Copyright Notice

The following manuscript
EWD 678: A story that starts with a very good computer
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 360-362 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

EWDET8 - O

A story that starts with a very good computer.

Once upon a time, a long time ago, an organization decided to get

a computation centre. The organization hired a manager to manage the com-
putation centre, and he was a very competent manager, for he hired a very
good computer to do the computing and a very good programmer to do the pro-
gramming. The manager's high quality was shown by his choice of computer:
knowing that in the work of his nrganization, sorting would play a very bhig
role, he selected the one and only computer on the market that had a very
fast, built-in sort instruction —-called "SORT"-- in its instruction code.
The manager's high gquality also manifested itself by the choice of the pro-
grammer, as will become clear in the sequel.

The machine was installed, and the main application program, in which
the instruction SORT occurred 77 times, was written and praved to be cor-
rect. The programmer could do so because for each of the instructions of
the order code -- SORT included-- the reference manual gave him the func-
tional specifications on which to base his correctness proof, The main
application program was put in operatiaon and everybody in the whole organi-
zation was instantanecusly happy.......until, after the first maonth of oper-
ation, the electrivity bill arrived! The bill was very high....

Suspicion, quite naturally, fell on the new computer and the manager
inspected its power consumption more closely. He discoversd that the SORT-
instruction was the culprit, and asked his programmer, whether he could
reduce the power consumption of his program. The programmer made a more
deteiled study of the power consumption of the SORT-instruction and dis-
covered that it rose steeply --more than quadratically, as a matter of
fact-- with the length of the array to be sorted. And as almost all his
77 calls of the GSORT-instruction were on rather long arrays, he under-
stood the height of the bill immediately, and also realized his only hope
for reducing the power consumption: shortening the length of the arrays
supplied to the SORT-instruction.

He decided to replace all 77 occurrences of the SORT-instruction
in his main application program by calls on a subroutine (still io be written)
that he modestly called "saveO", and in order that the correctness proof
of the main program would remain valid, he decided that the functional
specifications of save0 would be identical to those of SORT .

He thought for a long time how to construct the body of saveD .
He then came up with the following idea. If the array consists of less
than two elements, it is sorted by definition, and control can return im-
mediately. Otherwise, by (if necessary, Tepeatedly) swapping two values
when the larger was to the left of the smaller, he managed to rearrange and
divide the array in such a way, that the largest element in the left-hand
section did not exceed the smallest element in the right-hand section;
thereafter he gave two SORT-instructions , one for each section,

The programmer was very pleased by what he had done: the correctness
proof for the main application program remained automatically valid, his
only additional proof obligation had been to prove the correctness of the
bedy of save0 ~-but he had already some experience in proving the correct-
ness af programs using the S0RT-instruction and that helped-- ,

EWDET8 - 1

Also the manager was very pleased, for this minor program change --it
was hardly a "change": it was almost only an addition-- indeed had cut the
electricity bill by wore than a factor two! But improvement, like all novel-
ty, wears out, and after a few months the manager asked the programmer wheth-
er he could reduce the still high power consumption yet further. This time
the programmer said instantaneously "Oh yes.", for now he knew the trick:
he introduced & subroutine savel , the body of which was a copy of the
body of save0 , and thereafter replaced in the body of saveQ the two
occurrences of the SORT-instruction by calls an savel! . The programmer
was extremely pleased with himself, for this time he had reduced the power
consumption by & further factor of two, but had done so without any further
proof obligations!

The manager was also pleased, but only for a month or two. When he
asked his programmer again, whether he could reduce the power consumption
still further, the programmer, again, said immediately "Oh yes." but went
to his desk to do some sensible coding., He could have repeated the trick
by introducing a new subroutine save2 , etc.,, but by now he knew that, a
few months later, the manager would come agein, Besides that, he did not
like the prospect af filling more and more of the store with almost equal
copies of the same subroutine. He decided to map the texts of saveQ ,
savel , save2 etc. on the same general text --which he called saven--
at the expense of a global variable n --initialized in the main program

at zero-~ the value of which should indicate whether a call an saven
should act as saveD , save 1 , save2 etc. The body of saven was de-
~rived from the ones of save0 , save 1 , etc.: wupon entry, n was

increased by 1 , just before return, n was decreased by 1 , and the
internal calls on the next save or on SORT were replaced by

if n < N - saven ﬂ n =N - SORT fi _ (1)

and he satisfied his manager by setting the constant N =% , As he had
foreseen, a month later he was asked to reduce the power consumption still
further: he just increased N by 1 .

Having thus mechanized the optimization process that reduced the
power consumpticon, the programmer gladly increased N by 1 , every time
he was asked to reduce the power consumption, and that was about once a
month,

After a year or so, the manager discovered that, lately, his pro-
grammer's optimizations had become less and less effective. As he was a
very competent manager, he investigated the matter; in the course of his
investigations he discovered that the SORT-instruction ' was hardly invoked
at all! This discovery worried him, because for that SORT-instruction
his organization paid a lot of money: for a wuch lower rental price the
manufacturer offered a model without SORT-instruction , but otherwise
identical, The manager went to the programmer, telling him his observation
that the S5O0RT-instruction was hardly exercised: could the programmer a-
void its use completely? For then they could replace their expensive ma-
chine by the cheaper madel!

This time, the programmer had to think again. Looking at (1) ~~-the
only place left, where the OSORT-instruction still occurred-- he realized
that if n remained under an upper bound, he could choose N larger
than that upper bound, with the result that the second alternative of (1)
would never be selected! By inspecting his main application he could prove

EWDETB - 2

that N = 25 would be large enough, and he replaced (1) by

if n <25 — saven fi _ . (2)

Later he realized that, having proved that the guard would always
be true, he could simplify the program still further by replacing (2) just

b

y saven . (3)

Now he was completely happy: with the last simplification the cor~
rectness of his program was no longer dependent on the exact value of the
upper bound, but only on its existence. The machine was replaced by the

simpler model and the manager, toco, was happy ever after,

* *
*

The above fairy tale --like all fairy tales, for that matter-- has
been written for educational purposes. It deserves toc be remembered because
it is a schering thought tha%, upon instigation of his manager, a programmer
engaged on optimization could have discovered all this --with the exact
nature of the proof obligation included!-- long before mathematicians called
it Recurs:ion,

Plataanstraat 5 prof.dr.Edsger W,Dijkstra
5671 AL NUENEN BURROUGHS Research Fellow
The Netherlands

