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11.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Given vectors a and b in Rm, find the component of b in the direction of a and the component of b orthogonal to a.

• Given a matrix A with linear independent columns, find the matrix that projects any given vector b onto the column space
A and the matrix that projects b onto the space orthogonal to the column space of A, which is also called the left null
space of A.

• Understand low rank approximation, projecting onto columns to create a rank-k approximation.

• Identify, apply, and prove simple properties of orthonormal vectors.

• Determine if a set of vectors is orthonormal.

• Transform a set of basis vectors into an orthonormal basis using Gram-Schmidt orthogonalization.

• Compute an orthonormal basis for the column space of A.

• Apply Gram-Schmidt orthogonalization to compute the QR factorization.

• Solve the Linear Least-Squares Problem via the QR Factorization.

• Make a change of basis.

• Be aware of the existence of the Singular Value Decomposition and that it provides the “best” rank-k approximation.
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11.2 Projecting a Vector onto a Subspace

11.2.1 Component in the Direction of ...

* View at edX
Consider the following picture:

Span({a}) = C ((a))

a

b

z = χa

w

Here, we have two vectors, a,b∈Rm. They exist in the plane defined by Span({a,b}) which is a two dimensional space (unless
a and b point in the same direction). From the picture, we can also see that b can be thought of as having a component z in the
direction of a and another component w that is orthogonal (perpendicular) to a. The component in the direction of a lies in the
Span({a}) = C ((a)) (here (a) denotes the matrix with only once column, a) while the component that is orthogonal to a lies in
Span({a})⊥. Thus,

b = z+w,

where

• z = χa with χ ∈ R; and

• aT w = 0.

Noting that w = b− z we find that
0 = aT w = aT (b− z) = aT (b−χa)

or, equivalently,
aT aχ = aT b.

We have seen this before. Recall that when you want to approximately solve Ax = b where b is not in C (A) via Linear
Least Squares, the “best” solution satisfies AT Ax = AT b. The equation that we just derived is the exact same, except that A
has one column: A = (a).

Then, provided a 6= 0,
χ = (aT a)−1(aT b).

Thus, the component of b in the direction of a is given by

u = χa = (aT a)−1(aT b)a = a(aT a)−1(aT b) =
[
a(aT a)−1aT ]b.
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Note that we were able to move a to the left of the equation because (aT a)−1 and aT b are both scalars. The component of b
orthogonal (perpendicular) to a is given by

w = b− z = b−
(
a(aT a)−1aT )b = Ib−

(
a(aT a)−1aT )b =

(
I−a(aT a)−1aT )b.

Summarizing:

z =
(
a(aT a)−1aT

)
b is the component of b in the direction of a; and

w =
(
I−a(aT a)−1aT

)
b is the component of b perpendicular (orthogonal) to a.

We say that, given vector a, the matrix that projects any given vector b onto the space spanned by a is given by

a(aT a)−1aT (=
1

aT a
aaT )

since a(aT a)−1aT b is the component of b in Span({a}). Notice that this is an outer product:

a (aT a)−1aT .︸ ︷︷ ︸
vT

We say that, given vector a, the matrix that projects any given vector b onto the space orthogonal to the space spanned by a is
given by

I−a(aT a)−1aT (= I− 1
aT a

aaT = I−avT ),

since
(
I−a(aT a)−1aT

)
b is the component of b in Span({a})⊥.

Notice that I− 1
aT a aaT = I−avT is a rank-1 update to the identity matrix.

Homework 11.2.1.1 Let a =

 1

0

 and Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and

Span({a})⊥, respectively. Compute

1. Pa(

 2

0

) =

2. P⊥a (

 2

0

) =

3. Pa(

 4

2

) =

4. P⊥a (

 4

2

) =

5. Draw a picture for each of the above.
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Homework 11.2.1.2 Let a =


1

1

0

 and Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and

Span({a})⊥, respectively. Compute

1. Pa(


0

1

1

) =

2. P⊥a (


0

1

1

) =

3. Pa(


0

0

1

) =

4. P⊥a (


0

0

1

) =

Homework 11.2.1.3 Let a,v,b ∈ Rm.
What is the approximate cost of computing (avT )b, obeying the order indicated by the parentheses?

• m2 +2m.

• 3m2.

• 2m2 +4m.

What is the approximate cost of computing (vT b)a, obeying the order indicated by the parentheses?

• m2 +2m.

• 3m.

• 2m2 +4m.

For computational efficiency, it is important to compute a(aT a)−1aT b according to order indicated by the following paren-
theses:

((aT a)−1(aT b))a.

Similarly, (I−a(aT a)−1aT )b should be computed as

b− (((aT a)−1(aT b))a).
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Homework 11.2.1.4 Given a,x ∈ Rm, let Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and
Span({a})⊥, respectively. Then which of the following are true:

1. Pa(a) = a. True/False

2. Pa(χa) = χa. True/False

3. P⊥a (χa) = 0 (the zero vector). True/False

4. Pa(Pa(x)) = Pa(x). True/False

5. P⊥a (P⊥a (x)) = P⊥a (x). True/False

6. Pa(P⊥a (x)) = 0 (the zero vector). True/False

(Hint: Draw yourself a picture.)

11.2.2 An Application: Rank-1 Approximation

* View at edX
Consider the picture

bj

βi, j

This picture can be thought of as a matrix B ∈ Rm×n where each element in the matrix encodes a pixel in the picture. The jth
column of B then encodes the jth column of pixels in the picture.

Now, let’s focus on the first few columns. Notice that there is a lot of similarity in those columns. This can be illustrated by
plotting the values in the column as a function of the element in the column:
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In the graph on the left, we plot βi, j, the value of the (i, j) pixel, for j = 0,1,2,3 in different colors. The picture on the right
highlights the columns for which we are doing this. The green line corresponds to j = 3 and you notice that it is starting to
deviate some for i near 250.

If we now instead look at columns j = 0,1,2,100, where the green line corresponds to j = 100, we see that that column in
the picture is dramatically different:

Changing this to plotting j = 100,101,102,103 and we notice a lot of similarity again:
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Now, let’s think about this from the point of view taking one vector, say the first column of B, b0, and projecting the other
columns onto the span of that column. What does this mean?

• Partition B into columns B =
(

b0 b1 · · · bn−1

)
.

• Pick a = b0.

• Focus on projecting b0 onto Span({a}):

a(aT a)−1aT b0 = a(aT a)−1aT a︸ ︷︷ ︸
Since b0 = a

= a.

Of course, this is what we expect when projecting a vector onto itself.

• Next, focus on projecting b1 onto Span({a}):
a(aT a)−1aT b1

since b1 is very close to b0.

• Do this for all columns, and create a picture with all of the projected vectors:(
a(aT a)−1aT b0 a(aT a)−1aT b1 a(aT a)−1aT b2 · · ·

)
• Now, remember that if T is some matrix, then

T B =
(

T b0 T b1 T b2 · · ·
)
.

If we let T = a(aT a)−1aT (the matrix that projects onto Span({a}), then

a(aT a)−1aT
(

b0 b1 b2 · · ·
)
= a(aT a)−1aT B.

• We can manipulate this further by recognizing that yT = (aT a)−1aT B can be computed as y = (aT a)−1BT a:

a(aT a)−1aT B = a ((aT a)−1BT a︸ ︷︷ ︸
y

)T = ayT

• We now recognize ayT as an outer product (a column vector times a row vector).
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• If we do this for our picture, we get the picture on the left:

Notice how it seems like each column is the same, except with some constant change in the gray-scale. The same is true
for rows. Why is this? If you focus on the left-most columns in the picture, they almost look correct (comparing to the
left-most columns in the picture on the right). Why is this?

• The benefit of the approximation on the left is that it can be described with two vectors: a and y (n+m floating point
numbers) while the original matrix on the right required an entire matrix (m×n floating point numbers).

• The disadvantage of the approximation on the left is that it is hard to recognize the original picture...

Homework 11.2.2.1 Let S and T be subspaces of Rm and S⊂ T.
dim(S)≤ dim(T).

Always/Sometimes/Never

Homework 11.2.2.2 Let u ∈ Rm and v ∈ Rn. Then the m×n matrix uvT has a rank of at most one.
True/False

Homework 11.2.2.3 Let u ∈ Rm and v ∈ Rn. Then uvT has rank equal to zero if
(Mark all correct answers.)

1. u = 0 (the zero vector in Rm).

2. v = 0 (the zero vector in Rn).

3. Never.

4. Always.

11.2.3 Projection onto a Subspace

No video this section

Next, consider the following picture:
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C (A)

b

z = Ax

w

What we have here are

• Matrix A ∈ Rm×n.

• The space spanned by the columns of A: C (A).

• A vector b ∈ Rm.

• Vector z, the component of b in C (A) which is also the vector in C (A) closest to the vector b. Since this vector is in the
column space of A, z = Ax for some vector x ∈ Rn.

• The vector w which is the component of b orthogonal to C (A).

The vectors b,z,w, all exist in the same planar subspace since b = z+w, which is the page on which these vectors are drawn in
the above picture.

Thus,
b = z+w,

where

• z = Ax with x ∈ Rn; and

• AT w = 0 since w is orthogonal to the column space of A and hence in N (AT ).

Noting that w = b− z we find that
0 = AT w = AT (b− z) = AT (b−Ax)

or, equivalently,
AT Ax = AT b.

This should look familiar!
Then, provided (AT A)−1 exists (which, we saw before happens when A has linearly independent columns),

x = (AT A)−1AT b.

Thus, the component of b in C (A) is given by
z = Ax = A(AT A)−1AT b

while the component of b orthogonal (perpendicular) to C (A) is given by

w = b− z = b−A(AT A)−1AT b = Ib−A(AT A)−1AT b =
(
I−A(AT A)−1AT )b.

Summarizing:

z = A(AT A)−1AT b

w =
(
I−A(AT A)−1AT )b.
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We say that, given matrix A with linearly independent columns, the matrix that projects a given vector b onto the column
space of A is given by

A(AT A)−1AT

since A(AT A)−1AT b is the component of b in C (A).

We say that, given matrix A with linearly independent columns, the matrix that projects a given vector b onto the space
orthogonal to the column space of A (which, recall, is the left null space of A) is given by

I−A(AT A)−1AT

since
(
I−A(AT A)−1AT

)
b is the component of b in C (A)⊥ = N (AT ).

Homework 11.2.3.1 Consider A =


1 1

1 −1

−2 4

 and b =


1

2

7

.

1. Find the projection of b onto the column space of A.

2. Split b into z+w where z is in the column space and w is perpendicular (orthogonal) to that space.

3. Which of the four subspaces (C(A), R(A), N (A), N (AT )) contains w?

For computational reasons, it is important to compute A(AT A)−1AT x according to order indicated by the following paren-
theses:

A[(AT A)−1[AT x]]

Similarly, (I−A(AT A)−1AT )x should be computed as

x− [A[(AT A)−1[AT x]]]

11.2.4 An Application: Rank-2 Approximation

* View at edX

Earlier, we took the first column as being representative of all columns of the picture. Looking at the picture, this is clearly
not the case. But what if we took two columns instead, say column j = 0 and j = n/2, and projected each of the columns onto
the subspace spanned by those two columns:
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b0 bn/2

• Partition B into columns B =
(

b0 b1 · · · bn−1

)
.

• Pick A =
(

a0 a1

)
=
(

b0 bn/2

)
.

• Focus on projecting b0 onto Span({a0,a1}) = C (A):

A(AT A)−1AT b0 = a = b0

because a is in C (A) and a is therefore the best vector in C (A).

• Next, focus on projecting b1 onto Span({a}):

A(AT A)−1AT b1 ≈ b1

since b1 is very close to a.

• Do this for all columns, and create a picture with all of the projected vectors:(
A(AT A)−1AT b0 A(AT A)−1AT b1 A(AT A)−1AT b2 · · ·

)
• Now, remember that if T is some matrix, then

T B =
(

T b0 T b1 T b2 · · ·
)
.

If we let T = A(AT A)−1AT (the matrix that projects onto C (A), then

A(AT A)−1AT
(

b0 b1 b2 · · ·
)
= A(AT A)−1AT B.
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• We can manipulate this by letting W = BT A(AT A)−1 so that

A (AT A)−1AT B︸ ︷︷ ︸
W T

= AW T .

Notice that A and W each have two columns.

• We now recognize AW T is the sum of two outer products:

AW T =
(

a0 a1

)(
w0 w1

)T
=
(

a0 a1

) wT
0

wT
1

= a0wT
0 +a1wT

1 .

It can be easily shown that this matrix has rank of at most two, which is why this would be called a rank-2 approximation
of B.

• If we do this for our picture, we get the picture on the left:

We are starting to see some more detail.

• We now have to store only a n×2 and m×2 matrix (A and W ).

11.2.5 An Application: Rank-k Approximation

* View at edX

Rank-k approximations

We can improve the approximations above by picking progressively more columns for A. The following progression of pictures
shows the improvement as more and more columns are used, where k indicates the number of columns:
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k = 1 k = 2

k = 10 k = 25

k = 50 original

Homework 11.2.5.1 Let U ∈ Rm×k and V ∈ Rn×k. Then the m×n matrix UV T has rank at most k.
True/False

* View at edX
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Homework 11.2.5.2 We discussed in this section that the projection of B onto the column space of A is given by
A(AT A)−1AT B. So, if we compute V = (AT A)−1AT B, then AV is an approximation to B that requires only m× k
matrix A and k×n matrix V .
To compute V , we can perform the following steps:

• Form C = AT A.

• Compute the LU factorization of C, overwriting C with the resulting L and U .

• Compute V = AT B.

• Solve LX =V , overwriting V with the solution matrix X .

• Solve UX =V , overwriting V with the solution matrix X .

• Compute the approximation of B as A ·V (A times V ). In practice, you would not compute this approximation,
but store A and V instead, which typically means less data is stored.

To experiments with this, download Week11.zip, place it in

LAFF-2.0xM -> Programming

and unzip it. Then examine the file Week11/CompressPicture.m, look for the comments on what operations
need to be inserted, and insert them. Execute the script in the Command Window and see how the picture in file
building.png is approximated. Play with the number of columns used to approximate. Find your own picture!
(It will have to be a black-and-white picture for what we discussed to work.
Notice that AT A is a symmetric matrix, and it can be shown to be symmetric positive definite under most cir-
cumstances (when A has linearly independent columns). This means that instead of the LU factorization, one can
use the Cholesky factorization (see the enrichment in Week 8). In Week11.zip you will also find a function for
computing the Cholesky factorization. Try to use it to perform the calculations.

11.3 Orthonormal Bases

11.3.1 The Unit Basis Vectors, Again

* View at edX
Recall the unit basis vectors in R3:

e0 =


1

0

0

 , e1 =


0

1

0

 and e2 =


0

0

1

 .

This set of vectors forms a basis for R3; they are linearly independent and any vector x ∈ R3 can be written as a linear
combination of these three vectors.

Now, the set

v0 =


1

0

0

 , v1 =


1

1

0

 and v2 =


1

1

1


is also a basis for R3, but is not nearly as nice:

• Two of the vectors are not of length one.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week11.zip
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/1
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• They are not orthogonal to each other.

There is something pleasing about a basis that is orthonormal. By this we mean that each vector in the basis is of length
one, and any pair of vectors is orthogonal to each other.

A question we are going to answer in the next few units is how to take a given basis for a subspace and create an orthonormal
basis from it.

Homework 11.3.1.1 Consider the vectors

v0 =


1

0

0

 , v1 =


1

1

0

 and v2 =


1

1

1


1. Compute

(a) vT
0 v1 =

(b) vT
0 v2 =

(c) vT
1 v2 =

2. These vectors are orthonormal. True/False

11.3.2 Orthonormal Vectors

* View at edX

Definition 11.1 Let q0,q1, . . . ,qk−1 ∈ Rm. Then these vectors are (mutually) orthonormal if for all 0≤ i, j < k :

qT
i q j =

 1 if i = j

0 otherwise.

Homework 11.3.2.1

1.

 cos(θ) −sin(θ)

sin(θ) cos(θ)

T  cos(θ) −sin(θ)

sin(θ) cos(θ)

=

2.

 cos(θ) sin(θ)

−sin(θ) cos(θ)

T  cos(θ) sin(θ)

−sin(θ) cos(θ)

=

3. The vectors

 −sin(θ)

cos(θ)

 ,

 cos(θ)

sin(θ)

 are orthonormal. True/False

4. The vectors

 sin(θ)

cos(θ)

 ,

 cos(θ)

−sin(θ)

 are orthonormal. True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
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Homework 11.3.2.2 Let q0,q1, . . . ,qk−1 ∈ Rm be a set of orthonormal vectors. Let

Q =
(

q0 q1 · · · qk−1

)
.

Then QT Q = I.
TRUE/FALSE

* View at edX

Homework 11.3.2.3 Let Q ∈ Rm×k (with k ≤ m) and QT Q = I. Partition

Q =
(

q0 q1 · · · qk−1

)
.

Then q0,q1, . . . ,qk−1 are orthonormal vectors.
TRUE/FALSE

* View at edX

* View at edX

Homework 11.3.2.4 Let q ∈ Rm be a unit vector (which means it has length one). Then the matrix that projects
vectors onto Span({q}) is given by qqT .

True/False

* View at edX

Homework 11.3.2.5 Let q∈Rm be a unit vector (which means it has length one). Let x∈Rm. Then the component
of x in the direction of q (in Span({q})) is given by qT xq.

True/False

* View at edX

Homework 11.3.2.6 Let Q ∈ Rm×n have orthonormal columns (which means QT Q = I). Then the matrix that
projects vectors onto the column space of Q, C (Q), is given by QQT .

True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
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Homework 11.3.2.7 Let Q ∈ Rm×n have orthonormal columns (which means QT Q = I). Then the matrix that
projects vectors onto the space orthogonal to the columns of Q, C (Q)⊥, is given by I−QQT .

True/False

* View at edX

11.3.3 Orthogonal Bases

* View at edX

* View at edX
The fundamental idea for this unit is that it is convenient for a basis to be orthonormal. The question is: how do we transform

a given set of basis vectors (e.g., the columns of a matrix A with linearly independent columns) into a set of orthonormal vectors
that form a basis for the same space? The process we will described is known as Gram-Schmidt orthogonalization (GS
orthogonalization).

The idea is very simple:

• Start with a set of n linearly independent vectors, a0,a1, . . . ,an−1 ∈ Rm.

• Take the first vector and make it of unit length:

q0 = a0/ ‖a0‖2︸ ︷︷ ︸
ρ0,0

,

where ρ0,0 = ‖a0‖2, the length of a0.

Notice that Span({a0}) = Span({q0}) since q0 is simply a scalar multiple of a0.

This gives us one orthonormal vector, q0.

• Take the second vector, a1, and compute its component orthogonal to q0:

a⊥1 = (I−q0qT
0 )a1 = a1−q0qT

0 a1 = a1− qT
0 a1︸︷︷︸

ρ0,1

q0.

• Take a⊥1 , the component of a1 orthogonal to q0, and make it of unit length:

q1 = a⊥1 / ‖a⊥1 ‖2︸ ︷︷ ︸
ρ1,1

,

We will see later that Span({a0,a1}) = Span({q0,q1}).

This gives us two orthonormal vectors, q0,q1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
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• Take the third vector, a2, and compute its component orthogonal to Q(2) =
(

q0 q1

)
(orthogonal to both q0 and q1

and hence Span({q0,q1}) = C (Q(2)):

a⊥2 = (I−Q(2)Q(2)T )a2︸ ︷︷ ︸
Projection

onto C (Q(2))⊥

= a2− Q(2)Q(2)T a2︸ ︷︷ ︸
Component

in C (Q(2))

= a2−
(

q0 q1

)(
q0 q1

)T
a2

= a2−
(

q0 q1

) qT
0

qT
1

a2 = a2−
(

q0 q1

) qT
0 a2

qT
1 a2


= a2−

(
qT

0 a2q0 +qT
1 a2q1

)
= a2− qT

0 a2q0︸ ︷︷ ︸
Component

in direction

of q0

− qT
1 a2q1.︸ ︷︷ ︸

Component

in direction

of q1

Notice:

– a2−qT
0 a2q0 equals the vector a2 with the component in the direction of q0 subtracted out.

– a2−qT
0 a2q0−qT

1 a2q1 equals the vector a2 with the components in the direction of q0 and q1 subtracted out.

– Thus, a⊥2 equals component of a2 that is orthogonal to both q0 and q1.

• Take a⊥2 , the component of a2 orthogonal to q0 and q1, and make it of unit length:

q2 = a⊥2 / ‖a⊥2 ‖2︸ ︷︷ ︸
ρ2,2

,

We will see later that Span({a0,a1,a2}) = Span({q0,q1,q2}).
This gives us three orthonormal vectors, q0,q1,q2.

• ( Continue repeating the process )

• Take vector ak, and compute its component orthogonal to Q(k) =
(

q0 q1 · · · qk−1

)
(orthogonal to all vectors

q0,q1, . . . ,qk−1 and hence Span({q0,q1, . . . ,qk−1}) = C (Q(k)):

a⊥k = (I−Q(k)Q(k)T )ak = ak−Q(k)Q(k)T ak = ak−
(

q0 q1 · · · qk−1

)(
q0 q1 · · · qk−1

)T
ak

= ak−
(

q0 q1 · · · qk−1

)


qT
0

qT
1
...

qT
k−1

ak = ak−
(

q0 q1 · · · qk−1

)


qT
0 ak

qT
1 ak
...

qT
k−1ak


= ak−qT

0 akq0−qT
1 akq1−·· ·qT

k−1akqk−1.

Notice:

– ak−qT
0 akq0 equals the vector ak with the component in the direction of q0 subtracted out.

– ak−qT
0 akq0−qT

1 akq1 equals the vector ak with the components in the direction of q0 and q1 subtracted out.

– ak−qT
0 akq0−qT

1 akq1−·· ·−qT
k−1akqk−1 equals the vector ak with the components in the direction of q0,q1, . . . ,qk−1

subtracted out.
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– Thus, a⊥k equals component of ak that is orthogonal to all vectors q j that have already been computed.

• Take a⊥k , the component of ak orthogonal to q0,q1, . . .qk−1, and make it of unit length:

qk = a⊥k / ‖a⊥k ‖2︸ ︷︷ ︸
ρk,k

,

We will see later that Span({a0,a1, . . . ,ak}) = Span({q0,q1, . . . ,qk}).

This gives us k+1 orthonormal vectors, q0,q1, . . . ,qk.

• Continue this process to compute q0,q1, . . . ,qn−1.

The following result is the whole point of the Gram-Schmidt process, namely to find an orthonormal basis for the span of a
given set of linearly independent vectors.

Theorem 11.2 Let a0,a1, . . . ,ak−1 ∈ Rm be linearly independent vectors and let q0,q1, . . . ,qk−1 ∈ Rm be the result of Gram-
Schmidt orthogonalization. Then Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1}).

The proof is a bit tricky (and in some sense stated in the material in this unit) so we do not give it here.

11.3.4 Orthogonal Bases (Alternative Explanation)

* View at edX
We now give an alternate explanation for Gram-Schmidt orthogonalization.
We are given linearly independent vectors a0,a1, . . . ,an−1 ∈Rm and would like to compute orthonormal vectors q0,q1, . . . ,qn−1 ∈

Rm such that Span({a0,a1, . . . ,an−1}) equals Span({q0,q1, . . . ,qn−1}).
Let’s put one more condition on the vectors qk: Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1}) for k = 0,1, . . . ,n. In

other words,

Span({a0}) = Span({q0})
Span({a0,a1}) = Span({q0,q1})

...
Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1})

...
Span({a0,a1, . . . ,an−1}) = Span({q0,q1, . . . ,qn−1})

Computing q0

Now, Span({a0}) = Span({q0}) means that a0 = ρ0,0q0 for some scalar ρ0,0. Since q0 has to be of length one, we can choose

ρ0,0 := ‖a0‖2

q0 := a0/ρ0,0.

Notice that q0 is not unique: we could have chosen ρ0,0 = −‖a0‖2 and q0 = a0/ρ0,0. This non-uniqueness is recurring in the
below discussion, and we will ignore it since we are merely interested in a single orthonormal basis.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/5
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Computing q1

Next, we note that Span({a0,a1}) = Span({q0,q1}) means that a1 = ρ0,1q0 +ρ1,1q1 for some scalars ρ0,1 and ρ1,1. We also
know that qT

0 q1 = 0 and qT
1 q1 = 1 since these vectors are orthonormal. Now

qT
0 a1 = qT

0 (ρ0,1q0 +ρ1,1q1) = qT
0 ρ0,1q0 +qT

0 ρ1,1q1 = ρ0,1 qT
0 q0︸︷︷︸
1

+ρ1,1 qT
0 q1︸︷︷︸
0

= ρ0,1

so that
ρ0,1 = qT

0 a1.

Once ρ0,1 has been computed, we can compute the component of a1 orthogonal to q0:

ρ1,1q1︸ ︷︷ ︸
a⊥1

= a1− qT
0 a1︸︷︷︸

ρ0,1

q0

after which a⊥1 = ρ1,1q1. Again, we can now compute ρ1,1 as the length of a⊥1 and normalize to compute q1:

ρ0,1 := qT
0 a1

a⊥1 := a1−ρ0,1q0

ρ1,1 := ‖a⊥1 ‖2

q1 := a⊥1 /ρ1,1.

Computing q2

We note that Span({a0,a1,a2}) = Span({q0,q1,q2}) means that a2 = ρ0,2q0 +ρ1,2q1 +ρ2,2q2 for some scalars ρ0,2, ρ1,2 and
ρ2,2. We also know that qT

0 q2 = 0, qT
1 q2 = 0 and qT

2 q2 = 1 since these vectors are orthonormal. Now

•

qT
0 a2 = qT

0 (ρ0,2q0 +ρ1,2q1 +ρ2,2q2) = ρ0,2 qT
0 q0︸︷︷︸
1

+ρ1,2 qT
0 q1︸︷︷︸
0

+ρ2,2 qT
0 q2︸︷︷︸
0

= ρ0,2

so that
ρ0,2 = qT

0 a2.

•

qT
1 a2 = qT

1 (ρ0,2q0 +ρ1,2q1 +ρ2,2q2) = ρ0,2 qT
1 q0︸︷︷︸
0

+ρ1,2 qT
1 q1︸︷︷︸
1

+ρ2,2 qT
1 q2︸︷︷︸
0

= ρ1,2

so that
ρ1,2 = qT

1 a2.

Once ρ0,2 and ρ1,2 have been computed, we can compute the component of a2 orthogonal to q0 and q1:

ρ2,2q2︸ ︷︷ ︸
a⊥2

= a2− qT
0 a2︸︷︷︸

ρ0,2

q0− qT
1 a2︸︷︷︸

ρ1,2

q1

after which a⊥2 = ρ2,2q2. Again, we can now compute ρ2,2 as the length of a⊥2 and normalize to compute q2:

ρ0,2 := qT
0 a2

ρ1,2 := qT
1 a2

a⊥2 := a2−ρ0,2q0−ρ1,2q1

ρ2,2 := ‖a⊥2 ‖2

q2 := a⊥2 /ρ2,2.
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Computing qk

Let’s generalize this: Span({a0,a1, . . . ,ak}) = Span({q0,q1, . . . ,qk}) means that

ak = ρ0,kq0 +ρ1,kq1 + · · ·+ρk−1,kqk−1 +ρk,kqk =
k−1

∑
j=0

ρ j,kq j +ρk,kqk

for some scalars ρ0,k,ρ1,k, . . . ,ρk,k. We also know that

qT
i q j =

 1 if i = j

0 otherwise.

Now, if p < k,

qT
p ak = qT

p

(
k−1

∑
j=0

ρ j,kq j +ρk,kqk

)
=

k−1

∑
j=0

ρ j,kqT
p q j +ρk,kqT

p qk = ρp,kqT
p qp = ρp,k

so that

ρp,k = qT
p ak.

Once the scalars ρp,k have been computed, we can compute the component of ak orthogonal to q0, . . . ,qk−1:

ρk,kqk︸ ︷︷ ︸
a⊥k

= ak−
k−1

∑
j=0

qT
j ak︸︷︷︸

ρ j,k

q j

after which a⊥k = ρk,kqk. Once again, we can now compute ρk,k as the length of a⊥k and normalize to compute qk:

ρ0,k := qT
0 ak

...
ρk−1,k := qT

k−1ak

a⊥k := ak−
k−1

∑
j=0

ρ j,kq j

ρk,k := ‖a⊥k ‖2

qk := a⊥k /ρk,k.

An algorithm

The above discussion yields an algorithm for Gram-Schmidt orthogonalization, computing q0, . . . ,qn−1 (and all the ρi, j’s as a
side product). This is not a FLAME algorithm so it may take longer to comprehend:
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for k = 0, . . . ,n−1

for p = 0, . . . ,k−1
ρp,k := qT

p ak
endfor

}


ρ0,k

ρ1,k
...

ρk−1,k

=


qT

0 ak

qT
1 ak
...

qT
k−1ak

=


qT

0

qT
1
...

qT
k−1

ak =
(

q0 q1 · · · qk−1

)T
ak

a⊥k := ak
for j = 0, . . . ,k−1

a⊥k := a⊥k −ρ j,kq j
endfor

 a⊥k = ak−∑
k−1
j=0 ρ j,kq j = ak−

(
q0 q1 · · · qk−1

)


ρ0,k

ρ1,k
...

ρk−1,k


ρk,k := ‖a⊥k ‖2
qk := a⊥k /ρk,k

}
Normalize a⊥k to be of length one.

endfor

Homework 11.3.4.1 Consider A =


1 0

0 1

1 1

 Compute an orthonormal basis for C (A).

Homework 11.3.4.2 Consider A =


1 −1 0

1 0 1

1 1 2

. Compute an orthonormal basis for C (A).

Homework 11.3.4.3 Consider A =


1 1

1 −1

−2 4

. Compute an orthonormal basis for C (A).

11.3.5 The QR Factorization

* View at edX
Given linearly independent vectors a0,a1, . . . ,an−1 ∈ Rm, the last unit computed the orthonormal basis q0,q1, . . . ,qn−1

such that Span({a1,a2, . . . ,an−1}) equals Span({q1,q2, . . . ,qn−1}). As a side product, the scalars ρi, j = qT
i a j were com-

puted, for i ≤ j. We now show that in the process we computed what’s known as the QR factorization of the matrix
A =

(
a0 a1 · · · an−1

)
:

(
a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/6
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Notice that QT Q = I (since its columns are orthonormal) and R is upper triangular.
In the last unit, we noticed that

a0 = ρ0,0q0

a1 = ρ0,1q0 + ρ1,1q1
...

...
...

...
...

an−1 = ρ0,n−1q0 + ρ1,n−1q1 + · · · + ρn−1,n−1qn−1

If we write the vectors on the left of the equal signs as the columns of a matrix, and do the same for the vectors on the right of
the equal signs, we get(

a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

ρ0,0q0 ρ0,1q0 +ρ1,1q1 · · · ρ0,n−1q0 +ρ1,n−1q1 + · · ·+ρn−1,n−1qn−1

)

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

.

Bingo, we have shown how Gram-Schmidt orthogonalization computes the QR factorization of a matrix A.

Homework 11.3.5.1 Consider A =


1 0

0 1

1 1

.

• Compute the QR factorization of this matrix.

(Hint: Look at Homework 11.3.4.1)

• Check that QR = A.

Homework 11.3.5.2 Considerx !m

A =


1 1

1 −1

−2 4

. Compute the QR factorization of this matrix.

(Hint: Look at Homework 11.3.4.3)
Check that A = QR.

11.3.6 Solving the Linear Least-Squares Problem via QR Factorization

* View at edX
Now, let’s look at how to use the QR factorization to solve Ax≈ b when b is not in the column space of A but A has linearly

independent columns. We know that the linear least-squares solution is given by

x = (AT A)−1AT b.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/7
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Now A = QR where QT Q = I. Then

x = (AT A)−1AT b = (( QR︸︷︷︸
A

)T ( QR︸︷︷︸
A

))−1( QR︸︷︷︸
A

)T b

= (RT QT Q︸︷︷︸
I

R)−1RT QT b = (RT R)−1RT QT b = R−1 R−T RT︸ ︷︷ ︸
I

QT b

= R−1QT b.

Thus, the linear least-square solution, x, for Ax≈ b when A has linearly independent columns solves Rx = QT b.

Homework 11.3.6.1 In Homework 11.3.4.1 you were asked to consider A =


1 0

0 1

1 1

 and compute an or-

thonormal basis for C (A).
In Homework 11.3.5.1 you were then asked to compute the QR factorization of that matrix. Of course, you
could/should have used the results from Homework 11.3.4.1 to save yourself calculations. The result was the
following factorization A = QR:

1 0

0 1

1 1

=

 1√
2


1

0

1

 √
2√
3


− 1

2

1
1
2



 √2 1√

2

0
√

6
2


Now, compute the “best” solution (in the linear least-squares sense), x̂, to

1 0

0 1

1 1


 χ0

χ1

=


1

1

0

 .

(This is the same problem as in Homework 10.4.2.1.)

• u = QT b =

• The solution to Rx̂ = u is x̂ =

11.3.7 The QR Factorization (Again)

* View at edX
We now give an explanation of how to compute the QR factorization that yields an algorithm in FLAME notation.
We wish to compute A = QR where A,Q ∈ Rm×n and R ∈ Rn×n. Here QT Q = I and R is upper triangular. Let’s partition

these matrices:

A =
(

A0 a1 A2

)
, Q =

(
Q0 q1 Q2

)
, and


R00 r01 R02

0 ρ11 rT
12

0 0 R22

 ,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/8
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where A0,Q0 ∈ Rm×k and R00 ∈ Rk×k. Now, A = QR means that

(
A0 a1 A2

)
=
(

Q0 q1 Q2

)
R00 r01 R02

0 ρ11 rT
12

0 0 R22



so that

(
A0 a1 A2

)
=
(

Q0R00 Q0r01 +ρ11q1 Q0R02 +q1rT
12 +Q2R22

)
.

Now, assume that Q0 and R00 have already been computed so that A0 = Q0R00. Let’s focus on how to compute the next column

of Q, q1, and the next column of R,

 r01

ρ11

:

a1 = Q0r01 +ρ11q1

implies that

QT
0 a1 = QT

0 (Q0r01 +ρ11q1) = QT
0 Q0︸ ︷︷ ︸
I

r01 +ρ11 QT
0 q1︸ ︷︷ ︸
0

= r01,

since QT
0 Q0 = I (the columns of Q0 are orthonormal) and QT

0 q1 = 0 (q1 is orthogonal to all the columns of Q0). So, we can
compute r01 as

r01 := QT
0 a1.

Now we can compute a⊥1 , the component of a1 orthogonal to the columns of Q0:

a⊥1 := a1−Q0r01

= a1−Q0QT
0 a1

= (I−Q0QT
0 )a1, the component of a1 orthogonal to C (Q0).

Rearranging a1 = Q0r01 +ρ11q1 yields ρ11q1 = a1−Q0r01 = a⊥1 . Now, q1 is simply the vector of length one in the direction of
a⊥1 . Hence we can choose

ρ11 := ‖a⊥1 ‖2

q1 := a⊥1 /ρ11.

All of these observations are summarized in the algorithm in Figure 11.1
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Algorithm: [Q,R] := QR(A,Q,R)

Partition A→
(

AL AR

)
, Q→

(
QL QR

)
, R→

 RT L RT R

RBL RBR


where AL and QL have 0 columns, RT L

is 0×0
while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

QL QR

)
→
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


r01 := QT

0 a1

a⊥1 := a1−Q0r01

ρ11 := ‖a⊥1 ‖2

q1 = a⊥1 /ρ11

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

QL QR

)
←
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


endwhile

Figure 11.1: QR facorization via Gram-Schmidt orthogonalization.

Homework 11.3.7.1 Implement the algorithm for computing the QR factorization of a matrix in Figure 11.1

[ Q out, R out ] = QR unb( A, Q, R )

where A and Q are m×n matrices and R is an n×n matrix. You will want to use the routines laff gemv, laff norm,
and laff invscal. (Alternatively, use native MATLAB operations.) Store the routine in

LAFF-2.0xM -> Programming -> Week11 -> QR unb.m

Test the routine with

A = [ 1 -1 2
2 1 -3
-1 3 2
0 -2 -1 ];

Q = zeros( 4, 3 );
R = zeros( 3, 3 );
[ Q_out, R_out ] = QR_unb( A, Q, R );

Next, see if A = QR:

A - Q_out * R_out

This should equal, approximately, the zero matrix. Check if Q has mutually orthogonal columns:

Q_out’ * Q_out

This should equal, approximately, the identity matrix.
Finally, repeat the above, but with matrix

epsilon = 1e-8

A = [ 1 1 1
epsilon 0 0

0 epsilon 0
0 0 epsilon ]

Q = zeros( 4, 3 );
R = zeros( 4, 3 );
[ Q_out, R_out ] = QR_unb( A, Q, R );

Again, check if A = QR and if Q has mutually orthogonal columns. To understand what went wrong, you may
want to read Robert’s notes for his graduate class. For details, see the enrichment for this week.



11.4. Change of Basis 411

11.4 Change of Basis

11.4.1 The Unit Basis Vectors, One More Time

* View at edX
Once again, recall the unit basis vectors in R2:

e0 =

 1

0

 , e1 =

 0

1

 .

Now,  4

2

= 4

 1

0

+2

 0

1


by which we illustrate the fact that

 1

0

 and

 0

1

 form a basis for R2 and the vector

 4

2

 can then be written as a

linear combination of these basis vectors, with coefficients 4 and 2. We can illustrate this with

(
1

0

)

(
0

1

)

(
4

2

)
= 4

(
1

0

)
+2

(
0

1

)

4

(
1

0

)

2
(

0

1

)

11.4.2 Change of Basis

* View at edX
Similar to the example from the last unit, we could have created an alternate coordinate system with basis vectors

q0 =

√
2

2

 1

1

=

 √
2

2√
2

2

 , q1 =

√
2

2

 −1

1

=

 −√2
2√
2

2

 .

What are the coefficients for the linear combination of these two vectors (q0 and q1) that produce the vector

 4

2

? First let’s

look at a few exercises demonstrating how special these vectors that we’ve chosen are.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/828ffd97bc274836a555cbfdf8a8256a/1
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Homework 11.4.2.1 The vectors

q0 =

√
2

2

 1

1

=

 √
2

2√
2

2

 , q1 =

√
2

2

 −1

1

=

 −√2
2√
2

2

 .

are mutually orthonormal.
True/False

Homework 11.4.2.2 If Q ∈ Rn×n has mutually orthonormal columns then which of the following are true:

1. QT Q = I True/False

2. QQT = I True/False

3. QQ−1 = I True/False

4. Q−1 = QT True/False

(
4

2

)

What we would like to determine are the coefficients χ0 and χ1 such that

χ0

√
2

2

 1

1

+χ1

√
2

2

 −1

1

=

 4

2

 .

This can be alternatively written as  √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 χ0

χ1

=

 4

2



In Homework 11.4.2.1 we noticed that √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

=

 1 0

0 1


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and hence  √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q︸ ︷︷ ︸
I

 χ0

χ1

=

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2



or, equivalently,  χ0

χ1

=

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2

=

 4
√

2
2 +2

√
2

2

−4
√

2
2 +2

√
2

2

=

 3
√

2

−
√

2



so that

3
√

2

 √
2

2√
2

2

−√2

 −√2
2√
2

2

=

 4

2

 .

In other words: In the new basis, the coefficients are 3
√

2 and −
√

2.
Another way of thinking of the above discussion is that

4

 1

0

+2

 0

1

 =

 4

2

=

 1 0

0 1

 4

2


=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2

=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 4
√

2
2 +2

√
2

2

−4
√

2
2 +2

√
2

2



=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 3
√

2

−
√

2

= 3
√

2

 √
2

2√
2

2

−√2

 −√2
2√
2

2

 .

This last way of looking at the problem suggest a way of finding the coefficients for any basis, a0,a1, . . . ,an−1 ∈ Rn. Let
b ∈ Rn and let A =

(
a0 a1 · · · an−1

)
. Then

b = AA−1︸ ︷︷ ︸
I

b = Ax = χ0a0 +χ1a1 + · · ·+χn−1an−1.

So, when the basis is changed from the unit basis vectors to the vectors a0,a1, . . . ,an−1, the coefficients change from β0,β1, . . . ,βn−1
(the components of the vector b) to χ0,χ1, . . . ,χn−1 (the components of the vector x).

Obviously, instead of computing A−1b, one can instead solve Ax = b.
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11.5 Singular Value Decomposition

11.5.1 The Best Low Rank Approximation

* View at edX
Earlier this week, we showed that by taking a few columns from matrix B (which encoded the picture), and projecting onto

those columns we could create a rank-k approximation, AW T , that approximated the picture. The columns in A were chosen
from the columns of B.

Now, what if we could choose the columns of A to be the best colums onto which to project? In other words, what if we
could choose the columns of A so that the subspace spanned by them minimized the error in the approximation AW T when we
choose W = (AT A)−1AT B?

The answer to how to obtain the answers the above questions go beyond the scope of an introductory undergraduate linear
algebra course. But let us at least look at some of the results.

One of the most important results in linear algebra is the Singular Value Decomposition Theorem which says that any
matrix B ∈ Rm×n can be written as the product of three matrices, the Singular Value Decomposition (SVD):

B =UΣV T

where

• U ∈ Rm×r and UTU = I (U has orthonormal columns).

• Σ∈Rr×r is a diagonal matrix with positive diagonal elements that are ordered so that σ0,0 ≥ σ1,1 ≥ ·· · ≥ σ(r−1),(r−1) > 0.

• V ∈ Rn×r and V TV = I (V has orthonormal columns).

• r equals the rank of matrix B.

If we partition

U =
(

UL UR

)
,V =

(
VL VR

)
, and Σ =

 ΣT L 0

0 ΣBR

 ,

where UL and VL have k columns and ΣT L is k×k, then ULΣT LV T
L is the “best” rank-k approximation to matrix B. So, the “best”

rank-k approximation B = AW T is given by the choices A =UL and W = ΣT LVL.
The sequence of pictures in Figures 11.2 and 11.3 illustrate the benefits of using a rank-k update based on the SVD.

Homework 11.5.1.1 Let B =UΣV T be the SVD of B, with U ∈ Rm×r, Σ ∈ Rr×r, and V ∈ Rn×r. Partition

U =
(

u0 u1 · · · ur−1

)
, Σ =


σ0 0 · · · 0

0 σ1 · · · 0
...

...
. . .

...

0 0 · · · σr−1

 ,V =
(

v0 v1 · · · vr−1

)
.

UΣV T = σ0u0vT
0 +σ1u1vT

1 + · · ·+σr−1ur−1vT
r−1.

Always/Sometimes/Never

Homework 11.5.1.2 Let B =UΣV T be the SVD of B with U ∈ Rm×r, Σ ∈ Rr×r, and V ∈ Rn×r.

• C (B) = C (U)
Always/Sometimes/Never

• R (B) = C (V )
Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/dd7c08ae097e43058b792eec37988e98/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/dd7c08ae097e43058b792eec37988e98/1
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A(AT A)−1AT B ULΣT LV T
L

k = 1 k = 1

k = 5 k = 5

k = 10 k = 10

Figure 11.2: Rank-k approximation using columns from the picture versus using the SVD. (Part 1)
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A(AT A)−1AT B ULΣT LV T
L

k = 25 k = 25

k = 50 k = 50

Figure 11.3: Rank-k approximation using columns from the picture versus using the SVD. (Continued)

Given A ∈ Rm×n with linearly independent columns, and b ∈ Rm, we can solve Ax≈ b for the “best” solution (in the linear
least-squares sense) via its SVD, A =UΣV T , by observing that

x̂ = (AT A)−1AT b

= ((UΣV T )T (UΣV T ))−1(UΣV T )T b

= (V ΣTUTUΣV T )−1V ΣTUT b

= (V ΣΣV T )−1V ΣUT b

= ((V T )−1(ΣΣ)−1V−1)V ΣUT b

= V Σ−1Σ−1ΣUT b

= V Σ−1UT b.

Hence, the “best” solution is given by

x̂ =V Σ
−1UT b.
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Homework 11.5.1.3 You will now want to revisit exercise 11.2.5.2 and compare an approximation by projecting
onto a few columns of the picture versus using the SVD to approximate. You can do so by executing the script
Week11/CompressPictureWithSVD.m that you downloaded in Week11.zip. That script creates three figures: the
first is the original picture. The second is the approximation as we discussed in Section 11.2.5. The third uses the
SVD. Play with the script, changing variable k.

11.6 Enrichment

11.6.1 The Problem with Computing the QR Factorization

Modified Gram-Schmidt

In theory, the Gram-Schmidt process, started with a set of linearly independent vectors, yields an orthonormal basis for the
span of those vectors. In practice, due to round-off error, the process can result in a set of vectors that are far from mutually
orhonormal. A minor modification of the Gram-Schmidt process, known as Modified Gram-Schmidt, partially fixes this.

A more advanced treatment of Gram-Schmidt orthonalization, including the Modified Gram-Schmidt process, can be found
in Robert’s notes for his graduate class on Numerical Linear Algebra, available from http://www.ulaff.net.

Many linear algebra texts also treat this material.

11.6.2 QR Factorization Via Householder Transformations (Reflections)

If orthogonality is important, an alternative algorithm for computing the QR factorization is employed, based on Householder
transformations (reflections). This approach resembles LU factorization with Gauss transforms, except that at each step a
reflection is used to zero elements below the current diagonal.

QR factorization via Householder transformations is discussed in Robert’s notes for his graduate class on Numerical Linear
Algebra, available from http://www.ulaff.net.

Graduate level texts on numerical linear algebra usually treat this topic, as may some more advanced undergraduate texts.

11.6.3 More on SVD

The SVD is possibly the most important topic in linear algebra.
A thorough treatment of the SVD can be found in Robert’s notes for his graduate class on Numerical Linear Algebra,

available from http://www.ulaff.net.
Graduate level texts on numerical linear algebra usually treat this topic, as may some more advanced undergraduate texts.

11.7 Wrap Up

11.7.1 Homework

No additional homework this week.

11.7.2 Summary

Projection

Given a,b ∈ Rm:

• Component of b in direction of a:

u =
aT b
aT a

a = a(aT a)−1aT b.

• Matrix that projects onto Span({a}):
a(aT a)−1aT

http://www.ulaff.net
http://www.ulaff.net
http://www.ulaff.net
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• Component of b orthogonal to a:

w = b− aT b
aT a

a = b−a(aT a)−1aT b = (I−a(aT a)−1aT )b.

• Matrix that projects onto Span({a})⊥:
I−a(aT a)−1aT

Given A ∈ Rm×n with linearly independent columns and vector b ∈ Rm:

• Component of b in C (A):
u = A(AT A)−1AT b.

• Matrix that projects onto C (A):
A(AT A)−1AT .

• Component of b in C (A)⊥ = N (AT ):

w = b−A(AT A)−1AT b = (I−A(AT A)−1AT )b.

• Matrix that projects onto C (A)⊥ = N (AT ):
(I−A(AT A)−1AT ).

“Best” rank-k approximation of B ∈ Rm×n using the column space of A ∈ Rm×k with linearly independent columns:

A(AT A)−1AT B = AV T , where V T = (AT A)−1AT B.

Orthonormal vectors and spaces

Definition 11.3 Let q0,q1, . . . ,qk−1 ∈ Rm. Then these vectors are (mutually) orthonormal if for all 0≤ i, j < k :

qT
i q j =

 1 if i = j

0 otherwise.

Theorem 11.4 A matrix Q ∈ Rm×n has mutually orthonormal columns if and only if QT Q = I.

Given q,b ∈ Rm, with ‖q‖2 = 1 (q of length one):

• Component of b in direction of q:
u = qT bq = qqT b.

• Matrix that projects onto Span({q}):
qqT

• Component of b orthogonal to q:
w = b−qT bq = (I−qqT )b.

• Matrix that projects onto Span({q})⊥:
I−qqT

Given matrix Q ∈ Rm×n with mutually orthonormal columns and vector b ∈ Rm:

• Component of b in C (Q):
u = QQT b.

• Matrix that projects onto C (Q):
QQT .

• Component of b in C (Q)⊥ = N (Q):
w = b−QQT b = (I−QQT )b.

• Matrix that projects onto C (Q)⊥ = N (QT ):
(I−QQT ).

“Best” rank-k approximation of B ∈ Rm×n using the column space of Q ∈ Rm×k with mutually orthonormal columns:

QQT B = QV T , where V T = QT B.
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Gram-Schmidt orthogonalization

Starting with linearly independent vectors a0,a1, . . . ,an−1 ∈ Rm, the following algorithm computes the mutually orthonormal
vectors q0,q1, . . . ,qn−1 ∈ Rm such that Span({a0,a1, . . . ,an−1}) = Span({q0,q1, . . . ,qn−1}):

for k = 0, . . . ,n−1

for p = 0, . . . ,k−1
ρp,k := qT

p ak
endfor

}


ρ0,k

ρ1,k
...

ρk−1,k

=


qT

0 ak

qT
1 ak
...

qT
k−1ak

=


qT

0

qT
1
...

qT
k−1

ak =
(

q0 q1 · · · qk−1

)T
ak

a⊥k := ak
for j = 0, . . . ,k−1

a⊥k := a⊥k −ρ j,kq j
endfor

 a⊥k = ak−∑
k−1
j=0 ρ j,kq j = ak−

(
q0 q1 · · · qk−1

)


ρ0,k

ρ1,k
...

ρk−1,k


ρk,k := ‖a⊥k ‖2
qk := a⊥k /ρk,k

}
Normalize a⊥k to be of length one.

endfor

The QR factorization

Given A ∈ Rm×n with linearly independent columns, there exists a matrix Q ∈ Rm×n with mutually orthonormal columns and
upper triangular matrix R ∈ Rn×n such that A = QR.

If one partitions

A =
(

a0 a1 · · · an−1

)
, Q =

(
q0 q1 · · · qn−1

)
, and R =


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


then

(
a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

and Gram-Schmidt orthogonalization (the Gram-Schmidt process) in the above algorithm computes the columns of Q and
elements of R.

Solving the linear least-squares problem via the QR factorization

Given A ∈ Rm×n with linearly independent columns, there exists a matrix Q ∈ Rm×n with mutually orthonormal columns and
upper triangular matrix R ∈ Rn×n such that A = QR. The vector x̂ that is the best solution (in the linear least-squares sense) to
Ax≈ b is given by

• x̂ = (AT A)−1AT b (as shown in Week 10) computed by solving the normal equations

AT Ax = AT b.
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• x̂ = R−1QT b computed by solving
Rx = QT b.

An algorithm for computing the QR factorization (presented in FLAME notation) is given by

Algorithm: [Q,R] := QR(A,Q,R)

Partition A→
(

AL AR

)
, Q→

(
QL QR

)
, R→

 RT L RT R

RBL RBR


where AL and QL have 0 columns, RT L

is 0×0
while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

QL QR

)
→
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


r01 := QT

0 a1

a⊥1 := a1−Q0r01

ρ11 := ‖a⊥1 ‖2

q1 = a⊥1 /ρ11

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

QL QR

)
←
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


endwhile

Singular Value Decomposition

Any matrix B ∈ Rm×n can be written as the product of three matrices, the Singular Value Decomposition (SVD):

B =UΣV T

where

• U ∈ Rm×r and UTU = I (U has orthonormal columns).

• Σ∈Rr×r is a diagonal matrix with positive diagonal elements that are ordered so that σ0,0 ≥ σ1,1 ≥ ·· · ≥ σ(r−1),(r−1) > 0.

• V ∈ Rn×r and V TV = I (V has orthonormal columns).

• r equals the rank of matrix B.

If we partition

U =
(

UL UR

)
,V =

(
VL VR

)
, and Σ =

 ΣT L 0

0 ΣBR

 ,
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where UL and VL have k columns and ΣT L is k×k, then ULΣT LV T
L is the “best” rank-k approximation to matrix B. So, the “best”

rank-k approximation B = AW T is given by the choices A =UL and W = ΣT LVL.
Given A ∈ Rm×n with linearly independent columns, and b ∈ Rm, the “best” solution to Ax ≈ b (in the linear least-squares

sense) via its SVD, A =UΣV T , is given by
x̂ =V Σ

−1UT b.
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