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Bn introductory essay on three algorithms for sorting in situ

This note is primarily an experiment in explanation. Without
sivina any detailed code , we have ktried to describe the main ideas
underlying a few related aljorithms. Our guiding principle has been
to confine ourselves to what the Careful Reader can be expected to
remember for the rest of his life. The incentive for choosing
this 3uidin3 principle came from EWD's observation — sampled
from international audiences- adding up to a thousand people —
that, 1} years after its publication, heapsort is known by only
4% of the Compui:inj Communikj. Heapsorl— beinj a very beautiful
algorithm, we thought this fiqure disappointingly low and inter -
preked it as an indication that something is still lacking in the
traditional style of presenting afjorikhms. In the following we try
to contribute (i:o the best of our abih’l:j) to the improvement of this

situation .

In more than one respect we are anxious to receive feedback
from you. As usual all technical or linguistic comments will be
most welcome, bul besides that we need your reaction to assislt us
in deciding whether (in some future version) this essay should be
submitted for publication . (Far instance , if it has enlightened

you or has given you some novel appreciation, we would like to

know.}
X X
X
Terminology . We define a chain to be a sequence of
elements (ha.vin3 jnbegzr mlues). Each element wi!:la Qa successor in

the chain is the father of that successor; each element wikth a
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predecessor in the chain is the son of that predecessor. The element
without father is called the root of the chain; the element without
son is called the leaf of the chain. (Coincidence of root and leaf
means the chain being a one-element chaén.) Offsgriqg is de-
fined recu.rsivelﬂ i the offspring of a leaf is empty, the offspring
of a father is its son t03el:her with that son's oFFsPrins. A chain
is descending means that each father has o value that is at least
the value of itsson . For an element e of the chain, the predi-

cate  dominant means that ho element of e's  offspring has

o value exceeda‘ng e's  value . (End of _re;-minologﬁ-)

We leave to the reader to convince himself that chain <
is descendinan can now be ealoressed b_lj
Po : (Qe. : e c: dominant e).

g ——

We are interested in mékinj a chain ¢ descendinj -~ ie.
establishing Po— without ckan_gi»g the bag of values owned by its
elements. The latter requirement will be met by the usual technigue:
values owned will only be changed Bj swapping element values . We
are particularly interested in this task when the chain ¢ has been
formed by prefixing an already descendinj chain with o further

element .
Since a.F&er prefixinj we can asserl
(@e: e in ¢: dominant e or e = rook of ¢ )

we introduce the relation
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Py : (ﬁe: ein c: dominant e or € = W)

-

which can be established bj the inilialization Wi rool oF c .

Relation P1 is of interest since we are allowed Fo conclude Fo from

”

Pi and ‘w has no son with a value larger than its own value

" "

Note. w has no son with a value fa.rger than its own value can oc-

Cur in a varieky of ways: w may have ho son at all (either by being
a leaf or by not occurring in ¢ ) or W may be a father , but of

a son whose value is small enough . (End of Nole.)
The program eska.lalishina Po s

W:= root °F C {Pif invaria.nf:}

cdo W has a son s with a value !a.rjer than its own value

7 —
7

— " Swap the values of elements w and s

[

; WiT S
od {PO}

Froof. TRelation Pi is invariant provided the swap establishes
(ﬂef einc: dominant €  or €= s).

For all elements e such that e#w and e¢+s , Pi im-
plies  (dominant e) ; since neither the bag of values owned by the
offspring of such an e nor €3 own value is changed by the

swap, (dominant e) still holds .
For e=w , we observe that prior o the swap s dominates
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its father w onaccount of the suo.rd and dominales its offspring
on account of (P and s # w) ; hence, alter the swap
(dominant e) holds . |

For e=s, e=s holds. (End of Roof.)

Inserl:ion Sort

The seguence m(c’.:,o-:-£< N) s in ascendins order means

that its elements form o descending chain in which
(Qes1ci<Nt mld) is the father of mli-9) ) .

We con apply the algorithm of the previous section by build.‘ng wp a
descending chain for the first n  elements of the sequence and in-

creasing n until  n=N . TThis leads to the following algorithm,

kmown as Insertion Sort .

‘[n:int; ni=1 {tlme chain defined by
(Bir1si4n: m(d) is thefa.lher of m(ﬂ-f))
is descendinj : Envariant}
;de ng N —
I[ w:int ; Wiz n
;do w>o cand mlw) < mlw-1)
—3 m:swap(w, w-1) 3y W= w-i
od j n:= h+1

1

1.
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In the best case , i.e. when sequence m is ascending to
start with , the above algorithm is of order N . 1In general 5 however,

it is of order N't (bol:h in number of Comparisons and in humber of SWQPS).

The operation “SIFL "

Ar attractive gcncmliza{ion of a chain is a rooted tree. Analo -

gouslj s o descending tree is one in which each element dominates its
entire of{‘sprinj. A descending tree enjoys the proPerbg that the maximum
value occurring in it can be found at its root ; the arra.njemenl: is at-
tractive since the average distance f{rom the root grows Ioga.ri“zmica”g
instead of linearly with the number of elements . This fact underlies

the existence of algorithms that are in general of order N-fog N instead
of of order N?.

The operation  sift establishes for a tree 1t
Pa: (@e: e in t: dominant e)
provided initially
Ps: (ﬂe= em t: dominant e  or e= root of ¢ )

holds. Situation Ps can , for instance, arise under the following
circumstances :

circumstance a:  the rool of a descending tree has been decreased ;
circumstance b: o little forest of descending trees and an additional

element have been formed into a single tree with the additiona} element
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as its root and the trees of the forest as its (Firsf.—genemtion) subtrees;
circumstance c:  {rom two descending trees a single tree has been formed
by 'sraf}inﬂ" one upon the other , ie. makina the root of the one an
additional son of the root of the other .

B tree satisfﬂfng ' Ps can be made to Satisf‘s Pz , ie. made
into a descending tree, Bﬂ appljins the a!goriékm of the previous sec-
tion alons a J'udiciouslj chosen chain starting at the root : the root
of the chain is the root of the tree , the successer of an element in the

chain is that element's la.rsesl son in the tree .

Roof.  For e an off -chain element of the tree,  dominant e
continues to hold since neither its own value nor the values owned by
its offspring have been changed . For e on the chain , we
sepa.mte|3 consider its offspring alonﬂ the chain and its off-chain
offspring : e dominales its _offsPring along the chain as before and
it therefore dominates its off-chain oFrsprinj because , due to the ju-
dicious choice , each element on the chain dominates its off-chain sons

(if amj). (End of pr-oof-)

“The great invention embodied by sift underlies the following

algoriﬂ\ms for sorting in situ ; they are worst-case of order N-log N.

Heapsort and smoothsart

“The main pattern of these algoril:hms is the maintenance of

Pa: (ﬂ:‘.,j:oshj and g4« N: m(d) < m(j))
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which vacuously holds for q:N and enjoys the useful property
that P4 and (q=1) allows us to conclude that sequence m

is GSCendinj. Relation P4 means that mli: qéi.(N) has its
final value and that the rest of the computation can be confined to
manipulaiing the so-called unsorted pref‘ix" m(i:o&ixq) . The
purpose of these manipulations is to ensure that the unsorted prefix
has its maximum element at ils rightmost position , so that q can
be decreased by 1  without violating P4 . If nol—l:inj is known
about the prefix one needs a scan of the entire unsorted prefix to
locate its maximum value , which then can be placed ot its right most
position . The ensuing algorithm is linear in the number of swaps ,
but quadratic in the number of comparisons . Neither swaps nor
comparisons wWould be needed were the prefix ascending ; this, however,
would be begging the question.  We conclude that for the construction of a
more efficient sorting algorithm we have to do something in between :
without corapletelj sorting it , we have to prepare —in one way or another—
the unsorted prefix so as to facilitate locating its maximum value . Tt's
here that the descending tree enters the picture: if the elements of the
unsorted prefix are the vertices of a descending tree with a known reot ,
we know where to {ind the maximum value . Two sweeib reasonable
choices {or the root of that descending tree present themselves : the leftmost
or the rightmost element of the unsorted prefix . The first choice leads
to heapsort , the secand one to  smoothsort . In both cases
sift is used Firstlﬂ For buildinj up the descending tree covering the
unsorted prefix of length N and secondly for its mainterance when

subseq'uenklj the lcn_cjth of the unsotled prefix shrinks teo 1

Note . The NI different possible computations can be arro.nged

in a binary tree with the first comparison as its reot and ; depending
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on how that comparison came out , the rest of each computation in the
one subtree or the other .  Each computation then corresponds to o
path from the root to a leaf and the average number of comparisens is equal
to the average distance of a leaf from the rast . This average distance is
minimal if the tree is as well-balanced as possible ,ie. with a minimal
difference between best- and worst -case behaviour as meeasured by the
number of comparisons . Heapsort approaches such behaviour ; which is
of order N-log N (thanks to Stirling s formula for N!). Smoothsort
is worst-case of ordet N-logN , but best case of order N , with a
smooth transition between the two .  From the above it follows that

smoothsort cequires on the average more camparisons than heapsort

(End of Note.)
% X

X

In heapsort the leftmost element of the unsorted prefix is
chosen as the root of the tree ; it is followed by the nodes of the first
generation , which are followed by the nodes of the second generation, etc.
(ﬂn example is a blnar_lj tree in which m(i) has m(2-i+1) and
m(2:i+2) as its sons .) In the final sorting phase , in which
q  has to be decreased from N 4o 1, the values of the first and
last element of the unsarted prefix are swapped so that the unsorted prefix
can shrink l:\j one element under invariance of P4 app(sing sift
to the root  m(0) restores ihe father - son inequalities in the unsort-
ed prefix (circumstance a). The final sorting phase is preceded by
the first phase in which the whole sequence is prepared to act as an un-
sorted prefix: to begin with s p is chosen high enough so that no
father with index 2P has a son with index <N =mf{i: psi< N)
can then be viewed as a forest of leaves— .  Then p is repeat-

edly decreased by 1 , each decrease being {ollowed by an application
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of sift to m(p) (circumstance b). “The number of trees in the
forest covering m(i:pgic N) evenl:ua“_lj decreases 3 when p=0
the forest has become one big tree and the final sorting phase can start.
Note that an initially increasing sequence is completely scrambled in the

first phase ; the second phase unscrambles it again.

Note.  For simplicitﬂ's sake , the unsorted prefix is usua”5 covered
by a binary tree . A ternary tree , however , leads to smaller
worst-case numbers of comparjsons and swaps . (End of Note.)

b 3 x
X

Ih smoothsort  the unsorted prefix is the postorder traversal of the
iree its elements are arranged in . (The postorder traversal of a tree is a
special permutation of its vertices , viz. the concatenation of the postorder
traversals of its ﬁrst-senem{:ion subtrees followed by its root ) As a
result its right most element dominates all the others and the unsorted
prefix can be shortened by one element without violation of Ps . In
contrast to heapsort's tree , which is pruned |=°F by |eaf, smookh-
sort’s tree is pruned in the second phase at its root: it becomes a
forest of as many trees as the removed root had sons . These trees are
binary ; except the leftmost one ; which may contain fathers with three
sons . By grafting —as many times as possible - the leftmost tree
upon the tree to the right of it 5 the forest is rebuilt into a tree ( sift
being applied in circumstance ¢) of which the shorlened prefix Is aga.in
the postorder traversal . As a result , no fathers with more than

three sons are introduced .

Qiternaﬁvelg we can -and shall do so in the seque[— view the
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unsorted prefix as the concatenation of the postorder traversals of one

or more binary trees such that , f‘irs!:lj s in each binary tree each father
dominates its offspring and , secondly , the rosts of the binary trees are
ascending in the order in which they occur. “The binary trees admitted

are the so-called lesnardo trees LT; : LT, and LI, both
consist of a single leaf , LT,,, has LT;,, asits left sub-
tcee and LT, as its right subtree . The concatenation is a so-
called standord concatenation , ie. it consists of the postorder travers-
al of the largest possible Lepna.rdo tree followed by the standard con-
catenation for the remainder of the unsorted prefix - Thus we achieve
that the unsorted prefix is covered by the minimum number of Leonardo
trees . (Leona.rdo trees have been preferred to perfectly balanced

binary trees because , on the average , 2§ % more trees are needed

for coverage by the Iatter.)

Os in  heapsort , smoothsort's second phase —in which
the sorted sequence is built up from the right = is preceded by a first
phase in which the unsorted prefix of length N (e covering the
whole 3eq'uence) is prepared .  In contrast to heapsort  this
preparation starts from the left ; q ~-in the first phase the length
of the prepared prefix— is initialized at 1 and repeatedly increased
by 1 antil q= N . The first phase’s main task is to see to it
that at each increase of q the binarﬂ trees covering the prefix are such
that each (binarg) father dominates its (binary) offspring . ( There
are two cases. If increasing q by 1 boils down to extending
the standard concatenation b5 a one-node Leonardo tree , this
obligation is cmpl:j 3 otherwise LT;,.” s LT, , and the new
element are combined into LTE.+:L , to whose root sift s

apf:iied (circums{.ance \:o) ) The {irst Phase's second ohliﬂa{:ion
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is to insert a 3raFI:in3 operation Ccircums’ca.nce c) each time a
Leonarde tree is {ormed thet will not subseq‘uenﬂﬂ be absorbed in a
larger Leonardo tree 5 as a result , at the end of the {irst phase

the roots are in ascending order .

In order to arrive at an algorithm of order N in the best case |
a stack records which Leonardo trees cover the unsorted prefix .
(Because each Leonardo tree occurs at mos;mien a standard concatenqg -
tion , a bit stack in fact suffices.) For the same reason the

number o{‘sms of a sinﬂle faﬂxgr had to be bounded .
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