EWD1243 - U

The next fifty years

When the idea to write about the next fifty years of computing first entered
my head, I wrote it off as utterly prepostercus: which sane scientist purports to
be able to see so far into the future? But then I realized that in a way that is
precisely what educators do all the time: when designing our courses, we do dare
to decide what to teach and what to ignore, and we do this for the benefit of people,
many of whom will still be active forty to fifty years from now. Clearly some vi-
sion of the next half century of computing science is operational. To this I should
add that it is all right if the crystal ball is too foggy to show much detail. Thirty-

five years ago, for instance, I had no inkling of how clesely program design and
proof design would come together, and in such a detailed sense my life had been
full of surprises. At the same time these surprises were developments I had been

waiting for, because I knew that programming had to be turned into an endeavour

amenable to séme sort of mathematical treatment, long before I knew what kind of

mathematics that would turn out to be. In other words, when building sand castléé

on the beach, we can ignore the waves but should watch the tide.

* *
*

Fortunately, there are a few things that we can learn from the past, for in-
stance that the rate at which society can absorb progress is strictly limited, a
circumstance that makes long-range prediction a lot easier. Earlier this decade I
was told of a great invention called "the register window"; my spokesman was very
young, but in my ears the invention sounded very familiar because I remembered
the Burroughs B5000 of 30 years before. So, if you have a bright and sounds idea
now, you can expect it to be hailed as a novelty around the year 2925;

Another thing we can learn from the past is the failure of characterizations
like "Computing Science is really nothing but X", where for "X" you may substitute
your favourite discipline, such as: numerical analysis, electrical engineering,
automata theory, gqueuing theory, lambda calculus, discrete mathematics or proof
theory. I mention this because of the current trend to eguate computing science

with constructive type theory or with category theory.

Computing's core challenge is how not to make a mess of it. If people object
that any science has to meet that challenge,we should give a double rebuttal.

Firstly, machines are so fast and storage capacities are so huge that we face orders



http://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1243.html

EWD1243 - 1

of magnitude more room for confusion, the propagation and diffusion of which are
easily inad;értently mechanized. Secondly, because we are dealing with artefacts,
all unmastered complexity is of our own making; there is no one else to blame and

so we had better learn how not to introduce the complexity in the first place.

The history of the real-time interrupt is in this connection illuminating.
It was invented for the purpose of facility processor sharing; its effect was the
introduction of nondeterminism and endless headaches for many an operating systems
designer. We have seen two reactions to it. For the purpose of debugging 0S/360,
IBM built special-purpose monitors that exactly recorded when the centrai_brocessor
honoured whiéﬁggngéfapﬁ:_when somgthing had gone wrong, the monitor could be turned
into a controller, thus forcing a replay of the suspect history and making the "ex-
periment" repeatable. The other reaction was to determine the conditions under
which one could feasibly and safely reason about nondeterministic programs, and
subsequently see to it that those conditions were met by both hardware and software.
05/360 was a mess forever after; the THE Multiprogramming System, in contrast, was
so robust, that no system malfunctioning ever gave rise to a spurious call for hard-
ware maintenance. Needless to say, the whole episode has made a lasting impression

aon me.

One moral is that the real-time interrupt was only the wave, whereas the tide
was the introduction of nondeterminism and of system invariants as a means of
coping with it. A wider moral is the constructive approach to the problem of program
correctness, to which we can now add te problem of system performance as well. Tt
is only too easy to design resource-sharing systems with such intertwined allocation
strategies that no amount of applied queuing theory will prevent most unpleasant
performance surprises from emerging. The designer that counts performance predict-
ability ameng his responsibilities tends to come up with designs that need no
queuing theory at all. A last, and this timegfgirly_recent, example is the design
of delay-insensitive circuitry, which delegates all timing difficulties in clocked
systems to the class of problems better avoided than solved. The moral is clear:
prevention is better than cure, in particular if the illness is unmastered complex-

ity, for which no cure exists,

- The above examples point ta a very general opportunity, in broad terms to be
described as designs such that both the final product and the design process reflect

a theory that suffices to provent a combinatorial explosion of complexity from



EwWbl243 - 2

creeping in There are many reasons to suppose that this opportunity will stay with
us for a very long time, and that is great for the future of computing science
because, all through history, simplifications have had a much greater long-range

scientific impact than individual feats of ingenuity.

The opportunity for simplification is very encouraging because, in all examples

that come to mind, the design process cost much less labour and led to a much

better final product than its intuitively conceived alternatives. Thé_world being
what it is, I also expect this opportunity to stay with us for decades to come.
Firstly, simplicity and elegance are unpopular because they require hard work and
discipline to achieve and education to be appreciated. Secondly we observe massive
investments in efforts that are heading in the opposite direction. I am thinking
about so-called design-aids such as circuit simulators, protocol verifiers, algorithm
animators, graphical aids for the hardware designer, and elaborate systems for ver-
sion control: by their suggestion of power, they rather invite than discourage com-
plexity. You cannot expect the hordes of peaople that have devoted a major part of

their professional lives to such efforts to react kindly to the suggestion that most

of these efforts have been misguided, and we can hardly expect a more sympathetic
ear from the granting agencies that have funded these efforts: too many people have
been involved and we know from past experience that what has been sufficiently ex-
pensive is automatically declared to have been a great success. Thirdly, the vision
that automatic computing should not be such a mess is obscured, over and over again,
by the advent of a monstrum that is subsequently forced upon the caomputing community
as a de facto standard (COBOL, FORTRAN, ADA, C++, software for desktop publishing,

you name it).

In short, the opportunity to simplify will remain with us for many years, and
I propose, in order to maintain our sanity and enthusiasm, that we welcome the long
duration of that opportunity, rather than to suffer from impatience each time the
practitioners deride and discard our next successful pilot project as a toy problem:
they will do so, even if you have achieved what, shortly before, they had confidently

predicted to be impossible

By now we all know that programming is as hard or as easy as proving, and that
if programming a procedure corresponds to proving a theorem, designing a digital
system corresponds to building a mathematical theory. The tasks are isomorphic.



EwD1243 - 3

We also know that, while from an operational point of view a program can be nothing
but an abstract symbol manipulator, the designer of a program had better regard the
program as a sophisticated formula. And we also know that there is only one trust-
worthy way for the design of sophisticated formulae, viz. derivation by means of
symbol manipulation. We have to let the symbols do the work, for that is the only
known techique that scales up. Computing and Computing Science unavoidably emerge
as an exercise in formal mathematics or, if you wish an acronym, as an exercise

in VLSAL (= Very Large Scale Application of Logic).

Because of the very close connection between program design and proof design,
any advance in program design has a direct potential impact on how general mathematics
is done. Since the time computing scientists have built compilers, they are very
used to the idea of mechanical manipulation of uninterpreted formulae, and I am
sure that they will significantly contribute to a further realization of Leiniz's
Dream of presenting calculation, i.e. the manipulation of uninterpreted formulae, as
an alternative to human reasoning. The challenge of turning that Dream into reality,

however, will certainly keep us busy for at least five decades.

It is not only that the design of an appropriate formasl, notational, and
conceptual practice is a formidable challenge that still has to be met; it is worse
because current traditions are hardly helpful. For instance, we know that the
transition from verbal reasoning to formal manipulation can be appreciated as nar-
rowing the bandwidth of communication and documentation, whereas in the name of
"ease of use" a lot of effort of the computing community is aimed at widening that
bandwidth. Also, we know that we can only use a system by virtue of our knowledge
of its properties, and, similarly, pay the greatest possible care to the choice of
concepts in terms of which we build up our theories: we know we have to keep it
crisp, disentangled, and simple ir we refuse to be crushed by the complexities of
our own making. But, obviously, the market pulls in the opposite direction. I
still remember finding a book on how to use "Wordperfect 5.0" of more than 850
pages, in fact a dozen pages more than my 1951 edition of Geord Joos, "Theoretical
Physics"! It is time tec unmask the computing community as a Secret Society of
the Creation and Preservation of Artificial Complexity. And then we have the
software engineers, who only mention formal methods in order to throw suspicion on
them. In short, we should not expect too much support for the computing community

at large. And from the mathematical community I have learned not to expect too much



EWD1243 - 4

support either, as informality is the hallmark of the Mathematical Guild, whose

members --like poor programmers-- derive their intellectual excitement from not

quite knowing what they are doing and prefer to be thrilled by the marvel of the
human mind (in particular their own ones).For them, the Dream of Leibniz is a

Nightmare. In summary, we are on our own,

But that dees not matter. In the next fifty years, Mathematics will emerge
as The Art and Science of Effective Formal Reasoning, and we shall derive our

intellectual excitement from learning How to Let the Symbols Do the Work.

Calculemus!

Edsger W.Dijkstra

(Note. The above is an adapted version of EWD1051.)

prof.dr.Edsger W.Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188

USA



