

of an array and is therefore properly included in its type."

Range qualification is not defined in The Language Report! The only

illumination of the notion is given in the form of a single example (p.L~20):
"For example,
INTEGER [5..9]

represents the range of integer values from 5 through 9."

Rppendix C (p.L-115) gives some more information: among "the errors’ that

a compiler for our language must detect" we find

"Low bound exceeds high bound."

EwDe62 - 2

The three quoted sentences strongly suggest to me that the YELLOW Language
requirgs that in the array declaration the low bound for each index does not
exceed its high bound, and that hence it is impossible to declare an empty
array! (This interpretation is subject to doubt. On the one hand we find the
quoted error among those "a compiler for our language must detect" and it is
not mentioned under the sample of traps and exceptions "for which compiled code
and runtime systems must provide” (p.L—116); on the other hand the text refers
to "Arré&s whose index ranges are determined only on entry to the scope of their

declaration" (p.F-12).)

Now the exclusion of the empty array is absolutely silly. Dne of the
great improvements of ALGOL 60 over FORTRAN at that time was that in FORTRAN's
D0 loop the repeatable statement had to be executed at least once, whereas in
ALGOL 60's for statement zero executions of the repeatahle statement was per-
missible. ALGDL 60 failed to introduce the same generality for arrays, but I
find it unbelievable to see that 18 years later that mistake is still faithfully
reproduced, and to see the empty set --500 years after the introduction of the
digit zerniin the Western world-- still treated as a second class citizen.
(For the pragmatists who are insensitive to the verdict of mathematical immaturity:
to eallow the empty array as well would have simplifjied the language and its

implementation, as it would have reduced the number of error messages by one.)

* *
*

In the section on Records (p.L—29) we read:

"The type of a record is determined by the types, modifiability sttributes,

and selectors of its components,"

0f course we must guess what is .meant by “"determined", but if I read it in the
usual fashion, I conclude that two records for which "the types, modifiability
attributes and selectors of its components" are the same, are thus of the

same type. This to my taste rather unescapable conclusion, however, is in
conflict with the text that follows "We now define when two declared objects
have the same type" (p.L~39). On p.L-41 the.variables H and I are

stated to be of different type, the quoted sentencé from p.L-29 would give
them the same type (unless a highly unusual meaning is given to the word

"determined").

EWD662 -~ 3

That whole introduction of types and representations strikes me as an
unresolved mess. The algorithm as given on pages L-39/40 is too complicated
and should already make one highly suspicious; the examples of p.L-41 fully
confirm this impression. It is totally unclear to me how the gentlemen pro-
pose to use this facility. We now have the possibility of introducing variables
of the same type but of different representations. MNow note that parameter
passing is explicitly controlled by types and not by representations? (Note,
for instance, (p.L—Gi, my underlining): "The REPLACES option, on the other
hand, applies if the existing definition for a particular type n-tuple is
to be made inapplicable in some scope." or, a few lines earlier: "extend a
routine to apply to a new n-tuple of argument jxggg".) So the single procedure
can get parameters of the same type but of different representations. How is
the procedure going to distinguish? Maybe I am miasing something, but I am

afreid that it won't wark.

I have more problems with the examples on p.L-41. What is the purpose
of the different types "Foot_Type" and "Inch _Type" and what are the consequences
of the type difference thus introduced? With A and B having Foot_Type
(not "FOOT_TYPE" as in the text) and F and G having Inch_Type, are we
allowed to write A+ F or A *F ? I don't know, because on pages L-49/50
the requirements on the operands are "same numeric type", and eventually
A, B, ¥, and G are all INTEGER. If these expressions are not allowed, the
language tries to introduce “"baby dimension analysis" which is a silly endeavour
(see EWD660); in this case it would be exceptionally silly, because the re-
sult of addition and multiplication is of the same numeric type, and in spite
of the very strong interpretation of "same numeric type" an expression like
A *A + B would be allowed, If expression like A + F and A ¥ F are allowed,
however, what was the purpose of introducing "Foot_Type" and "Inch_Type" in

the first place?

So here we are: they pretend to have made the YELLOW Language "strongly
typed" , but if you try to find out what is exactly meant by it, you discover
that their proposal is terribly ambiguous; and, whatever guess you make to

remove the ambiguity, you end up with something rather nonsensical.

In retrospect I am puzzled by the difference in weight they have given

to different fundamental requirements. Concerning the absence of side-effects

EWD662 -~ 4

they have gone further than Ironman -~I believe (p.D-33)-- but have thrown

awsy the child with the bathwater. On the prevention of aliesing they don't

seem to be very keen. They suggest that that is "only an academic nicety"
(p.D-29) and state --without source or other farms of support-- "it appears

that aliasing errors, while troublesome in theory, are extremely rare in practicse."
(p.D—29). (I think no one is worried by their frequency, but everyone should

be worried by the havoc they may create when they do oecur: the mere possibility
of an aliasing error could easily lead to the development of extremely expensive
debugging aids!) But they don't seem to care: on p.D-30 they refer to the
"untested benefits" and "the untested practical benefits" of alias checking.

This "easy" attitude towsrds alias checking is in strong contrast to the

vigour with which they have made their language "strongly typed". I am puzzled.
Did they do so in the belief that the latter requirement was easier to meet

in a meaningful way than the prevention of aliasing? I hardly dare to suppose

such touching innocence....

When 1 studied the BLUE Language I was very much amazed how its authors
ever could have made the mistake of introducing what they called "a manifest
expression”. In the YELLOW Language I encounter again the same idea with the
same term "manifest™. That cannot be an accident. Where has that term been

introduced? PL/I? Thet would explain a lot.

* *
*

I-quote (p.D-44):

"We decided that block structure of the program is semantically well defined,

does not conflict with efficient compilation, can easily be understood,[...]“.

The question, however, is whether the designers of the YELLOW Language have
understood it, in particular in combination with
1) the introduction of a new type at "scope entry time"

2) recursion,

It means for an implementation that the number of corexistent different types

is as unbounded as the depth of recursion. The authors' awareness of this cir-
cumstance is not what I would call manifest. (See the extremely loose usage

of the term "unique™ in (p.L-15) "The language is strongly typed: every expression
in & program has a unique type.)

* *

EWDE62 - 5

To ease the evaluation of their design, the authors themselves have al-
ready enumerated its virtues as gauged in terms of compliance with the Revised
Ironman Requirements, July 1977. If the scores mentioned (pages C-3/6) are
honest, they score high for self-satisfaction. Particularly the score they
gave their design for 1H. Formal Definition ~-viz. "Exact Compliance {with
capital C! EWD) with the requirement, by means of the mechanism specified"--

strikes me as hilarious.

An unsalvageable mess. I am full of sympathy for their consultants who

have been unable to prevent this,

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN _ Burroughs Research Fellow
The Netherlands

