Notes on Gram-Schmidt QR Factorization

Robert A. van de Geijn
Department of Computer Science
The University of Texas
Austin, TX 78712
rvdg@cs.utexas.edu

September 15, 2014

A classic problem in linear algebra is the computation of an orthonormal basis for the space spanned by a given set of linearly independent vectors: Given a linearly independent set of vectors $\left\{a_{0}, \ldots, a_{n-1}\right\} \subset \mathbb{C}^{m}$ we would like to find a set of mutually orthonormal vectors $\left\{q_{0}, \ldots, q_{n-1}\right\} \subset \mathbb{C}^{m}$ so that

$$
\operatorname{Span}\left(\left\{a_{0}, \ldots, a_{n-1}\right\}\right)=\operatorname{Span}\left(\left\{q_{0}, \ldots, q_{n-1}\right\}\right)
$$

This problem is equivalent to the problem of, given a matrix $A=\left(a_{0}|\cdots| a_{n-1}\right)$, computing a matrix $Q=\left(q_{0}|\cdots| q_{n-1}\right)$ with $Q^{H} Q=I$ so that $\mathcal{C}(A)=\mathcal{C}(Q)$, where (A) denotes the column space of A.

A review at the undergraduate level of this topic (with animated illustrations) can be found in Week 11 of

Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

1 Classical Gram-Schmidt process

Given a set of linearly independent vectors $\left\{a_{0}, \ldots, a_{n-1}\right\} \subset \mathbb{C}^{m}$, the Gram-Schmidt process computes an orthonormal basis $\left\{q_{0}, \ldots, q_{n-1}\right\}$ that span the same subspace, i.e.

$$
\operatorname{Span}\left(\left\{a_{0}, \ldots, a_{n-1}\right\}\right)=\operatorname{Span}\left(\left\{q_{0}, \ldots, q_{n-1}\right\}\right)
$$

The process proceeds as described in Figure 1 and in the algorithms in Figure 2.

Exercise 1. What happens in the Gram-Schmidt algorithm if the columns of A are NOT linearly independent? How might one fix this? How can the Gram-Schmidt algorithm be used to identify which columns of A are linearly independent?

Exercise 2. Convince yourself that the relation between the vectors $\left\{a_{j}\right\}$ and $\left\{q_{j}\right\}$ in the algorithms in Figure 2 is given by

$$
\left(a_{0}\left|a_{1}\right| \cdots \mid a_{n-1}\right)=\left(q_{0}\left|q_{1}\right| \cdots \mid q_{n-1}\right)\left(\begin{array}{c|c|c|c}
\rho_{0,0} & \rho_{0,1} & \cdots & \rho_{0, n-1} \\
\hline 0 & \rho_{1,1} & \cdots & \rho_{1, n-1} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & \cdots & \rho_{n-1, n-1}
\end{array}\right)
$$

Steps	Comment				
$\begin{aligned} & \rho_{0,0}:=\left\\|a_{0}\right\\|_{2} \\ & q_{0}=: a_{0} / \rho_{0,0} \end{aligned}$	Compute the length of vector $a_{0}, \rho_{0,0}:=\left\\|a_{0}\right\\|_{2}$. Set $q_{0}:=a_{0} / \rho_{0,0}$, creating a unit vector in the direction of a_{0}. Clearly, $\operatorname{Span}\left(\left\{a_{0}\right\}\right)=\operatorname{Span}\left(\left\{q_{0}\right\}\right)$. (Why?)				
$\begin{aligned} & \rho_{0,1}=q_{0}^{H} a_{1} \\ & a_{1}^{\perp}=a_{1}-\rho_{0,1} q_{0} \\ & \rho_{1,1}=\left\\|a_{1}^{\perp}\right\\|_{2} \\ & q_{1}=a_{1}^{\perp} / \rho_{1,1} \end{aligned}$	Compute a_{1}^{\perp}, the component of vector a_{1} orthogonal to q_{0}. Compute $\rho_{1,1}$, the length of a_{1}^{\perp}. Set $q_{1}=a_{1}^{\perp} / \rho_{1,1}$, creating a unit vector in the direction of a_{1}^{\perp}. Now, q_{0} and q_{1} are mutually orthonormal and $\operatorname{Span}\left(\left\{a_{0}, a_{1}\right\}\right)=$ $\operatorname{Span}\left(\left\{q_{0}, q_{1}\right\}\right) .($ Why? $)$				
$\begin{aligned} & \rho_{0,2}=q_{0}^{H} a_{2} \\ & \rho_{1,2}=q_{1}^{H} a_{2} \\ & a_{2}^{\perp}=a_{2}-\rho_{0,2} q_{0}-\rho_{1,2} q_{1} \\ & \rho_{2,2}=\left\\|a_{2}^{\perp}\right\\|_{2} \\ & q_{2}=a_{2}^{\perp} / \rho_{2,2} \end{aligned}$	Compute a_{2}^{\perp}, the component of vector a_{2} orthogonal to q_{0} and q_{1}. Compute $\rho_{2,2}$, the length of a_{2}^{\perp}. Set $q_{2}=a_{2}^{\perp} / \rho_{2,2}$, creating a unit vector in the direction of a_{2}^{\perp}. Now, $\left\{q_{0}, q_{1}, q_{2}\right\}$ is an orthonormal basis and $\operatorname{Span}\left(\left\{a_{0}, a_{1}, a_{2}\right\}\right)=$ $\operatorname{Span}\left(\left\{q_{0}, q_{1}, q_{2}\right\}\right)$. (Why?)				
And so forth.					

Figure 1: Gram-Schmidt orthogonalization.

Figure 2: Three equivalent (Classical) Gram-Schmidt algorithms.
where

$$
q_{i}^{H} q_{j}=\left\{\begin{array}{ll}
1 & \text { for } i=j \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \rho_{i, j}= \begin{cases}q_{i}^{H} a_{j} & \text { for } i<j \\
\left\|a_{j}-\sum_{i=0}^{j-1} \rho_{i, j} q_{i}\right\|_{2} & \text { for } i=j \\
0 & \text { otherwise }\end{cases}\right.
$$

Thus, this relationship between the linearly independent vectors $\left\{a_{j}\right\}$ and the orthonormal vectors $\left\{q_{j}\right\}$ can be concisely stated as

$$
A=Q R
$$

where A and Q are $m \times n$ matrices $(m \geq n), Q^{H} Q=I$, and R is an $n \times n$ upper triangular matrix.

Theorem 3. Let A have linearly independent columns, $A=Q R$ where $A, Q \in \mathbb{C}^{m \times n}$ with $n \leq m, R \in \mathbb{C}^{n \times n}$, $Q^{H} Q=I$, and R is an upper triangular matrix with nonzero diagonal entries. Then, for $0<k<n$, the first k columns of A span the same space as the first k columns of Q.

Proof: Partition

$$
A \rightarrow\left(\begin{array}{l|l}
A_{L} & A_{R}
\end{array}\right), \quad Q \rightarrow\left(\begin{array}{c|c}
Q_{L} & Q_{R}
\end{array}\right), \quad \text { and } \quad R \rightarrow\left(\begin{array}{c|c}
R_{T L} & R_{T R} \\
\hline 0 & R_{B R}
\end{array}\right)
$$

where $A_{L}, Q_{L} \in \mathbb{C}^{m \times k}$ and $R_{T L} \in \mathbb{C}^{k \times k}$. Then $R_{T L}$ is nonsingular (since it is upper triangular and has no zero on its diagonal), $Q_{L}^{H} Q_{L}=I$, and $A_{L}=Q_{L} R_{T L}$. We want to show that $\mathcal{C}\left(A_{L}\right)=\mathcal{C}\left(Q_{L}\right)$:

- We first show that $\mathcal{C}\left(A_{L}\right) \subseteq \mathcal{C}\left(Q_{L}\right)$. Let $y \in \mathcal{C}\left(A_{L}\right)$. Then there exists $x \in \mathbb{C}^{k}$ such that $y=A_{L} x$. But then $y=Q_{L} z$, where $z=R_{T L} x \neq 0$, which means that $y \in \mathcal{C}\left(Q_{L}\right)$. Hence $\mathcal{C}\left(A_{L}\right) \subseteq \mathcal{C}\left(Q_{L}\right)$.
- We next show that $\mathcal{C}\left(Q_{L}\right) \subseteq \mathcal{C}\left(A_{L}\right)$. Let $y \in \mathcal{C}\left(Q_{L}\right)$. Then there exists $z \in \mathbb{C}^{k}$ such that $y=Q_{L} z$. But then $y=A_{L} x$, where $x=\bar{R}_{T L}^{-1} z$, from which we conclude that $y \in \mathcal{C}\left(A_{L}\right)$. Hence $\mathcal{C}\left(Q_{L}\right) \subseteq \mathcal{C}\left(A_{L}\right)$.

Since $\mathcal{C}\left(A_{L}\right) \subseteq \mathcal{C}\left(Q_{L}\right)$ and $\mathcal{C}\left(Q_{L}\right) \subseteq \mathcal{C}\left(A_{L}\right)$, we conclude that $\mathcal{C}\left(Q_{L}\right)=\mathcal{C}\left(A_{L}\right)$.

Theorem 4. Let $A \in \mathbb{C}^{m \times n}$ have linearly independent columns. Then there exist $Q \in \mathbb{C}^{m \times n}$ with $Q^{H} Q=I$ and upper triangular R with no zeroes on the diagonal such that $A=Q R$. This is known as the $\mathbf{Q R}$ factorization. If the diagonal elements of R are chosen to be real and positive, th QR factorization is unique.

Proof: (By induction). Note that $n \leq m$ since A has linearly independent columns.

- Base case: $n=1$. In this case $A=\left(a_{0}\right)$ where a_{0} is its only column. Since A has linearly independent columns, $a_{0} \neq 0$. Then

$$
A=\left(a_{0}\right)=\left(q_{0}\right)\left(\rho_{00}\right),
$$

where $\rho_{00}=\left\|a_{0}\right\|_{2}$ and $q_{0}=a_{0} / \rho_{00}$, so that $Q=\left(q_{0}\right)$ and $R=\left(\rho_{00}\right)$.

for $j=0, \ldots, n-1$

$\rho_{j, j}:=\left\|a_{j}^{\perp}\right\|_{2} \quad\left(\rho_{11}:=\left\|a_{1}^{\perp}\right\|_{2}\right)$
$q_{j}:=a_{j}^{\perp} / \rho_{j, j} \quad\left(q_{1}:=a_{1}^{\perp} / \rho_{11}\right)$
end

Figure 3: (Classical) Gram-Schmidt algorithm for computing the QR factorization of a matrix A.

- Inductive step: Assume that the result is true for all A with $n-1$ linearly independent columns. We will show it is true for $A \in \mathbb{C}^{m \times n}$ with linearly independent columns.
Let $A \in \mathbb{C}^{m \times n}$. Partition $A \rightarrow\left(A_{0} \mid a_{1}\right)$. By the induction hypothesis, there exist Q_{0} and R_{00} such that $Q_{0}^{H} Q_{0}=I, R_{00}$ is upper triangular with nonzero diagonal entries and $A_{0}=Q_{0} R_{00}$. Now, compute $r_{01}=Q_{0}^{H} a_{1}$ and $a_{1}^{\perp}=a_{1}-Q_{0} r_{01}$, the component of a_{1} orthogonal to $\mathcal{C}\left(Q_{0}\right)$. Because the columns of A are linearly independent, $a_{1}^{\perp} \neq 0$. Let $\rho_{11}=\left\|a_{1}^{\perp}\right\|_{2}$ and $q_{1}=a_{1}^{\perp} / \rho_{11}$. Then

$$
\left.\begin{array}{rl}
\left(Q_{0} \mid q_{1}\right.
\end{array}\right)\left(\begin{array}{c|c}
R_{00} & r_{01} \\
\hline 0 & \rho_{11}
\end{array}\right)=\left(Q_{0} R_{00} \mid Q_{0} r_{01}+q_{1} \rho_{11}\right) .
$$

Hence $Q=\left(\begin{array}{c|c}Q_{0} & q_{1}\end{array}\right)$ and $R=\left(\begin{array}{c|c}R_{00} & r_{01} \\ \hline 0 & \rho_{11}\end{array}\right)$.

- By the Principle of Mathematical Induction the result holds for all matrices $A \in \mathbb{C}^{m \times n}$ with $m \geq n$.

The proof motivates the algorithm in Figure 3 (left) in FLAME notation ${ }^{1}$.
An alternative for motivating that algorithm is as follows: Consider $A=Q R$. Partition A, Q, and R to yield

$$
\left(\begin{array}{c|c|c}
A_{0} & a_{1} & A_{2}
\end{array}\right)=\left(\begin{array}{c|c|c}
Q_{0} & q_{1} \mid Q_{2}
\end{array}\right)\left(\begin{array}{c|c|c}
R_{00} & r_{01} & R_{02} \\
\hline 0 & \rho_{11} & r_{12}^{T} \\
\hline 0 & 0 & R_{22}
\end{array}\right)
$$

Assume that Q_{0} and R_{00} have already been computed. Since corresponding columns of both sides must be equal, we find that

$$
\begin{equation*}
a_{1}=Q_{0} r_{01}+q_{1} \rho_{11} \tag{1}
\end{equation*}
$$

Also, $Q_{0}^{H} Q_{0}=I$ and $Q_{0}^{H} q_{1}=0$, since the columns of Q are mutually orthonormal. Hence $Q_{0}^{H} a_{1}=$ $Q_{0}^{H} Q_{0} r_{01}+Q_{0}^{H} q_{1} \rho_{11}=r_{01}$. This shows how r_{01} can be computed from Q_{0} and a_{1}, which are already known. Next, $a_{1}^{\perp}=a_{1}-Q_{0} r_{01}$ is computed from (1). This is the component of a_{1} that is perpendicular to the columns of Q_{0}. We know it is nonzero since the columns of A are linearly independent. Since $\rho_{11} q_{1}=a_{1}^{\perp}$ and we know that q_{1} has unit length, we now compute $\rho_{11}=\left\|a_{1}^{\perp}\right\|_{2}$ and $q_{1}=a_{1}^{\perp} / \rho_{11}$, which completes a derivation of the algorithm in Figure 3.

Exercise 5. Let A have linearly independent columns and let $A=Q R$ be a QR factorization of A. Partition

$$
A \rightarrow\left(\begin{array}{c|c}
A_{L} & A_{R}
\end{array}\right), \quad Q \rightarrow\left(\begin{array}{c|c}
Q_{L} & Q_{R}
\end{array}\right), \quad \text { and } \quad R \rightarrow\left(\begin{array}{c|c}
R_{T L} & R_{T R} \\
\hline 0 & R_{B R}
\end{array}\right)
$$

where A_{L} and Q_{L} have k columns and $R_{T L}$ is $k \times k$. Show that

1. $A_{L}=Q_{L} R_{T L}: Q_{L} R_{T L}$ equals the QR factorization of A_{L},
2. $\mathcal{C}\left(A_{L}\right)=\mathcal{C}\left(Q_{L}\right)$: the first k columns of Q form an orthonormal basis for the space spanned by the first k columns of A.
3. $R_{T R}=Q_{L}^{H} A_{R}$,
4. $\left(A_{R}-Q_{L} R_{T R}\right)^{H} Q_{L}=0$,
5. $A_{R}-Q_{L} R_{T R}=Q_{R} R_{B R}$, and
6. $\mathcal{C}\left(A_{R}-Q_{L} R_{T R}\right)=\mathcal{C}\left(Q_{R}\right)$.

2 Modified Gram-Schmidt process

We start by considering the following problem: Given $y \in \mathbb{C}^{m}$ and $Q \in \mathbb{C}^{m \times k}$ with orthonormal columns, compute y^{\perp}, the component of y orthogonal to the columns of Q. This is a key step in the Gram-Schmidt process in Figure 3.

Recall that if A has linearly independent columns, then $A\left(A^{H} A\right)^{-1} A^{H} y$ equals the projection of y onto the columns space of A (i.e., the component of y in $\mathcal{C}(A))$ and $y-A\left(A^{H} A\right)^{-1} A^{H} y=\left(I-A\left(A^{H} A\right)^{-1} A^{H}\right) y$ equals the component of y orthogonal to $\mathcal{C}(A)$. If Q has orthonormal columns, then $Q^{H} Q=I$ and hence

[^0]| $\begin{aligned} & {\left[y^{\perp}, r\right]=\text { Proj_orthog_to_Q } \mathrm{Q}_{\mathrm{CGS}}(Q, y)} \\ & \text { (used by classical Gram-Schmidt) } \end{aligned}$ | $\begin{aligned} & {\left[y^{\perp}, r\right]=\text { Proj_orthog_to_Q } \mathrm{Q}_{\mathrm{MGS}}(Q, y)} \\ & \text { (used by modified Gram-Schmidt) } \end{aligned}$ |
| :---: | :---: |
| $\begin{aligned} & y^{\perp}=y \\ & \text { for } i=0, \ldots, k-1 \\ & \quad \rho_{i}:=q_{i}^{H} y \\ & y^{\perp}:=y^{\perp}-\rho_{i} q_{i} \end{aligned}$ endfor | $\begin{aligned} & y^{\perp}=y \\ & \text { for } i=0, \ldots, k-1 \\ & \quad \rho_{i}:=q_{i}^{H} y^{\perp} \\ & \quad y^{\perp}:=y^{\perp}-\rho_{i} q_{i} \\ & \text { endfor } \end{aligned}$ |

Figure 4: Two different ways of computing $y^{\perp}=\left(I-Q Q^{H}\right) y$, the component of y orthogonal to $\mathcal{C}(Q)$, where Q has k orthonormal columns.

$$
\begin{aligned}
& \text { Algorithm: }[A R]:=\operatorname{Gram-Schmidt}(A) \quad \text { (overwrites } A \text { with } Q \text {) } \\
& \text { Partition } A \rightarrow\left(\begin{array}{l|l}
A_{L} \mid & A_{R}
\end{array}\right), R \rightarrow\left(\begin{array}{c|c}
R_{T L} & R_{T R} \\
\hline 0 & R_{B R}
\end{array}\right) \\
& \text { where } A_{L} \text { has } 0 \text { columns and } R_{T L} \text { is } 0 \times 0 \\
& \text { while } n\left(A_{L}\right) \neq n(A) \text { do } \\
& \left(\begin{array}{l|l}
A_{L} & A_{R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
A_{0}\left|a_{1}\right| A_{2}
\end{array}\right),\left(\begin{array}{c|c|c|c}
R_{T L} & R_{T R} \\
\hline 0 & R_{B R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
R_{00} & r_{01} & R_{02} \\
\hline 0 & \rho_{11} & r_{12}^{T} \\
\hline 0 & 0 & R_{22}
\end{array}\right) \\
& \text { where } a_{1} \text { and } q_{1} \text { are columns, } \rho_{11} \text { is a scalar } \\
& \left(\begin{array}{c|c|c}
A_{L} & A_{R}
\end{array}\right) \leftarrow\left(\begin{array}{l|l|l}
A_{0} & a_{1} \mid A_{2}
\end{array}\right),\left(\begin{array}{c|c|c|c}
R_{T L} & R_{T R} \\
\hline 0 & R_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{ccc|c}
R_{00} & r_{01} & R_{02} \\
\hline 0 & \rho_{11} & r_{12}^{T} \\
\hline 0 & 0 & R_{22}
\end{array}\right) \\
& \text { endwhile }
\end{aligned}
$$

Figure 5: Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right: Modified Gram-Schmidt algorithm where every time a new column of Q, q_{1} is computed the component of all future columns in the direction of this new vector are subtracted out.
$Q Q^{H} y$ equals the projection of y onto the columns space of Q (i.e., the component of y in $\mathcal{C}(Q)$) and $y-Q Q^{H} y=\left(I-Q Q^{H}\right) y$ equals the component of y orthogonal to $\mathcal{C}(A)$.

Thus, mathematically, the solution to the stated problem is given by

$$
\begin{aligned}
y^{\perp} & =\left(I-Q Q^{H}\right) y=y-Q Q^{H} y \\
& =y-\left(q_{0}|\cdots| q_{k-1}\right)\left(q_{0}|\cdots| q_{k-1}\right)^{H} y
\end{aligned}
$$

$$
\begin{aligned}
& =y-\left(q_{0}|\cdots| q_{k-1}\right)\binom{\frac{q_{0}^{H}}{\vdots}}{q_{k-1}^{H}} y \\
& =y-\left(q_{0}|\cdots| q_{k-1}\right)\left(\frac{q_{0}^{H} y}{\vdots} \frac{q_{k-1}^{H} y}{}\right) \\
& =y-\left[\left(q_{0}^{H} y\right) q_{0}+\cdots+\left(q_{k-1}^{H} y\right) q_{k-1}\right] \\
& =y-\left(q_{0}^{H} y\right) q_{0}-\cdots-\left(q_{k-1}^{H} y\right) q_{k-1}
\end{aligned}
$$

This can be computed by the algorithm in Figure 4 (left) and is used by what is often called the Classical Gram-Schmidt (CGS) algorithm given in Figure 3.

An alternative algorithm for computing y^{\perp} is given in Figure 4 (right) and is used by the Modified Gram-Schmidt (MGS) algorithm also given in Figure 5. This approach is mathematically equivalent to the algorithm to its left for the following reason:

The algorithm on the left in Figure 4 computes

$$
y^{\perp}:=y-\left(q_{0}^{H} y\right) q_{0}-\cdots-\left(q_{k-1}^{H} y\right) q_{k-1}
$$

by in the i th step computing the component of y in the direction of $q_{i},\left(q_{i}^{H} y\right) q_{i}$, and then subtracting this off the vector y^{\perp} that already contains

$$
y^{\perp}=y-\left(q_{0}^{H} y\right) q_{0}-\cdots-\left(q_{i-1}^{H} y\right) q_{i-1}
$$

leaving us with

$$
y^{\perp}=y-\left(q_{0}^{H} y\right) q_{0}-\cdots-\left(q_{i-1}^{H} y\right) q_{i-1}-\left(q_{i}^{H} y\right) q_{i} .
$$

Now, notice that

$$
\begin{aligned}
q_{i}^{H}\left[y-\left(q_{0}^{H} y\right) q_{0}-\cdots-\left(q_{i-1}^{H} y\right) q_{i-1}\right] & =q_{i}^{H} y-q_{i}^{H}\left(q_{0}^{H} y\right) q_{0}-\cdots-q_{i}^{H}\left(q_{i-1}^{H} y\right) q_{i-1} \\
& =q_{i}^{H} y-\left(q_{0}^{H} y\right) \underbrace{q_{i}^{H} q_{0}}_{0}-\cdots-\left(q_{i-1}^{H} y\right) \underbrace{q_{i}^{H} q_{i-1}}_{0} \\
& =q_{i}^{H} y .
\end{aligned}
$$

What this means is that we can use y^{\perp} in our computation of ρ_{i} instead:

$$
\rho_{i}:=q_{i}^{H} y^{\perp}=q_{i}^{H} y
$$

an insight that justifies the equivalent algorithm in Figure 4 (right).
Next, we massage the MGS algorithm into the third (right-most) algorithm given in Figure 5. For this, consider the equivalent algorithms in Figure 6 and 7.

3 In Practice, MGS is More Accurate

In theory, all Gram-Schmidt algorithms discussed in the previous sections are equivalent: they compute the exact same QR factorizations. In practice, in the presense of round-off error, MGS is more accurate than CGS. We will (hopefully) get into detail about this later, but for now we will illustrate it with a classic example.

When storing real (or complex for that matter) valued numbers in a computer, a limited accuracy can be maintained, leading to round-off error when a number is stored and/or when computation with numbers

```
for \(j=0, \ldots, n-1\)
    \(a_{j}^{\perp}:=a_{j}\)
    for \(k=0, \ldots, j-1\)
        \(\rho_{k, j}:=q_{k}^{H} a_{j}^{\perp}\)
        \(a_{j}^{\perp}:=a_{j}^{\perp}-\rho_{k, j} q_{k}\)
    end
    \(\rho_{j, j}:=\left\|a_{j}^{\perp}\right\|_{2}\)
    \(q_{j}:=a_{j}^{\perp} / \rho_{j, j}\)
end
```

(a) MGS algorithm that computes Q and R from A.
for $j=0, \ldots, n-1$
for $k=0, \ldots, j-1$
$\rho_{k, j}:=a_{k}^{H} a_{j}$
$a_{j}:=a_{j}-\rho_{k, j} a_{k}$
end
$\rho_{j, j}:=\left\|a_{j}\right\|_{2}$
$a_{j}:=a_{j} / \rho_{j, j}$
end
(b) MGS algorithm that computes Q and R from A, overwriting A with Q.
for $j=0, \ldots, n-1$
for $j=0, \ldots, n-1$
$\rho_{j, j}:=\left\|a_{j}\right\|_{2}$
$\rho_{j, j}:=\left\|a_{j}\right\|_{2}$
$a_{j}:=a_{j} / \rho_{j, j}$
for $k=j+1, \ldots, n-1$
$a_{j}:=a_{j} / \rho_{j, j}$

$$
\rho_{j, k}:=a_{j}^{H} a_{k}
$$

$$
a_{k}:=a_{k}-\rho_{j, j} a_{j}
$$

end
end
(c) MGS algorithm that normalizes the j th column to have unit length to compute q_{j} (overwriting a_{j} with the result) and then subtracts the component in the direction of q_{j} off the rest of the columns $\left(a_{j+1}, \ldots, a_{n-1}\right)$.
for $j=0, \ldots, n-1$

$$
\begin{aligned}
& \rho_{j, j}:=\left\|a_{j}\right\|_{2} \\
& a_{j}:=a_{j} / \rho_{j, j} \\
& \left(\begin{array}{c}
\rho_{j, j+1}|\cdots| \rho_{j, n-1}
\end{array}\right):= \\
& \quad\left(\begin{array}{l}
a_{j}^{H} a_{j+1}|\cdots| a_{j}^{H} a_{n-1}
\end{array}\right) \\
& \left(\begin{array}{l}
\left.a_{j+1}|\cdots| a_{n-1}\right):= \\
\quad\left(a_{j+1}-\rho_{j, j+1} a_{j}|\cdots| a_{n-1}-\rho_{j, n-1} a_{j}\right)
\end{array}\right.
\end{aligned}
$$

end
(e) Algorithm in (d) rewritten without loops.
for $k=j+1, \ldots, n-1$

$$
\rho_{j, k}:=a_{j}^{H} a_{k}
$$

end
for $k=j+1, \ldots, n-1$ $a_{k}:=a_{k}-\rho_{j, k} a_{j}$
end
end
(d) Slight modification of the algorithm in (c) that computes $\rho_{j, k}$ in a separate loop.

$$
\begin{aligned}
& \text { for } j=0, \ldots, n-1 \\
& \rho_{j, j}:=\left\|a_{j}\right\|_{2} \\
& a_{j}:=a_{j} / \rho_{j, j} \\
& \left(\begin{array}{c|c|c}
\rho_{j, j+1} & \cdots & \rho_{j, n-1}
\end{array}\right):= \\
& a_{j}^{H}\left(\begin{array}{l|l|l}
a_{j+1} & \cdots & a_{n-1}
\end{array}\right) \\
& \left(a_{j+1}|\cdots| a_{n-1}\right):= \\
& \left(\begin{array}{c|c|c}
a_{j+1} & \cdots & a_{n-1}
\end{array}\right)-a_{j}\left(\begin{array}{l}
\rho_{j, j+1} \\
\\
\cdots
\end{array} \rho_{j, n-1}\right) \\
& \text { end }
\end{aligned}
$$

(f) Algorithm in (e) rewritten to expose the row-vector-times matrix multiplication $a_{j}^{H}\left(a_{j+1}|\cdots| a_{n-1}\right)$ and rank-1 update $\left(\begin{array}{c|c|c}a_{j+1} & \cdots & \left.a_{n-1}\right)-a_{j}\left(\rho_{j, j+1}|\cdots| \rho_{j, n-1}\right) .\end{array}\right.$

Figure 6: Various equivalent MGS algorithms.

```
Algorithm: \([A, R]:=\mathrm{QR}(A)\)
Partition \(A \rightarrow\left(A_{L} \mid A_{R}\right)\),
\(R \rightarrow\left(\begin{array}{c|c}R_{T L} & R_{T R} \\ \hline 0 & R_{B R}\end{array}\right)\)
    where \(A_{L}\) and \(Q_{L}\) has 0 columns and
                    \(R_{T L}\) is \(0 \times 0\)
while \(n\left(A_{L}\right) \neq n(A)\) do
    Repartition
        \(\left(\begin{array}{c|c}A_{L} & A_{R}\end{array}\right) \rightarrow\left(\begin{array}{l|l|l}A_{0} & a_{1} & A_{2}\end{array}\right)\),
        \(\left(\begin{array}{c|c}R_{T L} & R_{T R} \\ \hline 0 & R_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}R_{00} & r_{01} & R_{02} \\ \hline 0 & \rho_{11} & r_{12}^{T} \\ \hline 0 & 0 & R_{22}\end{array}\right)\)
        where \(a_{1}\) is a column, \(\rho_{11}\) is a scalar
        \(\rho_{11}:=\left\|a_{1}\right\|_{2}\)
        \(a_{1}:=a_{1} / \rho_{11}\)
        \(r_{12}^{T}:=a_{1}^{H} A_{2}\)
        \(A_{2}:=A_{2}-a_{1} r_{12}^{T}\)
    \(\left.\begin{array}{l}\text { Continue with } \\ A_{L} \mid A_{R}\end{array}\right) \leftarrow\left(\begin{array}{l|l|l}A_{0} & a_{1} & A_{2}\end{array}\right)\)
        \(\left(\begin{array}{c|c}A_{L} & A_{R}\end{array}\right) \leftarrow\left(\begin{array}{c|c|c|c}A_{0} & a_{1} & A_{2}\end{array}\right)\)
\(\left(\begin{array}{c|c|c|c}R_{T L} & R_{T R} \\ \hline 0 & R_{B R}\end{array}\right) \leftarrow\left(\begin{array}{cc|c}R_{00} & r_{01} & R_{02} \\ \hline 0 & \rho_{11} & r_{12}^{T} \\ \hline 0 & 0 & R_{22}\end{array}\right)\)
    endwhile
```

$$
\begin{aligned}
& \text { for } j=0, \ldots, n-1 \\
& \begin{array}{ll}
\rho_{j, j}:=\left\|a_{j}\right\|_{2} & \left(\rho_{11}:=\left\|a_{1}^{\perp}\right\|_{2}\right) \\
a_{j}:=a_{j} / \rho_{j, j} & \left(a_{1}:=a_{1} / \rho_{11}\right)
\end{array} \\
& \overbrace{\left(\rho_{j, j+1}|\cdots| \rho_{j, n-1}\right)}^{r_{12}^{T}}:= \\
& \underbrace{a_{j}^{H}}_{a_{1}^{H}} \underbrace{\left(a_{j+1}|\cdots| a_{n-1}\right)}_{A_{2}} \\
& \overbrace{\left(a_{j+1}|\cdots| a_{n-1}\right)}^{A_{2}}:=\overbrace{\left(a_{j+1}|\cdots| a_{n-1}\right)}^{A_{2}} \\
& -\underbrace{a_{j}}_{a_{1}} \underbrace{\left(\rho_{j, j+1}|\cdots| \rho_{j, n-1}\right)}_{r_{12}^{T}}
\end{aligned}
$$

end

Figure 7: Modified Gram-Schmidt algorithm for computing the QR factorization of a matrix A.
are performed. The machine epsilon or unit roundoff error is defined as the largest positive number $\epsilon_{\text {mach }}$ such that the stored value of $1+\epsilon_{\text {mach }}$ is rounded to 1 . Now, let us consider a computer where the only error that is ever incurred is when $1+\epsilon_{\text {mach }}$ is computed and rounded to 1 . Let $\epsilon=\sqrt{\epsilon_{\text {mach }}}$ and consider the matrix

$$
A=\left(\begin{array}{c|c|c}
1 & 1 & 1 \tag{2}\\
\epsilon & 0 & 0 \\
0 & \epsilon & 0 \\
0 & 0 & \epsilon
\end{array}\right)=\left(\begin{array}{l|l|l}
a_{0} & a_{1} & a_{2}
\end{array}\right)
$$

In Figure 8 (left) we execute the CGS algorithm. It yields the approximate matrix

$$
Q \approx\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & \frac{\sqrt{2}}{2}
\end{array}\right)
$$

If we now ask the question "Are the columns of Q orthonormal?" we can check this by computing $Q^{H} Q$,

First iteration
$\rho_{0,0}=\left\|a_{0}\right\|_{2}=\sqrt{1+\epsilon^{2}}=\sqrt{1+\epsilon_{\mathrm{mach}}}$
which is rounded to 1 .
$q_{0}=a_{0} / \rho_{0,0}=\left(\begin{array}{l}1 \\ \epsilon \\ 0 \\ 0\end{array}\right) / 1=\left(\begin{array}{c}1 \\ \epsilon \\ 0 \\ 0\end{array}\right)$
Second iteration
$\rho_{0,1}=q_{0}^{H} a_{1}=1$
$a_{1}^{\perp}=a_{1}-\rho_{0,1} q_{0}=\left(\begin{array}{c}0 \\ -\epsilon \\ \epsilon \\ 0\end{array}\right)$
$\rho_{1,1}=\left\|a_{1}^{\perp}\right\|_{2}=\sqrt{2 \epsilon^{2}}=\sqrt{2} \epsilon$
$q_{1}=a_{1}^{\perp} / \rho_{1,1}=\left(\begin{array}{c}0 \\ -\epsilon \\ \epsilon \\ 0\end{array}\right) /(\sqrt{2} \epsilon)=\left(\begin{array}{c}0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0\end{array}\right)$
Third iteration
$\rho_{0,2}=q_{0}^{H} a_{2}=1$
$\rho_{1,2}=q_{1}^{H} a_{2}=0$
$a_{2}^{\perp}=a_{2}-\rho_{0,2} q_{0}-\rho_{1,2} q_{1}=\left(\begin{array}{c}0 \\ -\epsilon \\ 0 \\ \epsilon\end{array}\right)$
$\rho_{2,2}=\left\|a_{2}^{\perp}\right\|_{2}=\sqrt{2 \epsilon^{2}}=\sqrt{2} \epsilon$
$q_{2}=a_{2}^{\perp} / \rho_{2,2}=\left(\begin{array}{c}0 \\ -\epsilon \\ 0 \\ \epsilon\end{array}\right) /(\sqrt{2} \epsilon)=\left(\begin{array}{c}0 \\ -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2}\end{array}\right)$

First iteration

$\rho_{0,0}=\left\|a_{0}\right\|_{2}=\sqrt{1+\epsilon^{2}}=\sqrt{1+\epsilon_{\mathrm{mach}}}$ which is rounded to 1 .
$q_{0}=a_{0} / \rho_{0,0}=\left(\begin{array}{c}1 \\ \epsilon \\ 0 \\ 0\end{array}\right) / 1=\left(\begin{array}{c}1 \\ \epsilon \\ 0 \\ 0\end{array}\right)$
Second iteration
$\rho_{0,1}=q_{0}^{H} a_{1}=1$
$a_{1}^{\perp}=a_{1}-\rho_{0,1} q_{0}=\left(\begin{array}{c}0 \\ -\epsilon \\ \epsilon \\ 0\end{array}\right)$
$\rho_{1,1}=\left\|a_{1}^{\perp}\right\|_{2}=\sqrt{2 \epsilon^{2}}=\sqrt{2} \epsilon$
$q_{1}=a_{1}^{\perp} / \rho_{1,1}=\left(\begin{array}{c}0 \\ -\epsilon \\ \epsilon \\ 0\end{array}\right) /(\sqrt{2} \epsilon)=\left(\begin{array}{c}0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0\end{array}\right)$

Third iteration

$$
\rho_{0,2}=q_{0}^{H} a_{2}=1
$$

$a_{2}^{\perp}=a_{2}-\rho_{0,2} q_{0}=\left(\begin{array}{c}0 \\ -\epsilon \\ 0 \\ \epsilon\end{array}\right)$
$\rho_{1,2}=q_{1}^{H} a_{2}^{\perp}=(\sqrt{2} / 2) \epsilon$
$a_{2}^{\perp}=a_{2}^{\perp}-\rho_{1,2} q_{1}=\left(\begin{array}{c}0 \\ -\epsilon / 2 \\ -\epsilon / 2 \\ \epsilon\end{array}\right)$
$\rho_{2,2}=\left\|a_{2}^{\perp}\right\|_{2}=\sqrt{(6 / 4) \epsilon^{2}}=(\sqrt{6} / 2) \epsilon$
$q_{2}=a_{2}^{\perp} / \rho_{2,2}=\left(\begin{array}{c}0 \\ -\frac{\epsilon}{2} \\ -\frac{\epsilon}{2} \\ \epsilon\end{array}\right) /\left(\frac{\sqrt{6}}{2} \epsilon\right)=\left(\begin{array}{c}0 \\ \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} \\ -\frac{2 \sqrt{6}}{6}\end{array}\right)$

Figure 8: Execution of the CGS algorith (left) and MGS algorithm (right) on the example in Eqn. (2).
which should equal I, the identity. But

$$
Q^{H} Q=\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & \frac{\sqrt{2}}{2}
\end{array}\right)^{H}\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & \frac{\sqrt{2}}{2}
\end{array}\right)=\left(\begin{array}{ccc}
1+\epsilon_{\operatorname{mach}} & -\frac{\sqrt{2}}{2} \epsilon & -\frac{\sqrt{2}}{2} \epsilon \\
-\frac{\sqrt{2}}{2} \epsilon & 1 & \frac{1}{2} \\
-\frac{\sqrt{2}}{2} \epsilon & \frac{1}{2} & 1
\end{array}\right)
$$

Clearly, the computed columns of Q are not mutually orthogonal.
Similarly, in Figure 8 (right) we execute the MGS algorithm. It yields the approximate matrix

$$
Q \approx\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\
0 & 0 & \frac{2 \sqrt{6}}{6}
\end{array}\right)
$$

If we now ask the question "Are the columns of Q orthonormal?" we can check if $Q^{H} Q=I$. The answer:

$$
Q^{H} Q=\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\
0 & 0 & \frac{2 \sqrt{6}}{6}
\end{array}\right)^{H}\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
\epsilon & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\
0 & 0 & \frac{2 \sqrt{6}}{6}
\end{array}\right)=\left(\begin{array}{ccc}
1+\epsilon_{\operatorname{mach}} & -\frac{\sqrt{2}}{2} \epsilon & -\frac{\sqrt{6}}{6} \epsilon \\
-\frac{\sqrt{2}}{2} \epsilon & 1 & 0 \\
-\frac{\sqrt{6}}{6} \epsilon & 0 & 1
\end{array}\right),
$$

which shows that for this example MGS yields better orthogonality than does CGS. What is going on? The answer lies with how a_{2}^{\perp} is computed in the last step of each of the algorithms.

- In the CGS algorithm, we find that

$$
a_{2}^{\perp}:=a_{2}-\left(q_{0}^{H} a_{2}\right) q_{0}-\left(q_{1}^{H} a_{2}\right) q_{1}
$$

Now, q_{0} has a relatively small error in it and hence $q_{0}^{H} a_{2} q_{0}$ has a relatively) small error in it. It is likely that a part of that error is in the direction of q_{1}. Relative to $q_{0}^{H} a_{2} q_{0}$, that error in the direction of q_{1} is small, but relative to $a_{2}-q_{0}^{H} a_{2} q_{0}$ it is not. The point is that then $a_{2}-q_{0}^{H} a_{2} q_{0}$ has a relatively large error in it in the direction of q_{1}. Subtracting $q_{1}^{H} a_{2} q_{1}$ does not fix this and since in the end a_{2}^{\perp} is small, it has a relatively large error in the direction of q_{1}. This error is amplified when q_{2} is computed by normalizing a_{2}^{\perp}.

- In the MGS algorithm, we find that

$$
a_{2}^{\perp}:=a_{2}-\left(q_{0}^{H} a_{2}\right) q_{0}
$$

after which

$$
a_{2}^{\perp}:=a_{2}^{\perp}-q_{1}^{H} a_{2}^{\perp} q_{1}=\left[a_{2}-\left(q_{0}^{H} a_{2}\right) q_{0}\right]-\left(q_{1}^{H}\left[a_{2}-\left(q_{0}^{H} a_{2}\right) q_{0}\right]\right) q_{1} .
$$

This time, if $a_{2}-q_{1}^{H} a_{2}^{\perp} q_{1}$ has an error in the direction of q_{1}, this error is subtracted out when $\left(q_{1}^{H} a_{2}^{\perp}\right) q_{1}$ is subtracted from a_{2}^{\perp}. This explains the better orthogonality between the computed vectors q_{1} and q_{2}.

Obviously, we have argued via an example that MGS is more accurage than CGS. A more thorough analysis is needed to explain why this is generally so. This is beyond the scope of this note.

4 Modified Gram-Schmidt process

Let us examine the cost of computing the QR factorization of an $m \times n$ matrix A. We will count multiplies and an adds as each as one floating point operation.

We start by reviewing the cost, in floating point operations (flops), of various vector-vector and matrixvector operations:

Name	Operation	Approximate cost (in flops)		
Vector-vector operations $\left(x, y \in \mathbb{C}^{n}, \alpha \in \mathbb{C}\right)$				
Dot	$\alpha:=x^{H} y$	$2 n$		
Axpy	$y:=\alpha x+y$	$2 n$		
Scal	$x:=\alpha x$	n		
Nrm2	$\alpha:=\left\\|a_{1}\right\\|_{2}$	$2 n$		
Matrix-vector operations $\left(A \in \mathbb{C}^{m \times n}, \alpha, \beta \in \mathbb{C}\right.$, with x and y vectors of appropriate size)				
Matrix-vector multiplication (Gemv)	$y:=\alpha A x+\beta y$	$2 m n$		
	$y:=\alpha A^{H} x+\beta y$	$2 m n$		
Rank-1 update (Ger)	$A:=\alpha y x^{H}+A$	$2 m n$		

Now, consider the algorithms in Figure 5. Notice that the columns of A are of size m. During the k th iteration $(0 \leq k<n)$, A_{0} has k columns and A_{2} has $n-k-1$ columns.

4.1 Cost of CGS

Operation	Approximate cost (in flops)		
$r_{01}:=A_{0}^{H} a_{1}$	$2 m k$		
$a_{1}:=a_{1}-A_{0} r_{01}$	$2 m k$		
$\rho_{11}:=\left\\|a_{1}\right\\|_{2}$	$2 m$		
$a_{1}:=a_{1} / \rho_{11}$	m		

Thus, the total cost is (approximately)

$$
\begin{array}{rlrl}
\sum_{k=0}^{n-1}[2 m k+ & 2 m k+2 m+m] & \\
& =\sum_{k=0}^{n-1}[3 m+4 m k] & \\
& =3 m n+4 m \sum_{k=0}^{n-1} k & & \\
& \approx 3 m n+4 m \frac{n^{2}}{2} & & \left(\sum_{k=0}^{n-1} k=n(n-1) / 2 \approx n^{2} / 2\right. \\
& =3 m n+2 m n^{2} & & \\
& \approx 2 m n^{2} & (3 m n \text { is of lower order }) .
\end{array}
$$

4.2 Cost of MGS

Operation	Approximate cost (in flops)		
$\rho_{11}:=\left\\|a_{1}\right\\|_{2}$	$2 m$		
$a_{1}:=a_{1} / \rho_{11}$	m		
$r_{12}^{T}:=a_{1}^{H} A_{2}$	$2 m(n-k-1)$		
$A_{2}:=A_{2}-a_{1} r_{12}^{T}$	$2 m(n-k-1)$		

Thus, the total cost is (approximately)

$$
\begin{aligned}
\sum_{k=0}^{n-1}[2 m+ & m+2 m(n-k-1)+2 m(n-k-1)] & & \\
& =\sum_{k=0}^{n-1}[3 m+4 m(n-k-1)] & & \\
& =3 m n+4 m \sum_{k=0}^{n-1}(n-k-1) & & (\text { Change of variable: } i=n-k-1) \\
& =3 m n+4 m \sum_{i=0}^{n-1} i & & \left(\sum_{i=0}^{n-1} i=n(n-1) / 2 \approx n^{2} / 2\right. \\
& \approx 3 m n+4 m \frac{n^{2}}{2} & & \\
& =3 m n+2 m n^{2} & & \approx 2 m n^{2}
\end{aligned} \quad \begin{aligned}
& \text { (3mn of lower order }) .
\end{aligned}
$$

[^0]: 1 The FLAME notation should be intuitively obvious. If it is not, you may want to review the earlier weeks in Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

