Copyright Notice

The manuscript

EWD 817: An introduction to three algorithms for sorting in situ
was published as

Information Processing Letters 15, 3: 129-134, copyright © 1982.
It is reproduced here by permission of the publisher, Elsevier Science.

Single copies of the manuscript may be downloaded and printed for
the reader’s personal research and study.

http://www.elsevier.com/locate/ipl

Qvg Z /Ew"uj{ﬁ”-f

An dintroduction toc three algorithms for sorting in situ

Edsger W.Dijkstra and A.J.M. van Gasteren

Authors' addresses:

Edsger W.Dijkstra, Burroughs, Plataanstraat 5, 5671 AL NUENEN, the
Netherlands.

A.J.M, van Gasteren, Dept. of Mathematics and Computing Science, University

aof Technology, 5600 MB EINDHOVEN, the Netherlands.

Abstract. The purpose of this paper is to give a crisp intraduction to three
algorithms for sorting in situ, viz. insertion sort, heapsort, and smoothsort.
The more complicated the algorithm, the more elaborate the justification for the
design decisions embodied by it. In passing we offer a style for the presenta-

tion of nan-trivial algorithms that seems to have its merits,

* *
*

Introduction and terminology

The purpose of this paper is to introduce three algorithms for sorting in
situ, They are dealt with in a single paper so that the introductions can share
what they bhave in common; they are presented in the order of increasing complex-
ity. The rest of this section is devoted to the terminclogy that is used through-

out this paper and to a central subalgorithm,

We assume the reader to be familiar with the notion of a "seguence of ele-
ments" and with the corresponding notion of a "successor" or "predecessor" of an

element in the sequence,

We define a chain to be a finite, non-empty seguence of elements, each
having (or Gwning) an integer wvalue, [ach element with & successor in the chain

is called the father of that successor; each element with a predecessor in the

chain is called the sgn of that predecessor. The element without father is
called the rocot af the chain, the element without son is called the leaf of the
chain. (Eoincidence of root and leaf means the chain heing a one-element

Dhain.)

The offspring of an element is a recursively defined set cof elements: the
affspring of a leaf is empty, the offspring of a father is its son together with
that son's offspring., Element e0 drminates element el means that e0 has
a value that is at least the value owned by el ; element e dominates a set

of elements means that e dominates each member of that set.

For an element of a chain, the predicate strong means that the element
dominates its aoffspring; a chain is descending means that each father in the
chain dominates its son, and we legave to the reader to convince himgelf that

"chain ¢ is descending” is equivalent to

PO: (A e: e in c: strong e) .
We are interested in making a chain ¢ descending --i.e. in establishing
PO-- without changing the bag of values owned by its elements. The latter re-
quirement is met by the usual technigque: wvelues owned are changed only by
swapping element values. We are in particular interested in this task when

chain ¢ initially satisfies
P1: (ﬂ_e: e in c: strong e 0or e = rogt of c) .

{A chain ¢ satisfying P1 is, for instance, formed by changing the value
owned by the rcot of an initially descending chain or by extending an initially

descending chain at roct side by a further Element.)

In view of P! we introduce —-with the intention that it be maintained--
P2: (ﬁ_e: e in c: strong e gr e = w))

which ~—thanks to Pl-- can be established by the initialization w:= root of c
(Note thet variable w is not of type integer but of type element.) Relation

P2 ig of interest since we are allowed to conclude PO from

P2 and "w has no son it does not dominate" .

"w has no son it does not dominate" can occur in more than one way: w

Note.
may have no son at all or w may be a father, but of a son whose value is

small enough, (End of NDtE.)

The program establishing PQ is

{P1} wi:= root of o {PZ: invariant}
; do "w has a son s it does not deminate"

- "swap the values of w and s"; wi= s

ad {PO} .

Proof. The above program terminates since w:= s reduces the cardinality aof w's

offspring. furthermere relation P2 is invariant provided the swap establishes

(ﬁ e: & in c: strong e or e = s) .

For all elements e such that e # w and e # s , P2 implies (strong e);
since neither the bag of values owned by the offspring of such an & nor e's
own value is changed by the swap, (strong 8) still holds.

For e = w , we observe that prior to the swap s dominates its father w
on account of the guards and dominates its offepring on account of (P2 and s £ w);
hence, after the swap (Strang e) holds.

For e =s , e =5 holds, (End of Proof.)

The algorithms to be presented sort the integer array m(i: O < i< N)

inta ascending order.

Insertion sort

We consider relation P3 , given by

P3: the elements of m(i: 0<3 <In) with
(A i: 1 =i <n: m(i) is the father of m(i-1))

form a descending chain .

Relation P3 is of interest since it trivially holds for n =1 and enjoys
the property that (P3 and n = N) allows us to conclude that array m{i: O < i < N)
is in ascending order. We can apply the algorithm of the previous section, which

leads to the following algorithm, known as "insertion sart”,

|[n: int; ni= 1 {P3: invariant)
s don £ N -
|{ w: int; wi= n
; do w >0 cand m{w) < m{w=1)

- m:swap(w, w=1); wi= w - 1

1l

In the best case, i.e. iT array m is ascending to start with, the above
2 .
algorithm is of order N . In general, however, it is of order N (both in

number of comparisons and in number of swaps).

The operation "sift"

The notion of a chain, in which each father has exactly 1 son, can be
generalized by allowing fathers to have a number of sons. The resulting struc-
ture is well-known: it is known as a rooted tree. The definition of offspring
is generalized accordingly: the offspring of a leaf is empty, the offspring of

a father consists of its sons together with their offsprings. A descending tree

is defined as a rooted tree in which each element dominates its offspring.

A descending tree enjoys the property that its root dominates the entire
tree and, hence, owns a maximum value; the arrangement is attractive since the
average distance from the root grows logarithmically instead of linearly with
the number of elements. This fact underlies the existence of sorting algorithms

2
that are in general of arder N.log N instead of aof order N .

The operation sift establishes for a tree t relation P4 , given hy

P4 : (ﬂ_e: e in t: strong e)

provided initially PS5 holds, where

P5: (A e: e in t: strong e or e = root of t) .

Situation F5 can, for instance, arise under the fellawing circumstances:
circumstance a: the value owned by the root of a descending tree has been

changed;

circumstance b: a little forest of descending trees and an additional
element have been formed into a single tree with the additional element as its
root and the trees of the forest as its (first—generatinn) subtrees;

circumstance c: from two descending trees a single tree has bean formed
by "grafting" one upon the other, i.e. by declaring the root of the one an

additional son of the root of the other.

Given PS5 , operation sift establishes P4 , i.e. makes the tree descend-
ing, by applying the algorithm of our introduction along a judieiously chosen
chain starting at the root: +the root of the chain is the root of the tree, the
successor of an element in the chain is among that element's sons in the tree
one that dominates those sons. (CDnsequently the leaf of the chain is one of

the leaves of the tree.)

Proof. For e an off-chain element of the tree, (strong e) continues to hold
since neither its own value nor thp values of its offspring have been changed.

For e on the chain, we separately consider itg offspring on the chain and its
off-chain offspring: e dominates its offspring on the chain as before and it
therefore dominates its off-chain offspring because, due to the judicious choice,

gach element on the chain dominates its off-chain sons (if any). (End of Proof.)

The great invention embodied by sift underlies the following algorithms

for sorting in situ; they are worst-case of order N.log N .

Heapscrt and smoothsort

In their second phases these algorithms maintain P6 , where

P6: (A i, j: 0<i<j and g<j<HN:n(i)=<n(35) .,

which wvecuously holds for g = N and ernjoys the useful property that {P6 and q = 1)

allows us to canclude that array m is ascending. Relation P66 means that
m{i: qg<i < N} has its final value and that the rest of the computatian can
be confined to manipuldting the so-called "unsorted prefix" m(i: O <i<gq) .
The purpose of these manipulations is twu ensure that the "rightmost" element of
the unsorted prefix dominates the elements to the "left" of it, so that q can

be decreased by 1 without violating 96 . (For the elements of array m the

20

order of increasing subscript is referred toc as the order from "left" to "right".)

If nothing is known about the unsorted prefix, one needs a complete scan
of it to locate its maximum value, which then can be placed in its rightmest
position. The ensuing algorithm is linear in the number of swaps, but gquadratic
in the number of compariscrs. If the ursorted prefix is known to be ascending,
neither swaps nor comparisons are needed, but this would be begging the question,
The maral is that for a more efficient sorting algorithm we need something in
between: in order to facilitate the locetion of its maximum value, the unsorted
prefix has to satisfy some relstion, helpful to that purpose but less demanding
than being completely sorted. After a first phase, which establishes this rela-
tion for the entire array, the second phase maintains it for the shrinking un-

sorted prefix.

[t is here that the descending tree enters the picture: if the elements
of the unsorted prefix are the vertices cf a descending tree with a known roct,
we know where to find the maximum value. Two sweetly reasonable chouices for the
root of that descending tree present themselves: +the leftmost or the rightmost
element of the unsorted prefix. The first choice leads to heapsort, the second
one to smoothsort. In both cases sift is used in the first phase for building
up the descending tree covering the unsorted prefix of length N and in the

second phase --during which the length of the unsorted prefix shrinks to 1--

for its maintenance.

MNote. (TD avoid temporary confusion, we warn the reader that the binary tree
cccurring in this Note has nothing to do with the descending trees cccurring
outside it.) The N! distinct possible computations can be arrarged in a
binary tree with the first comparison as its roat and, depending on its cutcome,
the rest of each computation in the one subtree or the other. Each computation
then corresponds to a path from the root to a leaf and the average number of
comparisons is equal to ti. sverage distance of a leaf from the root. Because,
independently of its shape, this hinmary tree has N! leaves and, hence, N!-1
"comparison nodes", this average distance is minimal if the distances differ at
most 1 , i.e. if best— and worst-case hehaviour (as measured by the number of

comparisons) are as equal as possible. Heapsort approaches such a behaviour,

21

which (thanks to Stirling's formula for N!) is of order N,log N . Smoathsort
is worst-case of order N.log N , but best-case of order N y with a smooth
transition hetween the two. From the above it follows that smoothsort requires

on the average more comparisons than heapsort. (End cf Nnte.)

Heapsort

In heapsort the leftmost element af the unsorted prefix is chosen as the
root of the tree; it is followed by the nodes of the first generation, which are
followed by the nodes of the second generation, etc.. {(An example is a binary
tree in which m(i) has m(2.i+1) and m(2.i+2) as its sons.) In the second
phase, in which q is decreased from N +to 1 , the values of the leftmost
element and the rightmost element are swaoped so that the unsorted prefix can
shrink by one element under invariance of P& ; applying sift to the root

m(O) restores the father/snn inequalities in the unsorted prefix (circumstance a).

The first phase maintains that each m(i) with 1 > p dominates the sons
it has. This is initially established by choosing p sufficiently large: the
elements of m{i: p<i<N) can then be viewed as a forest of leaves. Then ©p
is repeatedly decreased hy 1 , each decrease being followed by an application
of sift to m(p) (in general circumstance h). The number of trees in the forest
covering m(i: p < i < N) eventually decreases; when p =0 , the forest has
become cne big tree and the second phase can start. Note that an initially in~
creasing erray is completely scrambled in the first phasé; the second phase

unscrambles it again.

Note. for simplicity's sake, the unsorted prefix is usually covered by a hinary
tree. A ternary tree, however, leads to smaller worst-case numbers of comparisons

and swaps. (End of Nute.)

Smoothsort

In smoothsort, the descending tree cavering the unscrted prefix during
the second phase is a sc-called "leftward tree", i.e. a tree in which each son
is situated to the left of its father. As a result, the rightmost element of
the unsorted prefix is the root of the tree and, nence, dominates all other ele-

ments of the upsorted prefix. Note that leftward trees are the only ones per-

22

missible under the constraint that smoothscrt leave an initially increasing
array unchanged all through the computation. This constraint is strongly

suggested by the aim that smoothsort ce best-case of order N .

Its rightmost element dominating all its others, the unsorted prefix can
be shortened by one element without violation of P& , and it is here that
smoothsort strongly deviates from heapsort. In the second phase, heapsort's
tree is pruned leaf by leaf, i.e. each time the unsorted prefix shrinks, the
set of father/son inequalities to be maintained is reduced by one. In smaooth-
sort's second phase, however, the tree is pruned at its root: it becomes a
forest of as many {descending) trees as the removed root had sons and this
forest has to be rebuilt into & single descending leftward tree by the intro-
duction of npew father/snn inequalities. (The obligation to keep track of the

changing shape of the tree has no analcgue in heapsort.)

The forest is rebuilt into a single descending leftward tree by (repeated-
ly) grafting the root of a tree of the forest upon such a root to the right of
it {sift being applied in circumstance c). For the sake of convenience and
controllable worst-case behaviour --note that gift is not of logarithmic time
complexity if the number of sons with the same father is unbounded-- in the
design of smoothsort it has been decided not to introduce fathers with more
than 3 sons. In view of the grafting this reguires that each father with
% sans has nothing but its own offspring to its left, which is most easily
achieved while keeping the unsorted prefix the tree's postorder traversal.
(The postorder traversal of a tree is a special permutation of its vertices,
viz. the concatenation of the postorder traversals of its first-generation

subtrees followed by its rDDt.)

The constraint on fathers with 3 sons, combined with the choice of a post-
order traversal, makes the unsorted prefix a concatenation of the postorder
traversals of descending binary trees whose roots have values that are ascending
in the order from left io right. The only design decision left is the choice

which binary ftrees to admit.

The bimary trees admitted are the so-called lLeonardo trees LT, : LTO
k3

and LT both consist &f a single leaf, LT, has LT, as its left subtree
1 i+2 i+1

23

and LT, as its right subtree. To minimize the numher of leonardo trees used,
1

the concatenation covering the urnsorted prefix starts at the left with the

postorder traversal of the largest possible Leanardo tree, and so for the re-

mainder. As a result, the unsorted prefix is covered by as few Leonardo trees

as possible. (Leunardo trees have been preferred to balanced binary trees
because, cn the average, 25 35 mare trees are needed for coverage by the
latter.)

When, in the second phase, the unsorted prefix shrinks, twoc cases are

distinguished. If it ended on LTO or LT1 , that cne-leaf Leonardo tree is

remaved and the values of the rocts of the remaining Leonardo trees are

5till ascending; 4if it ended on LT.
it+e 1

and LTi instead: in general, a three-tree forest has emerged and twice the

, after shrinking it ends an LT,+
1
left-most tree is grafted upon the root of the tree immediately to its right.

As in heapsort, smacthsort's second phase is preceded by a first phase in
which the unsorted prefix of length N (i.e. covering the whole array) is pre-
pared. In contrast to heapsort, this preparation starts from the left: the
length g of the prepared prefix is initiaslized at 1 and repeatedly increased

by 1 until g = N .

The first phase's main task is to see to it that after each increase of
g the Leonardo trees covering the prefix are descending. If the prefix ended
LT ded b LT
on ; Precede ¥ i1

new LT_+2 , to whose roaot sift is applied (circumstance b); otherwise a ane-node
i

, these trees and the new slement are absorbed in a

tree is added, which is descending by definition.

The first phase's second task is to see to it that eventuslly --i.e. when
g = N -- the roots of the lLeonardc trees have values that are ascending in the
order from left to right. To this purpase & grafting operation is inserted
(circumstance c) gach time the prepared prefix comes te end on the next Lecnardo

tree of the final coverage.

In order to arrive at an algerithm of arder N in the best case, a stack

records —=-in both phases--~ which Leonardo trees cover the prefix. {Because each

24

Leonardo tree occurs at most once in a coverage, a bit stack, in fact, suffices;

its maximum length is (log N)/(log(% +“%U%)) bits.)

Concluding remarks

The reader will have noticed that we have presented the three algorithms
in decreasing degrees of detail: for insertion sort the code has been given in
full, designing from ocur description a nice code for heapsort is pretty straight-
forward, but doing the same for smocothsort will probably reguire a few days. (In
the case of heapsort one has to design, for instance, a sift that nicely deals
with the rare situation of a father with & single sonj for smoothsort one has
to design, for instance, an efficient merge of the first phase's two tasks.)
We did =0 on purpuse: we wanted to give descriptions that, once well-understood,
can be remembered, In view of that goal we have omitted as much detail as we
thought permissible. We invite the reader tc accept that in smoothsort's case
so much detail has been omitted: evern by today's standards, smoothsort is a
fairly sophisticated algorithm., We have tried toc instruct the reader without

snowing him under; we hope we have succeeded.

Intentionally we have given the last two algorithms a less formal treatment
than the first ane, thus avoiding the introduction of the machinery needed for
the formal treatment of rocted trees. It should be possible to extrapolate what
that wachinery would lock like from our fairly formal treatment of the chain, a

treatment that has been included precisely for that reason.
Finally, in view of its anthropomorphism we have hesitated a long time
before adopting the father/son metapbar; by way of compensation we have can-

sistently referred to a father or a son as "it".

Acknowledgments

We owe our usual thanks to the members of the Tuesday Afternmcon Club. For

detailed comments on an earlier version we owe our special thanks to W.H.J.Feijen,

H.Meijer, C.5.5cholten, and W.M,Turski.

25

10

References

For insertion sort:
Wirth, Niklaus, "Algorithms + Data Structures = Programs",

Prentice-Hall, Inc., Englewood (1iffs, N.J., U.S.A. (1976)

For heapsort:
Williams, J.W.J., "Algorithm 232 HEAPSORT", C.A.C.M. 7, 6 {June 1964)
Pp. 347-348
Floyd, Robert W., "Algorithm 242 TREESORT 3", C.A.C.M. 7, 12 (Dec.
1964), p. 701

For smoothsort:
Dijkstra, Edsger W., "Smoothsort, an alternative for sorting in situ",

Science of Computer Programming 1 (1982) 223-233,

26

