EwD734 - O
EWD734.html

The superfluity of the general semaphaore.

Lonsider a set of sequential processeé that are mutually synchronized
by means of the operations V(s) and P(s) on a so=-called "general sema-
phore" s , thal is a semaphore that can take on any nonnegative value. We
shall show the derivation of a set of equivalent programs in which the sema-
phores used are binary, i.e. restricted to the values O and 1 . This is

done by replacing the operations P(s) and v(s) by the text fragments

ps" and "vs" respectively; they operate in a shared environment of integer

variables and binary semaphores.

In the following the reader is assumed to be familiar with EWD70% "A
tutorial on the split binary semaphore.". The soluticn to the above problem
can be viewed as a further demanstration of the applicability of the methods
of EWD703, as their straightforward application leads to the followinrg solu-

tian.

The shared environment consists of

integer bm (initially = the number of processes, which is assumed to be >>D)
integer bt (initially = 0)

the initial value of the general semaphore to he

integer s (initially
simulated)
1)
semaphore t (initially =0) .

semaphore m (initially

The program fragments are

ps: P(m); bm:= bm - 1; bt:= bt + 1; Q3
P(t); bt:=bt - 1; at=85 = 1; bmi=bm + 1; Q

vS: P(m); s:=85 + 1; §
with Q being short for

@: if s >0 and bt >0 - V(t) [bm >0 - v(m) fi

* *
*

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD734.html

EWD734 - 1

Next we have to investigate whether the alternative canstruct Q ,

with its guards as derived, can lead to abortion. On account of the invariant
bt + bm = number of processes (> Q)

the falsity of the second guard --i.e. bm = O-- implies
bt = number of processes (>’O) H

if also the first guard is to be false we must, therefore, have s =0 . In
other words, all processes have performed the prefix of ps and the "sema-
phore" s equals zerc. In the criginal set of seguential pracesses this
situation would correspond to deadlock. Under the assumption that the
original set of sequential processes is free from the danger of deadlock,

the danger of abortion in Q is absent.

Our next caoncern is the potential nondeterminacy of @ : when baoth
guards are true, do we really not care which of the two alternatives is
selected? I propose that we do care and wish to give absolute priority to
the first alternative because not doing so would have two consequences, both
of which I regard as unpleasant. Firstly, it could delay processes in the
middle of ps without any reason as far as the current value of s is con-
cerned, and from a strategic point of view that seems hardly attractive.
Secondly, the absence of such an unnecessary delay has been shown to have a
logical significance for the prevention of individual starvation when the
P- and V-operations have been implemented weakly --i.e, in a way that does
not exclude unbounded overtaking-- . Hence I propose to strengthen the

second guard of W0 with the negation of the first:

(5 =0 or bt = 0) and bm >0 - U(m) .

Note. The only effect of this way of strengthening a guard is the reduction
--in this case even the removal-- of nondeterminacy; it does not introduce

the danger of sbortion. (End of Note.)

I furthermore assume that we are not interested in deadlock detection
(by abortion or otherwise): if the danger of deadlock is present in the

original set of sequential processes, we allow exactly the same form of dead-

EWDT734 - 2

lock in our eguivalent programs. That means dropping the term bm > O

from the second guard. Thus our new (and last) Q0 becomes

Q: if s >0 and bt >0 - {s > 0 and bt > 0} v(+)
ls=0o0rbt=0-1{s=0 oz bt = 0} v(m)
fi
* % *

The last phase of our development is ane of (more or less) systematic
optimization. With our final R the value of bm is no longer relevant;
hence the statements modifying its value can be removed, and so can bm it-
self. Furthermore, by substituting 0 we may be able tao simplify its guards
differently in the different substitutions. This can be done by associating
an assertion with each component of the split binary semaphore. Such an
assertion can be taken as postcondition of the corresponding P-operation,
provided it is implied by the preconditions of all V-aperations on that com-
ponent (and for the component initialized at 1 also by the initial state).
In the following annotation we shall not repeat all the time the general in-

variant s > 0 and bt =0 .

~Applying this process to wvs we get (when using the precondition af

V(m) from the above Q)

Vel P(m) {5 =0 or bt = O};
si= s + 1 {s =1 or bt = 0};
if bt >0 - {5 =1 and bt > 0} v(t)
Ibt=0-{s=00zbt=20}v(m
fi

Note. For the simplificatian of the guards we have used the general invariant
s >0 . The precondition aof V(m) has been weakened fram bt = 0 +to

s =0o0r bt =0 , i.e. the original one. {End of Note.)

Applying the smame techniques to ps we get

EWD734 - 3

ps: P(m) {s =0 ozr bt = O};

fi;

P(t) {(s =1 and bt > 0) (

bti= bt - 1; s:=5 -1 {5 =0 or bt = O};
V(m)

Note. For the postcondition of P(t) we have chosen provigionally the dis-

junction of the preconditions af V(t) from vs and from ps , three lines
higher. 5ince the second Q from ps now reduces to V(m) , we are done!

(End of Nate.)

We can further shorten the texts
1) by moving the initial increases of 5 and bt into the alternatives
2) by moving the three statements following the alternative construct in
ps 1into both alternatives
3) by replacing in the first alternative of ps
"ot:= bt + 1; V(t); P(t); btr= bt - 1V
by a skip
4) by removing from the second alternative of ps the
"bt:= bt - 1; s:i= 85 - 1"
following the only P(t) left and inserting them in front of the anly
v{t) left
5) by replacing in the first alternative of vs
si= g5 + 1; bt:= bt - 1; sit=5 = 1"

by "bt:i= bt - 1",

The result of these five successive transformations is

ps: P(m);
if § >0 - s:=5 = 1 H § =0 = bt:= bt + 1; U(m); P{t) fi;

V(m)

EWDT34 - 4

Vst P(m);
if bt >0 - bti=bt - 1; V(t) [bt =0 > s:=s5+ 1; v(m) Ffi

We can shorten our texts still further by first introducing a redundant

variable k satisfying k = s bt

a relation that we can keep invariant by inserting into ps: ki= k =1
and into wvs: k:=k + 1 ., The values of the guards can then be derived from

k , and after removal of the then redundant s and bt we get
ps: P(m); ki= k - 1;
if k 20 - skip [k <0 — v(m); P(t) fi;

V(m)

Vs P(m); ki= k + 1;
if

k<0 = v(t) [k>0~ vim) fi

Acknowledgment. The presentation of the last transformation is the result of

a considerable improvement suggested by A.J.Martin. {End of Acknuwledgment.)

Concluding remarks. Firstly I would like to stress that our discovery of

the assertion to be associated with component t was just a stroke of luck.
If the last 0 of ps had not reduced to V(m) and the strongest precondi-
tion for the remaining V(t) would have failed to imply the assumed asser-
tion for component t , we would have been in trouble; the assertion has then
to be weakened. Apart fram this piece of luck, that part of the derivation

is entirely satisfactory.

I am less satisfied with the final transformations. They are trivial
and easily performed with pencil and rubber or with chalk and eraser. They
are, however, most laborious to record in written form. [leave to my reader
the choice where to put the blame: on the whole approach that calls for the

transformations or on the constraints of the written word. (End of Concluding

Remarks.)
Plataanstraat & 11 April 1980
5671 AL NUENEN prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow

