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Proqram inversion.

Let the integer array p{0..M-1) be such that the sequence
p(O), p(1),..., p(M—1) represents a permutation of the numbers from O
through M-1 and let the integer array y{0..M-1) be such that
(Ai: 0<i<M: 0< y(i) < i) . Under those constraints we are inter-

ested in the relation
(A i: 0<i <M y(i) = (N j: 0<j<i:p(d) <pld)) ) (1)

(Leqenda: "(ﬂ j: 0<j <1 p(j) <Zp(i))“ should be read as "the number
of mutually different values j in the range 0 < j < i , such that
p(j) < p(i)".) ‘

We can now consider the two --solvable-- problems

A) Given p , assign to y & value such that (1) is satisfied.

H) Given y , essign to p a value such that (1) is satisfied.

Because we want to consider programs the execution af which may modify the

given erray, we rephrase:

A) Given p , assign to y a value such that (1) holds betwsen the
initisl value of p and the final value of y .
B) Given y , assign to p a value such that (1) holds between the

initial value of y and the final value of p .

If A +transforms p into a (standard) value which is its initial
value in B , and if B transforms y into a (standard) value which is
its initial value in A , then transformations A and B are inverse
transformations on the pair (p,y). We are interested in these inverse
transformations because in general problem A is regarded as easier than
B : we have solved problem B as soon as we have for A & reversible

solution!

OQur first effort,

Let the standard value for p be such that (A i: 0 <i <M: p(i) = i) .
From (1) we immediately deduce that a permutation af the wvalues p(O),...,,'

p(k-1) does not affect the values of y(i) for i >k . This suggests
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the computation of the values y(k) in the order of increasing k , each
time combining the computation of y(k) with a permutation of p(0),...,
p(k) » DBecause the final value of p should be sorted, we are led most

naturaelly to a bubble sort:

ki= O {p(O),...,p(k—1) is crdered}
o k £ M - "make p(0),.., p(k) ordered";
k:i= k + 1 {p(O),..., p(k—1) is nrdered}

od

The standard program for the bubble sort is
k:i= O;
do k # M= ji= k;

do j >0 gand p(j-1) > p(j) - prswap(j-1,j);

j:=j—1

od {here j = the value y(k) should get};
k::k+1
od {Ai: 0<i <M.

p(1) = i)

.

We initialize via y::(O) the array variable y as the empty array
with y.lob = 0 , each time extending it with a new value as soon as that
hag been computed. Becasuse k = y.dom would be an invariant, the variable

k can be eliminated.

Program Afl:
y:=(0); {y.dom = 0}
do y.dom # M- ji= y.dom {this is an initializatian}; {j = y.dom}
do j >0 gand p(j-1) > p(j) - prswap(j-1,j);
ji= i -1 {j <Iy.dom}
od; y:hiext(j) {i's velue is no longer relevant} {y.dom > 0}
od {A i: 0<i<mM: p(i) = i} ‘

Inverting it we construct

Program Bl:
p:=(0); do p.dom £ M - p:hiext(p.dom} pd; {A i: O <i <M: p(i) =i }
do y.dom £0 j,ythipop {this is an initializetion of j };

do j # y.dom - ji= j + 1; prswap(j-1,j) od

{j's value is no longer relevant}
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This inversion was easy because the post-condition of each repeatable
statement implies the negation of the stested precondition of the repetitive
construct as a whole; furthermore we have used thet y:hiext(j) and
Jyy:hipop are each other's inverse, that j:= j+ 1 and j:= j -1 are

each others inverse, and that p:swap(j—1,j) is ite own inverse.

We leave to the reader the insertion of provable assertions in pro-

gram Bl that would justify the derivation of A! from Bl by inversion.

OQur second effort.

We can also compute the values y(k) in the order of decreasing k ,
(Here it is as if our standard value of p is the empty array with p.lobh = 0
and the standard value of y is the empty erray with y.hib =M - 1 .) We
make three observations:
1) As soon as the y(i) for i >k have been computed, the p(i) for
i >k no longer matter, i.e. we can work with & single array, V(O..M-1)
say, where in A/B , in relatiun,(1) p refers to the initial/final value
of v, and y refers to the final/initial value of v .
2) Denoting with Q(k): "the sequence p(0), p{1),...,p{k} represents
a permutation of the numbers O,...,k"™ we can write Q(k) = y(k) = p(k).
3) Decreasing in the range 0 < i < k all p(i) such that p(i) >-p(k)
by 1 1leaves all y{(i) with O < i < k unaffected.

These observations lead to the following program (in which we can
view the elements v(i) with i < k as the corresponding elements of (a
changing) p and the v{i) with i > k as the corresponding elements of

a growing vy )

ki= M; {k =M and Q(k-1) and v = p}
do k £ 0 = ki=k - 1; {Q(k)}
‘ it= 05 do i # k = if v(i) > v(k) = vi(i)= v(i) - 1 {v(i) = v(k}}
I v(i) < v(k) — skip {v(i) < v(k)}
fi; d:=31 + 1

{i = x and Q(k-1)}

ID

od {k =0 and v = y}

In the alternative construct the postconditions have been added in order to
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ease the inversion:

Program B2:
k:= 0 {v = y};
do k # M~ iz= k;
doi#£0-ir=4i-1;
if v(i) > vlk) - ve{d)= v(3) +1
I v(i) < v(k) — skip
fi

The problems A and B I had invented for examination purposes.
After the students had handed in their work, it was W.H.J.Feijen who sug-
gested that it would be nice to derive the one program from the other via
inversion. Because in this case we have a deterministic program in which
no information is destroyed, the inversion is a straightforward process.
What remains of these techniques in the general situation remains to be
seen, Is it possible to show that a program with nondeterministic elements
leads to & unique answer because in its inverse no information is destroyed?
Who knows.... In the meantime I have derived a program --BZ to be precise--

that was new for me.

Plataanstraat 5 prof.dr.Edsger W.Dijkstira
5671 AL NUENEN BURROUGHS Research Fellow

The Netherlands



