Notes on Gram-Schmidt QR Factorization

Robert A. van de Geijn Department of Computer Science The University of Texas Austin, TX 78712 rvdg@cs.utexas.edu

September 15, 2014

A classic problem in linear algebra is the computation of an orthonormal basis for the space spanned by a given set of linearly independent vectors: Given a linearly independent set of vectors $\{a_0, \ldots, a_{n-1}\} \subset \mathbb{C}^m$ we would like to find a set of mutually orthonormal vectors $\{q_0, \ldots, q_{n-1}\} \subset \mathbb{C}^m$ so that

 $\text{Span}(\{a_0, \dots, a_{n-1}\}) = \text{Span}(\{q_0, \dots, q_{n-1}\}).$

This problem is equivalent to the problem of, given a matrix $A = \begin{pmatrix} a_0 & \cdots & a_{n-1} \end{pmatrix}$, computing a matrix $Q = \begin{pmatrix} q_0 & \cdots & q_{n-1} \end{pmatrix}$ with $Q^H Q = I$ so that $\mathcal{C}(A) = \mathcal{C}(Q)$, where (A) denotes the column space of A.

A review at the undergraduate level of this topic (with animated illustrations) can be found in Week 11 of

Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

1 Classical Gram-Schmidt process

Given a set of linearly independent vectors $\{a_0, \ldots, a_{n-1}\} \subset \mathbb{C}^m$, the Gram-Schmidt process computes an orthonormal basis $\{q_0, \ldots, q_{n-1}\}$ that span the same subspace, i.e.

 $\text{Span}(\{a_0, \dots, a_{n-1}\}) = \text{Span}(\{q_0, \dots, q_{n-1}\}).$

The process proceeds as described in Figure 1 and in the algorithms in Figure 2.

- **Exercise 1.** What happens in the Gram-Schmidt algorithm if the columns of A are NOT linearly independent? How might one fix this? How can the Gram-Schmidt algorithm be used to identify which columns of A are linearly independent?
- **Exercise 2.** Convince yourself that the relation between the vectors $\{a_j\}$ and $\{q_j\}$ in the algorithms in Figure 2 is given by

$$\left(\begin{array}{c|c|c} a_0 & a_1 & \cdots & a_{n-1} \end{array}\right) = \left(\begin{array}{c|c|c|c} q_0 & q_1 & \cdots & q_{n-1} \end{array}\right) \left(\begin{array}{c|c|c|c|c|c|c|c|c|} \hline \rho_{0,0} & \rho_{0,1} & \cdots & \rho_{0,n-1} \\ \hline 0 & \rho_{1,1} & \cdots & \rho_{1,n-1} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \cdots & \rho_{n-1,n-1} \end{array}\right),$$

Steps	Comment
$\rho_{0,0} := \ a_0\ _2$	Compute the length of vector a_0 , $\rho_{0,0} := a_0 _2$.
$q_0 =: a_0 / \rho_{0,0}$	Set $q_0 := a_0 / \rho_{0,0}$, creating a unit vector in the direction of a_0 .
	Clearly, $\operatorname{Span}(\{a_0\}) = \operatorname{Span}(\{q_0\})$. (Why?)
$\rho_{0,1} = q_0^H a_1$	
$a_1^{\perp} = a_1 - \rho_{0,1} q_0$	Compute a_1^{\perp} , the component of vector a_1 orthogonal to q_0 .
$\rho_{1,1} = \ a_1^{\perp}\ _2$	Compute $\rho_{1,1}$, the length of a_1^{\perp} .
$q_1 = a_1^{\perp} / \rho_{1,1}$	Set $q_1 = a_1^{\perp} / \rho_{1,1}$, creating a unit vector in the direction of a_1^{\perp} .
	Now, q_0 and q_1 are mutually orthonormal and $\text{Span}(\{a_0, a_1\}) = \text{Span}(\{q_0, q_1\})$. (Why?)
$\rho_{0,2} = q_0^H a_2 \\ \rho_{1,2} = q_1^H a_2$	
$a_2^{\perp} = a_2 - \rho_{0,2}q_0 - \rho_{1,2}q_1$	Compute a_2^{\perp} , the component of vector a_2 orthogonal to q_0 and q_1 .
$\rho_{2,2} = \ a_2^{\perp}\ _2$	Compute $\rho_{2,2}$, the length of a_2^{\perp} .
$q_2 = a_2^{\perp} / \rho_{2,2}$	Set $q_2 = a_2^{\perp}/\rho_{2,2}$, creating a unit vector in the direction of a_2^{\perp} .
	Now, $\{q_0, q_1, q_2\}$ is an orthonormal basis and $\text{Span}(\{a_0, a_1, a_2\}) = \text{Span}(\{q_0, q_1, q_2\})$. (Why?)
And so forth.	

Figure 1: Gram-Schmidt orthogonalization.

$$\begin{aligned} & \mathbf{for} \ j = 0, \dots, n-1 \\ & \mathbf{for} \ j = 0, \dots, n-1 \\ & \mathbf{for} \ k = 0, \dots, j-1 \\ & \rho_{k,j} := q_k^H a_j \\ & \mathbf{end} \\ & a_j^{\perp} := a_j^{\perp} - \rho_{k,j} q_k \\ & \mathbf{end} \\ & a_j^{\perp} := a_j^{\perp} - \rho_{k,j} q_k \\ & \mathbf{end} \\ & \rho_{j,j} := \|a_j^{\perp}\|_2 \\ & q_j := a_j^{\perp} / \rho_{j,j} \\ & \mathbf{end} \end{aligned}$$

$$\begin{aligned} & \mathbf{for} \ j = 0, \dots, n-1 \\ & \begin{pmatrix} \rho_{0,j} \\ \vdots \\ \rho_{j-1,j} \end{pmatrix} := \begin{pmatrix} \frac{q_0^H a_j}{\vdots} \\ \vdots \\ \frac{q_{j-1}^H a_j}{\vdots} \end{pmatrix} = \left(q_0 | \cdots | q_{j-1} \right)^H a_j \\ & a_j^{\perp} := a_j \\ & a_j^{\perp} := a_j - \rho_{k,j} q_k \\ & \mathbf{end} \\ & \rho_{j,j} := \|a_j^{\perp}\|_2 \\ & q_j := a_j^{\perp} / \rho_{j,j} \\ & \mathbf{end} \end{aligned}$$

$$\begin{aligned} & \mathbf{for} \ j = 0, \dots, n-1 \\ & \begin{pmatrix} \frac{\rho_{0,j}}{\vdots} \\ \vdots \\ \overline{\rho_{j-1,j}} \end{pmatrix} := \begin{pmatrix} \frac{q_0 | \cdots | q_{j-1} \end{pmatrix} \begin{pmatrix} \frac{\rho_{0,j}}{\vdots} \\ \vdots \\ \overline{\rho_{j-1,j}} \end{pmatrix} \\ & a_j^{\perp} := a_j - \left(q_0 | \cdots | q_{j-1} \right) \begin{pmatrix} \frac{\rho_{0,j}}{\vdots} \\ \vdots \\ \overline{\rho_{j-1,j}} \end{pmatrix} \\ & \rho_{j,j} := \|a_j^{\perp}\|_2 \\ & q_j := a_j^{\perp} / \rho_{j,j} \\ & \mathbf{end} \end{aligned}$$

Figure 2: Three equivalent (Classical) Gram-Schmidt algorithms.

where

$$q_i^H q_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \rho_{i,j} = \begin{cases} q_i^H a_j & \text{for } i < j \\ \|a_j - \sum_{i=0}^{j-1} \rho_{i,j} q_i\|_2 & \text{for } i = j \\ 0 & \text{otherwise} \end{cases}$$

Thus, this relationship between the linearly independent vectors $\{a_j\}$ and the orthonormal vectors $\{q_j\}$ can be concisely stated as

$$A = QR,$$

where A and Q are $m \times n$ matrices $(m \ge n)$, $Q^H Q = I$, and R is an $n \times n$ upper triangular matrix.

Theorem 3. Let A have linearly independent columns, A = QR where $A, Q \in \mathbb{C}^{m \times n}$ with $n \leq m, R \in \mathbb{C}^{n \times n}$, $Q^H Q = I$, and R is an upper triangular matrix with nonzero diagonal entries. Then, for 0 < k < n, the first k columns of A span the same space as the first k columns of Q.

Proof: Partition

$$A \to \left(\begin{array}{c|c} A_L & A_R \end{array} \right), \quad Q \to \left(\begin{array}{c|c} Q_L & Q_R \end{array} \right), \quad \text{and} \quad R \to \left(\begin{array}{c|c} R_{TL} & R_{TR} \\ \hline 0 & R_{BR} \end{array} \right)$$

where $A_L, Q_L \in \mathbb{C}^{m \times k}$ and $R_{TL} \in \mathbb{C}^{k \times k}$. Then R_{TL} is nonsingular (since it is upper triangular and has no zero on its diagonal), $Q_L^H Q_L = I$, and $A_L = Q_L R_{TL}$. We want to show that $\mathcal{C}(A_L) = \mathcal{C}(Q_L)$:

- We first show that $\mathcal{C}(A_L) \subseteq \mathcal{C}(Q_L)$. Let $y \in \mathcal{C}(A_L)$. Then there exists $x \in \mathbb{C}^k$ such that $y = A_L x$. But then $y = Q_L z$, where $z = R_{TL} x \neq 0$, which means that $y \in \mathcal{C}(Q_L)$. Hence $\mathcal{C}(A_L) \subseteq \mathcal{C}(Q_L)$.
- We next show that $\mathcal{C}(Q_L) \subseteq \mathcal{C}(A_L)$. Let $y \in \mathcal{C}(Q_L)$. Then there exists $z \in \mathbb{C}^k$ such that $y = Q_L z$. But then $y = A_L x$, where $x = R_{TL}^{-1} z$, from which we conclude that $y \in \mathcal{C}(A_L)$. Hence $\mathcal{C}(Q_L) \subseteq \mathcal{C}(A_L)$.

Since
$$\mathcal{C}(A_L) \subseteq \mathcal{C}(Q_L)$$
 and $\mathcal{C}(Q_L) \subseteq \mathcal{C}(A_L)$, we conclude that $\mathcal{C}(Q_L) = \mathcal{C}(A_L)$.

Theorem 4. Let $A \in \mathbb{C}^{m \times n}$ have linearly independent columns. Then there exist $Q \in \mathbb{C}^{m \times n}$ with $Q^H Q = I$ and upper triangular R with no zeroes on the diagonal such that A = QR. This is known as the QR factorization. If the diagonal elements of R are chosen to be real and positive, th QR factorization is unique.

Proof: (By induction). Note that $n \leq m$ since A has linearly independent columns.

• Base case: n = 1. In this case $A = \begin{pmatrix} a_0 \end{pmatrix}$ where a_0 is its only column. Since A has linearly independent columns, $a_0 \neq 0$. Then

$$A = \left(\begin{array}{c} a_0 \end{array} \right) = \left(q_0 \right) \left(\rho_{00} \right),$$

where $\rho_{00} = ||a_0||_2$ and $q_0 = a_0/\rho_{00}$, so that $Q = (q_0)$ and $R = (\rho_{00})$.

Algorithm: [Q, R] := QR(A)**Partition** $A \to \begin{pmatrix} A_L & A_R \end{pmatrix}$, $\begin{pmatrix} Q_L & Q_R \\ \hline & Q_L & R_{TR} \\ \hline & & R_{TL} & R_{TR} \\ \hline & & & R_{BR} \end{pmatrix}$ where A_L and Q'_L has 0 columns and $\begin{array}{c} R_{TL} \text{ is } 0 \times 0\\ \textbf{while } n(A_L) \neq n(A) \quad \textbf{do} \end{array}$ for j = 0, ..., n - 1Repartition $\begin{pmatrix} A_L & A_R \\ Q_L & Q_R \end{pmatrix} \rightarrow \begin{pmatrix} A_0 & a_1 & A_2 \\ Q_0 & q_1 & Q_2 \end{pmatrix},$ $\begin{array}{c} \stackrel{\rho_{0,j}}{\vdots} \\ \stackrel{\rho_{j-1,j}}{\longrightarrow} \end{array} \right) := \underbrace{\left(\begin{array}{cc} q_0 & \cdots & q_{j-1} \end{array}\right)^H}_{Q_0^H} \underbrace{a_j}_{a_1}$ $\left(\begin{array}{c|c|c} R_{TL} & R_{TR} \\ \hline 0 & R_{BR} \end{array}\right) \rightarrow$ $\underbrace{a_j^{\perp}}_{a_1^{\perp}} := \underbrace{a_j}_{a_1} - \underbrace{\left(\begin{array}{cc} q_0 & \cdots & q_{j-1} \end{array}\right)}_{Q_0} \\ \underbrace{\left(\begin{array}{c} \rho_{0,j} \\ \vdots \\ \rho_{j-1,j} \end{array}\right)}_{Q_{j-1,j}}$ where a_1 and q_1 are columns, ρ_{11} is a scalar $r_{01} := Q_0^T a_1$ $a_1^{\perp} := a_1 - Q_0 r_{01}$ $\rho_{11} := \|a_1^{\perp}\|_2$ $q_1 := a_1^{\perp} / \rho_{11}$ $\begin{array}{ll} \rho_{j,j} := \|a_j^{\perp}\|_2 & (\rho_{11} := \|a_1^{\perp}\|_2) \\ q_j := a_j^{\perp} / \rho_{j,j} & (q_1 := a_1^{\perp} / \rho_{11}) \\ \text{end} \end{array}$ $\begin{array}{c|c} \mathbf{Continue with} \\ \left(\begin{array}{c|c} A_L & A_R \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_0 & a_1 & A_2 \end{array}\right), \\ \left(\begin{array}{c|c} Q_L & Q_R \end{array}\right) \leftarrow \left(\begin{array}{c|c} Q_0 & a_1 & A_2 \end{array}\right), \\ \end{array}$ $\begin{pmatrix} R_{00} & r_{01} & R_{02} \\ \hline 0 & \rho_{11} & r_{12}^T \\ \hline \end{array}$

Figure 3: (Classical) Gram-Schmidt algorithm for computing the QR factorization of a matrix A.

• Inductive step: Assume that the result is true for all A with n-1 linearly independent columns. We will show it is true for $A \in \mathbb{C}^{m \times n}$ with linearly independent columns.

Let $A \in \mathbb{C}^{m \times n}$. Partition $A \to (A_0 | a_1)$. By the induction hypothesis, there exist Q_0 and R_{00} such that $Q_0^H Q_0 = I$, R_{00} is upper triangular with nonzero diagonal entries and $A_0 = Q_0 R_{00}$. Now, compute $r_{01} = Q_0^H a_1$ and $a_1^{\perp} = a_1 - Q_0 r_{01}$, the component of a_1 orthogonal to $\mathcal{C}(Q_0)$. Because the columns of A are linearly independent, $a_1^{\perp} \neq 0$. Let $\rho_{11} = ||a_1^{\perp}||_2$ and $q_1 = a_1^{\perp}/\rho_{11}$. Then

$$\begin{pmatrix} Q_0 \mid q_1 \end{pmatrix} \begin{pmatrix} \frac{R_{00} \mid r_{01}}{0 \mid \rho_{11}} \end{pmatrix} = \begin{pmatrix} Q_0 R_{00} \mid Q_0 r_{01} + q_1 \rho_{11} \end{pmatrix}$$
$$= \begin{pmatrix} A_0 \mid Q_0 r_{01} + a_1^{\perp} \end{pmatrix} = \begin{pmatrix} A_0 \mid a_1 \end{pmatrix} = A$$

Hence $Q = \begin{pmatrix} Q_0 & q_1 \end{pmatrix}$ and $R = \begin{pmatrix} R_{00} & r_{01} \\ \hline 0 & \rho_{11} \end{pmatrix}$.

endwhile

• By the Principle of Mathematical Induction the result holds for all matrices $A \in \mathbb{C}^{m \times n}$ with $m \ge n$.

The proof motivates the algorithm in Figure 3 (left) in FLAME notation¹.

An alternative for motivating that algorithm is as follows: Consider A = QR. Partition A, Q, and R to yield

$$\left(\begin{array}{c|c} A_0 & a_1 & A_2 \end{array} \right) = \left(\begin{array}{c|c} Q_0 & q_1 & Q_2 \end{array} \right) \left(\begin{array}{c|c} R_{00} & r_{01} & R_{02} \\ \hline 0 & \rho_{11} & r_{12}^T \\ \hline 0 & 0 & R_{22} \end{array} \right)$$

Assume that Q_0 and R_{00} have already been computed. Since corresponding columns of both sides must be equal, we find that

$$a_1 = Q_0 r_{01} + q_1 \rho_{11}. \tag{1}$$

Also, $Q_0^H Q_0 = I$ and $Q_0^H q_1 = 0$, since the columns of Q are mutually orthonormal. Hence $Q_0^H a_1 = Q_0^H Q_0 r_{01} + Q_0^H q_1 \rho_{11} = r_{01}$. This shows how r_{01} can be computed from Q_0 and a_1 , which are already known. Next, $a_1^{\perp} = a_1 - Q_0 r_{01}$ is computed from (1). This is the component of a_1 that is perpendicular to the columns of Q_0 . We know it is nonzero since the columns of A are linearly independent. Since $\rho_{11}q_1 = a_1^{\perp}$ and we know that q_1 has unit length, we now compute $\rho_{11} = ||a_1^{\perp}||_2$ and $q_1 = a_1^{\perp}/\rho_{11}$, which completes a derivation of the algorithm in Figure 3.

Exercise 5. Let A have linearly independent columns and let A = QR be a QR factorization of A. Partition

$$A \to \left(\begin{array}{c|c} A_L & A_R \end{array} \right), \quad Q \to \left(\begin{array}{c|c} Q_L & Q_R \end{array} \right), \quad \text{and} \quad R \to \left(\begin{array}{c|c} R_{TL} & R_{TR} \\ \hline 0 & R_{BR} \end{array} \right).$$

where A_L and Q_L have k columns and R_{TL} is $k \times k$. Show that

- 1. $A_L = Q_L R_{TL}$: $Q_L R_{TL}$ equals the QR factorization of A_L ,
- 2. $C(A_L) = C(Q_L)$: the first k columns of Q form an orthonormal basis for the space spanned by the first k columns of A.
- 3. $R_{TR} = Q_L^H A_R$,
- 4. $(A_R Q_L R_{TR})^H Q_L = 0,$
- 5. $A_R Q_L R_{TR} = Q_R R_{BR}$, and
- 6. $\mathcal{C}(A_R Q_L R_{TR}) = \mathcal{C}(Q_R).$

2 Modified Gram-Schmidt process

We start by considering the following problem: Given $y \in \mathbb{C}^m$ and $Q \in \mathbb{C}^{m \times k}$ with orthonormal columns, compute y^{\perp} , the component of y orthogonal to the columns of Q. This is a key step in the Gram-Schmidt process in Figure 3.

Recall that if A has linearly independent columns, then $A(A^HA)^{-1}A^Hy$ equals the projection of y onto the columns space of A (i.e., the component of y in C(A)) and $y - A(A^HA)^{-1}A^Hy = (I - A(A^HA)^{-1}A^H)y$ equals the component of y orthogonal to C(A). If Q has orthonormal columns, then $Q^HQ = I$ and hence

5

 $^{^1}$ The FLAME notation should be intuitively obvious. If it is not, you may want to review the earlier weeks in Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

$[y^{\perp}, r] = \operatorname{Proj_orthog_to_Q}_{\operatorname{CGS}}(Q, y)$	$[y^{\perp},r] = \operatorname{Proj_orthog_to_Q_{MGS}}(Q,y)$
(used by classical Gram-Schmidt)	(used by modified Gram-Schmidt)
$y^{\perp} = y$	$y^{\perp} = y$
for $i = 0,, k - 1$	for $i = 0,, k - 1$
$\rho_i := q_i^H y$	$ ho_i := q_i^H y^\perp$
$y^{\perp}:=y^{\perp}- ho_i q_i$	$y^{\perp} := y^{\perp} - \rho_i q_i$
endfor	endfor

Figure 4: Two different ways of computing $y^{\perp} = (I - QQ^{H})y$, the component of y orthogonal to $\mathcal{C}(Q)$, where \boldsymbol{Q} has k orthonormal columns.

Algorithm: $[AR] := \text{Gram-Schmidt}(A)$ (overwrites A with Q)			
Partition $A \rightarrow \begin{pmatrix} A_L & A_R \end{pmatrix}$, $R \rightarrow \begin{pmatrix} R_{TL} & R_{TR} \\ 0 & R_{BR} \end{pmatrix}$ where A_L has 0 columns and R_{TL} is 0×0			
while $n(A_L) \neq n(A)$ do Repartition $\begin{pmatrix} A_L \mid A_R \end{pmatrix} \rightarrow \begin{pmatrix} A_0 \mid a_1 \mid A_2 \end{pmatrix}, \begin{pmatrix} R_{TL} \mid R_{TR} \\ \hline 0 \mid R_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} R_{00} \mid r_{01} \mid R_{02} \\ \hline 0 \mid \rho_{11} \mid r_{12}^T \\ \hline 0 \mid 0 \mid R_{22} \end{pmatrix}$ where a_1 and q_1 are columns, ρ_{11} is a scalar			
	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	$ \begin{array}{ c c c c c } \hline \underline{MGS} & (alternative) \\ \hline \rho_{11} &:= \ a_1\ _2 \\ a_1 &:= a_1/\rho_{11} \\ r_{12}^T &:= a_1^H A_2 \\ A_2 &:= A_2 - a_1 r_{12}^T \\ \end{array} $	
Continue with $ \left(\begin{array}{c c} A_L & A_R \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array}\right), \left(\begin{array}{c c} R_{TL} & R_{TR} \\ \hline 0 & R_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} R_{00} & r_{01} & R_{02} \\ \hline 0 & \rho_{11} & r_{12}^T \\ \hline 0 & 0 & R_{22} \end{array}\right) $ endwhile			

Figure 5: Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right: Modified Gram-Schmidt algorithm where every time a new column of Q, q_1 is computed the component of all future columns in the direction of this new vector are subtracted out.

 $QQ^H y$ equals the projection of y onto the columns space of Q (i.e., the component of y in C(Q)) and $y - QQ^H y = (I - QQ^H)y$ equals the component of y orthogonal to C(A). Thus, mathematically, the solution to the stated problem is given by

$$y^{\perp} = (I - QQ^{H})y = y - QQ^{H}y$$
$$= y - \left(q_{0} \mid \cdots \mid q_{k-1} \right) \left(q_{0} \mid \cdots \mid q_{k-1} \right)^{H}y$$

$$= y - \left(\begin{array}{c} q_0 \\ \end{array} \right| \cdots \\ q_{k-1} \end{array} \right) \left(\begin{array}{c} \frac{q_0^H}{\vdots} \\ \hline q_{k-1}^H \end{array} \right) y$$
$$= y - \left(\begin{array}{c} q_0 \\ \end{array} \right| \cdots \\ q_{k-1} \end{array} \right) \left(\begin{array}{c} \frac{q_0^H y}{\vdots} \\ \hline q_{k-1}^H y \end{array} \right)$$
$$= y - \left[(q_0^H y)q_0 + \cdots + (q_{k-1}^H y)q_{k-1} \right]$$
$$= y - (q_0^H y)q_0 - \cdots - (q_{k-1}^H y)q_{k-1}.$$

This can be computed by the algorithm in Figure 4 (left) and is used by what is often called the *Classical* Gram-Schmidt (CGS) algorithm given in Figure 3.

An alternative algorithm for computing y^{\perp} is given in Figure 4 (right) and is used by the *Modified* Gram-Schmidt (MGS) algorithm also given in Figure 5. This approach is mathematically equivalent to the algorithm to its left for the following reason:

The algorithm on the left in Figure 4 computes

$$y^{\perp} := y - (q_0^H y)q_0 - \dots - (q_{k-1}^H y)q_{k-1}$$

by in the *i*th step computing the component of y in the direction of q_i , $(q_i^H y)q_i$, and then subtracting this off the vector y^{\perp} that already contains

$$y^{\perp} = y - (q_0^H y)q_0 - \dots - (q_{i-1}^H y)q_{i-1},$$

leaving us with

$$y^{\perp} = y - (q_0^H y)q_0 - \dots - (q_{i-1}^H y)q_{i-1} - (q_i^H y)q_i$$

Now, notice that

$$\begin{aligned} q_i^H \left[y - (q_0^H y) q_0 - \dots - (q_{i-1}^H y) q_{i-1} \right] &= q_i^H y - q_i^H (q_0^H y) q_0 - \dots - q_i^H (q_{i-1}^H y) q_{i-1} \\ &= q_i^H y - (q_0^H y) \underbrace{q_i^H q_0}_{0} - \dots - (q_{i-1}^H y) \underbrace{q_i^H q_{i-1}}_{0} \\ &= q_i^H y. \end{aligned}$$

What this means is that we can use y^{\perp} in our computation of ρ_i instead:

$$\rho_i := q_i^H y^\perp = q_i^H y,$$

an insight that justifies the equivalent algorithm in Figure 4 (right).

Next, we massage the MGS algorithm into the third (right-most) algorithm given in Figure 5. For this, consider the equivalent algorithms in Figure 6 and 7.

3 In Practice, MGS is More Accurate

In theory, all Gram-Schmidt algorithms discussed in the previous sections are equivalent: they compute the exact same QR factorizations. In practice, in the presense of round-off error, MGS is more accurate than CGS. We will (hopefully) get into detail about this later, but for now we will illustrate it with a classic example.

When storing real (or complex for that matter) valued numbers in a computer, a limited accuracy can be maintained, leading to round-off error when a number is stored and/or when computation with numbers

Figure 6: Various equivalent MGS algorithms.

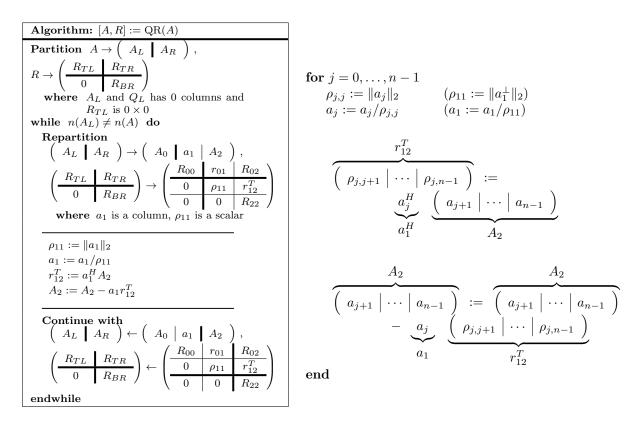


Figure 7: Modified Gram-Schmidt algorithm for computing the QR factorization of a matrix A.

are performed. The machine epsilon or unit roundoff error is defined as the largest positive number ϵ_{mach} such that the stored value of $1 + \epsilon_{\text{mach}}$ is rounded to 1. Now, let us consider a computer where the **only** error that is ever incurred is when $1 + \epsilon_{\text{mach}}$ is computed and rounded to 1. Let $\epsilon = \sqrt{\epsilon_{\text{mach}}}$ and consider the matrix

$$A = \begin{pmatrix} 1 & | & 1 & | & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & | & \epsilon \end{pmatrix} = \begin{pmatrix} a_0 & | & a_1 & | & a_2 \end{pmatrix}$$
(2)

In Figure 8 (left) we execute the CGS algorithm. It yields the approximate matrix

$$Q \approx \left(\begin{array}{c|c} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{array} \right)$$

If we now ask the question "Are the columns of Q orthonormal?" we can check this by computing $Q^H Q$,

$$\begin{array}{l} \hline \text{First iteration} \\ \rho_{0,0} = \|a_0\|_2 = \sqrt{1 + \epsilon^2} = \sqrt{1 + \epsilon_{\text{much}}} \\ \text{which is rounded to 1.} \\ q_0 = a_0/\rho_{0,0} = \begin{pmatrix} 1\\ \epsilon\\ 0\\ 0 \end{pmatrix}/1 = \begin{pmatrix} 1\\ \epsilon\\ 0\\ 0 \end{pmatrix} \\ \hline \\ p_{0,1} = q_0^H a_1 = 1 \\ a_1^\perp = a_1 - \rho_{0,1}q_0 = \begin{pmatrix} 0\\ -\epsilon\\ \epsilon\\ 0 \end{pmatrix} \\ \rho_{1,1} = \|a_1^\perp\|_2 = \sqrt{2\epsilon^2} = \sqrt{2\epsilon} \\ q_1 = a_1^\perp/\rho_{1,1} = \begin{pmatrix} 0\\ -\epsilon\\ \epsilon\\ 0 \end{pmatrix}/(\sqrt{2}\epsilon) = \begin{pmatrix} 0\\ -\frac{\sqrt{2}}{\sqrt{2}}\\ \frac{\sqrt{2}}{\sqrt{2}} \\ 0 \end{pmatrix} \\ \hline \\ \frac{1}{\text{Third iteration}} \\ \rho_{0,2} = q_0^H a_2 = 1 \\ \rho_{1,2} = q_1^H a_2 = 0 \\ a_2^\perp = a_2 - \rho_{0,2}q_0 - \rho_{1,2}q_1 = \begin{pmatrix} 0\\ -\epsilon\\ 0\\ 0\\ \epsilon \end{pmatrix} \\ \rho_{2,2} = \|a_2^\perp\|_2 = \sqrt{2\epsilon^2} = \sqrt{2\epsilon} \\ q_2 = a_2^\perp/\rho_{2,2} = \begin{pmatrix} 0\\ -\epsilon\\ 0\\ \epsilon\\ 0 \end{pmatrix}/(\sqrt{2}\epsilon) = \begin{pmatrix} 0\\ -\frac{\sqrt{2}}{\sqrt{2}}\\ \frac{\sqrt{2}}{\sqrt{2}}\\ 0 \end{pmatrix} \\ \hline \\ \frac{1}{\sqrt{2}} = a_2^\perp - \rho_{1,2}q_1 = \begin{pmatrix} 0\\ -\epsilon\\ 0\\ \epsilon\\ 0\\ \epsilon \end{pmatrix} \\ \rho_{2,2} = \|a_2^\perp\|_2 = \sqrt{2\epsilon^2} = \sqrt{2\epsilon} \\ q_2 = a_2^\perp/\rho_{2,2} = \begin{pmatrix} 0\\ -\epsilon\\ 0\\ \epsilon\\ 0\\ \epsilon \end{pmatrix} /(\sqrt{2}\epsilon) = \begin{pmatrix} 0\\ -\frac{\sqrt{2}}{\sqrt{2}}\\ \frac{\sqrt{2}}{\sqrt{2}}\\ 0 \end{pmatrix} \\ \hline \\ \frac{1}{\sqrt{2}} = a_2^\perp - \rho_{1,2}q_1 = \begin{pmatrix} 0\\ 0\\ -\epsilon/2\\ -\epsilon/2\\ \epsilon\\ 0 \end{pmatrix} \\ \rho_{2,2} = \|a_2^\perp\|_2 = \sqrt{(6/4)\epsilon^2} = (\sqrt{6}/2)\epsilon \\ q_2 = a_2^\perp/\rho_{2,2} = \begin{pmatrix} 0\\ -\epsilon\\ 0\\ 0\\ \epsilon \end{pmatrix} /(\sqrt{2}\epsilon) = \begin{pmatrix} 0\\ 0\\ -\frac{\sqrt{2}}{\sqrt{2}}\\ -\frac{\sqrt{2}}{\sqrt{2}$$

Figure 8: Execution of the CGS algorith (left) and MGS algorithm (right) on the example in Eqn. (2).

which should equal I, the identity. But

$$Q^{H}Q = \begin{pmatrix} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}^{H} \begin{pmatrix} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 1 + \epsilon_{\text{mach}} & -\frac{\sqrt{2}}{2}\epsilon & -\frac{\sqrt{2}}{2}\epsilon \\ -\frac{\sqrt{2}}{2}\epsilon & 1 & \frac{1}{2} \\ -\frac{\sqrt{2}}{2}\epsilon & \frac{1}{2} & 1 \end{pmatrix}$$

Clearly, the computed columns of Q are **not** mutually orthogonal.

и

Similarly, in Figure 8 (right) we execute the MGS algorithm. It yields the approximate matrix

$$Q \approx \begin{pmatrix} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ 0 & 0 & \frac{2\sqrt{6}}{6} \end{pmatrix}.$$

If we now ask the question "Are the columns of Q orthonormal?" we can check if $Q^H Q = I$. The answer:

.

$$Q^{H}Q = \begin{pmatrix} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ 0 & 0 & \frac{2\sqrt{6}}{6} \end{pmatrix}^{H} \begin{pmatrix} 1 & 0 & 0 \\ \epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ 0 & 0 & \frac{2\sqrt{6}}{6} \end{pmatrix} = \begin{pmatrix} 1 + \epsilon_{\text{mach}} & -\frac{\sqrt{2}}{2}\epsilon & -\frac{\sqrt{6}}{6}\epsilon \\ -\frac{\sqrt{2}}{2}\epsilon & 1 & 0 \\ -\frac{\sqrt{6}}{6}\epsilon & 0 & 1 \end{pmatrix},$$

which shows that for this example MGS yields better orthogonality than does CGS. What is going on? The answer lies with how a_2^{\perp} is computed in the last step of each of the algorithms.

• In the CGS algorithm, we find that

$$a_2^{\perp} := a_2 - (q_0^H a_2)q_0 - (q_1^H a_2)q_1.$$

Now, q_0 has a relatively small error in it and hence $q_0^H a_2 q_0$ has a relatively) small error in it. It is likely that a part of that error is in the direction of q_1 . Relative to $q_0^H a_2 q_0$, that error in the direction of q_1 is small, but relative to $a_2 - q_0^H a_2 q_0$ it is not. The point is that then $a_2 - q_0^H a_2 q_0$ has a relatively large error in it in the direction of q_1 . Subtracting $q_1^H a_2 q_1$ does not fix this and since in the end a_2^{\perp} is small, it has a relatively large error in the direction of q_1 . This error is amplified when q_2 is computed by normalizing a_2^{\perp} .

• In the MGS algorithm, we find that

$$a_2^{\perp} := a_2 - (q_0^H a_2) q_0$$

after which

$$a_2^{\perp} := a_2^{\perp} - q_1^H a_2^{\perp} q_1 = [a_2 - (q_0^H a_2)q_0] - (q_1^H [a_2 - (q_0^H a_2)q_0])q_1$$

This time, if $a_2 - q_1^H a_2^{\perp} q_1$ has an error in the direction of q_1 , this error is subtracted out when $(q_1^H a_2^{\perp})q_1$ is subtracted from a_2^{\perp} . This explains the better orthogonality between the computed vectors q_1 and q_2 .

Obviously, we have argued via an example that MGS is more accurage than CGS. A more thorough analysis is needed to explain why this is generally so. This is beyond the scope of this note.

4 Modified Gram-Schmidt process

Let us examine the cost of computing the QR factorization of an $m \times n$ matrix A. We will count multiplies and an adds as each as one floating point operation.

We start by reviewing the cost, in floating point operations (flops), of various vector-vector and matrix-vector operations:

Name	Operation	Approximate cost (in flops)
Vector-vector operations $(x, y \in \mathbb{C}^n, \alpha \in \mathbb{C})$		
Dot	$\alpha := x^H y$	2n
Ахру	$y := \alpha x + y$	2n
Scal	$x := \alpha x$	n
Nrm2	$\alpha := \ a_1\ _2$	2n
Matrix-vector operations $(A \in \mathbb{C}^{m \times n}, \alpha, \beta \in \mathbb{C}, \text{ with } x \text{ and } y \text{ vectors of appropriate size})$		
Matrix-vector multiplication (Gemv)	$y := \alpha A x + \beta y$	2mn
	$y:=\alpha A^{H}x+\beta y$	2mn
Rank-1 update (Ger)	$A := \alpha y x^H + A$	2mn

Now, consider the algorithms in Figure 5. Notice that the columns of A are of size m. During the kth iteration $(0 \le k < n)$, A_0 has k columns and A_2 has n - k - 1 columns.

4.1 Cost of CGS

Operation	Approximate cost (in flops)
$r_{01} := A_0^H a_1$	2mk
$a_1 := a_1 - A_0 r_{01}$	2mk
$\rho_{11} := \ a_1\ _2$	2m
$a_1 := a_1 / \rho_{11}$	m

Thus, the total cost is (approximately) $\sum_{n=1}^{\infty} 1$

$$\sum_{k=0}^{n-1} [2mk + 2mk + 2m + m]$$

$$= \sum_{k=0}^{n-1} [3m + 4mk] = 3mn + 4m \sum_{k=0}^{n-1} k \approx 3mn + 4m \frac{n^2}{2} \qquad (\sum_{k=0}^{n-1} k = n(n-1)/2 \approx n^2/2 = 3mn + 2mn^2 \approx 2mn^2 \qquad (3mn \text{ is of lower order}).$$

4.2 Cost of MGS

Operation	Approximate cost (in flops)
$\rho_{11} := \ a_1\ _2$	2m
$a_1 := a_1 / \rho_{11}$	m
$r_{12}^T := a_1^H A_2$	2m(n-k-1)
$A_2 := A_2 - a_1 r_{12}^T$	2m(n-k-1)

Thus, the total cost is (approximately)

$$\sum_{k=0}^{n-1} [2m + m + 2m(n-k-1) + 2m(n-k-1)] = \sum_{k=0}^{n-1} [3m + 4m(n-k-1)] = 3mn + 4m \sum_{k=0}^{n-1} (n-k-1) = 3mn + 4m \sum_{i=0}^{n-1} i \qquad (0)$$

$$\approx 3mn + 4m \frac{n^2}{2} \qquad (2)$$

$$= 3mn + 2mn^2 \approx 2mn^2 \qquad (3)$$

Change of variable: i = n - k - 1) $\sum_{i=0}^{n-1} i = n(n-1)/2 \approx n^2/2$

(3mn is of lower order).