EWD718 -~ O
EWD718.html

Asgembly conventiaons for the EDSAC.

In this note I shall give a survey of the assembly conventions as
developed for the EDSAC --later called "EDSAC 1"-- in order to subject them
to a later analysis. The choice of the EDSAC conventions bas been inspired

by three considerations:

1) they have been well-documented (if we mean by "well-documented":
fairly completely; by today's standards the book [1] is pretty unreadable!)
2) the EDSAC in Cambridge, England, was --and shall remain forever!-- the
world's first program controlled automatic digital computer (EDSAC standing
for Electronic Delay Storage Automatic Calculator)

3) the subtitle of [1] is: "With special reference to the EDSAC and the
use of a library of subroutines", and the second part of this subtitle ex-
plains why this machine deserves our special attention. In retrospect I
think it quite impressive that the group in Cambridge realized, right from
the start --note that this was in the late forties!-~ that there was no
point in designing and building a machine without designing a discipline

for its usage as well.

The store consists in principle of consecutively numbered locations of
17 bits --usually the text refers to "the address of a location™ but the term
"serial number of a location" is also used occasionally-~ . In the true von
Neumann style, such a 17-bit location contents admits two interpretations,

viz., that of a "short number™ and that of an "instruction™ or "order".

Historical aside. "A special feature of the EDSAC is the possibility

of combining any two consecutive storage locations (prnvided the first one
has an even serial number) into a single long storage location capable of
holding a number with 35 digits. [...] It is possible to accommodate 35
digits in a long storage location, and not 34 oanly, since in the ultra-
sonic store of the EDSAC the digits of successive numbers are stored end to
end and one digital position between each is left unused; when two storage
locations are combined this position can be used to contain an extra digit
(sometimes called the "sandwich" digit}." The existence of such leng loca-

tions explains the constraint for some subroutines that "the first order

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD718.html

EwWD718 ~ 1

must have an even address".

In the section "Input and output subroutines" ~-when dealing with the
input of long constants-- the sandwich digit is responsible for the paragraph:
"When a subroutine contains only one or two long constants, an alternative
to the use of an input subroutine [fnr the canversion from decimal to hinary
representatimn] is to put the constant in as two short numbers. A difficulty
arises, however, because there is an unused digit between each two short
numbers (the "sandwich digit"). The method can be used, therefore, to put
in a number which has a zero in the 17th position after the binary point.
This is not a serious limitation, since either the rumber itself or its
7 M (End of

complement is of this form unless it is an odd multiple of 2

historical aside.)

In store, each instruction occupies 17 bits, from left to right:
5 bits for the functional part
11 bits for the address part
1 bit for the indication short/long (for some instructions, such as the jump

instruction, not meaningful).

When stored, a subroutine always occupies a number of consecutive lo-
cations. Because an instruction of a subroutine may have to refer to one
of the words of the subroutine itself, the bit pattern representing the sub-
routine in store may depend on the actual place the bit pattern occupies in
store. Such reference to one of the own words of the subroutine arises
1) in internal jump instructions --used as a tool for the implementation
of alternative and repetitive constructs--
2) in the use of (numerical) constants occuring in the bit pattern
3) in the use of variables allocated within the bit pattern (independent
of the question whether these variable words are also interpreted as instruc-
tions or nDt)
4) in supplying in one of the registers of the arithmetic unit return
information: +the calling sequence of a (closed) subroutine contains an

instruction that places itself in a register.

Note. Ubserve that allocating variable information within the bit pattern

EwWD718 - 2

is not the enly cause for the need within a subroutine to refer to itself.

(End af nute.)

Note. If instructions could address relative to the current value of the
instruction counter or, better still, relative to the address of the first
order of the subroutine currently being executed --a convention that would
probably reguire a special register reserved for that purpose-- the bit

pattern repressnting a subroutine in store would no longer need to he de-

pendent on its position in store. (End of nnte.)

Besides being dependent on its own pasition in store, the bit pattern
representing a subroutine in store may also depend on the positions of other

subroutine or data areas the subroutine needs to refer to.

A1l that has been seid above about subroutines is also applicable to
the main program. The only potentially different role --about which more
later-- of the main praogram is that it need rot be placed in the subroutine

library.

By today's standards the store of the EDSAC was very small. In the
instruction format we have 11 bit availahle for the address part, the
machine was designed to have a store of 1024 short words only, and I am
not sure whether more than 512 short words have ever been built. (The more
mercury tanks, the more severe the technical problem of keeping them with

sufficient accuracy at the same temperature,)

As a result it was understood, right from the start, that the total
subroutine library would be many times largeﬁ‘than the total storage capacity
of the machine. As a result the subroutine library mugt contain for each
subroutine a representation that is independent of its actual pesiticn in

store, when actually used.

Each subroutine in the library was punched on a separate piece of
five-hole paper tape. On the tape each instruction again consisted of
function part and address part. The function part was represented by a

letter --supposedly of some mnemonic value-- , the address part was repre-

EwWD718 - 3

sented by a (decimal) integer, followed by a so-called "closing letter"; of
the 15 closing letters available, % had a constant meaning, the remaining
12 were available to control, which bit pattern would be derived from the
punched subroutine text, in which a different closing letter would be used

for each subroutine or data area referred to.

Because the control needed is purely additive, the following arrange-
ment works. During the reading of (a copy of) a library procedure each next
word to be stored is formed by building up (the binary representation of)
the instruction as represented by function letter and following decimal
integer, and hy then increasing the result by a "preset parameter" that
depends on the closing letter. On the final tape each copy of each library
subroutine is preceded by a series of "control combinations", defining for
each of the (variable) closing letters used in the following library sub-

routine the value of the corresponding.preset parameter,

Historical note, I guote section 6-2 "Storage of library subroutines." from

[1]. "Subroutines in the library are punched on colored tape so that they
can easily be distinguished from program tapes, which should be white.
Several copies of esach subroutine are provided and when not in use each copy
is rolled in a small cardboard box. The boxes are filed in serial order in
a steel cabinet. The master copy of each subroutine is kept under lock and
key and is used only when all existing copies of the subroutine are damaged.
The master tape is then used to prepare further copies by means of a dupli-
cator. All copies must be checked against the master, by means of a com-
parator, before being put into the library for general use." (End of his-

torical nota.)

The mechanisms sketched above are used in two ways. In the one way
the programmer decides explicitlyuthe complete storage layout of the final
program, i.e., the addresses of the first oéders of all subroutines and of
the first numbers of all data areas. In terms of these chosen addresses he
can formulate all the control combinations defining the preset parameters
and the main program. The authors add: "A few spare locations can, however,
be left between the subroutines if desired. This reduces the possibility

of error arising because of a miscalculation of the locations required hy

EWDT718 - 4

a subroutine and enables corrections involving a slight increase in length
to be made to a subroutine without renumbering. Such corrections aoften
must be made to subroutines which have been specially constructed for the

program.”

The other way is introduced as follows: "[In the examples shnwn] the
pragrammer has to decide where the master routine and each subroutine are
to go in the store and to insert the correct addresses in the orders in
the master routine which call in the subroutines. The object of an assembly
routine is to relieve the programmer of these and other mechanical tasks."
(In view of the modest size of the store, and hence of the largest program
that could be composed for the machine, thé argument in favour of the

assembly routine doesn't sound too cunvincing!)

Data areas are numbered in the cfder in which they occur at the be-
ginning of the tape; they are followed by master routine and the subroutines,
which are also numbered in the order in which they occur on the tape. Ref-
erences to subroutines or to data areas --sither in master routine or in
the control combinations defining the preset parameters-- are essentially
expressed in terms of these ordinal numbers. An assembly routine named "M1"
places these areas and routines consecutively in store, at the same time
filling in the starting addresses as they become known. The fifth note
deserves to be quoted: "If storage space is short, M! may be placed where

it will be overwritten by the last subroutine of the program."

Note. On the one hand it is a feat of ingenuity that the same input program
--the so-called "initial orders"-~ could be used with and without the assem-—
bly routine M1 . I also think it telling that the use of the assembly
routine M! was optional; not using the assembly routine saved a word
per routine and that may have been the reason. Another reason may have
been that, when all was said and told, the service provided by the assembly

routine wasn't that impressive. (End of note.)

EWDT718 - 5

Let us now try to analyze the EDSAC assembly conventions a bit further.
The purpose of this analysis is the isolation of its separate components and

a more clear understanding of their roles.

We begin by remarking that, when assembly routime M! is used, library
subroutines arfe referred to in four different ways
1} by their "library name", as in the catalogue --in the following is
shall use the term "library name" to refer to the name of a subroutine, viz.

the name it has in the library--

2) by a "closing letter", as on the library tapes
%) by their "ordinal number" as they appear on the final tape
4) by their "address of first instruction" in store.

All four --library names, closing letters, ordinal numbers and addresses
of first instructions-- can be represenfed by bit sequences and, as such, all
could occur on the final tape. The first question to be answered seems to
be: why do the library tapes refer to each other by means of closing letters,

and not by means of library names?

In the case of the EDSAC the answer is simple: the processing of a
library name, in particular the associated selection --of the contents of
the appropriate cardboard box from the steel cabinet-- was deemed beyond
automation and, hence, kept outside the machine. Hence na library names

on the final tape, hence the need for other nomenclature.

Because this answer is so simple, it might be instructive to think for
a moment about the situation in which such automatic selection of a standard
subroutine text, given its library name, would be possible, but only Mafter
a fashion"., With "after a fashion" I mean that such automatic selection,
though possible, is a most painful process: we may think abeout the whole
subroutine library --the contents of the steel cabinet, so to speak-- being
punched on one huge reel of paper tape. In that case the processing of a
library name is sufficiently painful to make it obvious that a major purpose

of the game is to represent the library subroutines selected in such a way

EWD718 - 6
that thereafter library names need not to be processed anymore.

As soon as we remember our target, i.e. the representation of the
selected library routines that is free of library names, it is clear that
our mosti attractive source is one in which the bulk is free of library
names. Well, this is exactly what the closing letters do for us: on the
huge reel we could have each subroutine body exactly as it is punched now
on the tape in the cardboard box, but preceded by the analogue of the can-
trol combinations for the preset parameters; on the huge reesl these con-
tral combinations would define the meaning of the closing letters that are

used in the subsequent body in terms of library names.

The closing letters appear as a local terminology --local to the tape
representation of the subroutine-- for reference to its environment, and we

are free to choose the mosi convenient terminology.

When members of a set are essentially identified by (an equal number
of) successive -integers, this is sometimes called "a closed nomenclature”.
Closed nomenclatures have the advantages of being compact and being easily
processed, viz. as subscripts in linear arrays, this in contrast to "open
nomenclatures", the processing of which reguires searching, hashing or
other "associative" techniques. (Names of people ——assumed to he all dif-
ferent-~ Yorm an open nomenclature: an arbitrary sequence of letters is
almost never the name of an existing person; telephone numbers in a town,
however, form an almost closed nomenclature. Quite wisely the telephone
exchange only accepts the closed nomenclature, leaving to us the searching

in the directory in erder to discover what to dial!)

Note. When elements of a set are identified by means of a closed
terminclogy, the membership test is trivial: +the number must be at least
equal to the lower bound and at most equal to the upper bound. The fact
that the cost of this test is independent of the size of the set has been
cleverly exploited in a number of surprisingly efficient graph-theoretical
algorithms designed in the 70's by R.E.Tarjan and others; the algorithms

could be arranged in such a way that all subsets to be considered would

EWD718 - 7

always contain consecutively numbered vertices., Run-time legitimacy tests
of addresses as encountered or generated during program execution form an-

other application. (End of note.)

The successive closing letters are no more than a coding for the
successive natural numbers: the local terminology in which the tape repre-
sentation of a subroutine refers to its enviromment is closed. The vital
importance of the local terminology per subroutine is not that it is closed
--that is only very nice-- but that it allows a representation that is in-
dependent aof the actual environment: the game representation of the bodies
is as meaningful an the huge reel of paper tape that contains the whole
library, as it is on the final tape that contains only the subroutines se-

lected.

Note. For the sake of completeness I should mention that in the EDSAC
assembly conventions the pratocol of the preset parameters and the clasing
lletters is not only used for the extraction of the "sublibrary" consisting
of the library subroutines actually used in the program: it also gives the
programmer the possibility of additional control. We may have two library
subroutines, B! and B2 say, semantically equivalent, but the one faster
and the other sharter. Another library routine may need either B! or 82,
and the choice can be left to its user, who can express his preference in

a preset parameter. (End of nDte.)

The dependence on the actual environment is concentrated in the defi-
nitions of the preset parameters. 0On the huge reel it had to be in terms
of library names, these forming the only terminolagy that covers the whole
library. But we wanted a final program tape free from library names, hence
a local terminology for the set of selected routines has to be introduced.
Having seen the advantages of a closed terminology, the introduction of the

"ordinal numbers on the final tape" is no longer a surprise.

In the final stage, i.e. during the input of the program, assembly
routine M1 allocates all routines and substitutes (or adds) "addresses of

firgt instructions™ all over the place, as required by the £EDSAC hardware

EWD718 - 8

that transmits the bits of the address part of the instruction under execu-—
tion directly to the selection register of the store (or to the instruction
counter if it is a jump instructinn). When ﬁD assembly routine is used,
this distribution of position dependent information all through the program
text takes place in two stages: the programmer, who composes the final
tape, distributes "addresses of first instructions" up to the preset para-
meters --thus bypassing the terminology of the ordinal numbers—-~ , and the
input program takes care of their final distribution, from the preset para-

meters into the bit patterns representing the subroutine bodies in store.

Nete that the final stage, as sketched in the previous paragraph,
whether done with M1 or without, combines two distinct elements we had
better distinguish between: +the routines are allocated and the outcome of
this allocatian decision is distributed all through the program text. Such
allocation decisions are in a very special way typical: +they are both ir-
relevant and unavoidable. When we design a library text, the number af in-
dependent references to the environment decides the number of preset para-
meters, and when we make it a rule to use them in order, this number deter-
mines which closing letters we are going to use. BHut with N independeni
references we can pair the closing letters and the objects referred to in
N! different ways! The way in which the routines get their ordinal number
an the final tape is equally arhitrary. And so is the allocation of store
regions to the different routines. Arbitrary, and therefore irrelevant, as
they are, yet those decisions have to be taken. (It does not suffice to
develop the theory that cellisions can be avoided if every verhicle keeps
the same side of the road: in practice a country has to choose between
"keep left" and "keep right",) 1t is very appropriate to leave such irrel-

vant but unavoidable decisions to the machine.

The distribution of the ocutcome of the allocation decisions all
through the program text is, however, a completely different matter. No
further decisions are taken, the only thing that happens is that the values

decided upon are copied in all sorts of places.

In the case of the EDSAC this duplication, all through the program

EWD7i8 - 9

text, of such allocation information was dictated by the structure of the
hardware, which was kept as simple as possible. We should, however, always
remember its consequence: information that has been duplicated all over
the place is very hard to change. As I hope to explain later, allocation
decisions are very aften typically the kind of decisions one would like to
revoke. Under those circumstances a machine structure that, for supposed
reasons of efficiency, forces agtensive duplication of information that,
for other reasons, one would like to keep volatile, can become a great

nuisance.

The supposed benefits of duplication are always easily expressed and
quantified: simpler hardware performing more instructions per second. The
ill effects of the ensuing loss of flexibility in machine usage are more
subtle and less easily quantified. They require more foresight than many a
machine designer has shown to possess; as a sad result the penalties of

operating system overhead can be impressive.

[1] Wilkes, Maurice V., Wheeler, David J, and Gill, Stanley, The
Preparation of Programs for an Electronic Digital Computer. (With special
reference to the EDSAC and the use of a library of subroutines.) Addisan-

Wesley Press, Inc., Cambridge, USA, 1951,

Plataanstraat 5 18th Octaber 1979
5671 AL Nuenen prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow

