
Notes on Gram-Schmidt QR Factorization

Robert A. van de Geijn

Department of Computer Science

The University of Texas

Austin, TX 78712

rvdg@cs.utexas.edu

September 15, 2014

A classic problem in linear algebra is the computation of an orthonormal basis for the space spanned by
a given set of linearly independent vectors: Given a linearly independent set of vectors {a0, . . . , an−1} ⊂ Cm

we would like to find a set of mutually orthonormal vectors {q0, . . . , qn−1} ⊂ Cm so that

Span({a0, . . . , an−1}) = Span({q0, . . . , qn−1}).

This problem is equivalent to the problem of, given a matrix A =
(

a0 · · · an−1

)
, computing a matrix

Q =
(

q0 · · · qn−1

)
with QHQ = I so that C(A) = C(Q), where (A) denotes the column space of A.

A review at the undergraduate level of this topic (with animated illustrations) can be found in Week 11
of

Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

1 Classical Gram-Schmidt process

Given a set of linearly independent vectors {a0, . . . , an−1} ⊂ Cm, the Gram-Schmidt process computes an
orthonormal basis {q0, . . . , qn−1} that span the same subspace, i.e.

Span({a0, . . . , an−1}) = Span({q0, . . . , qn−1}).

The process proceeds as described in Figure 1 and in the algorithms in Figure 2.

Exercise 1. What happens in the Gram-Schmidt algorithm if the columns of A are NOT linearly independent?
How might one fix this? How can the Gram-Schmidt algorithm be used to identify which columns of A are
linearly independent?

Exercise 2. Convince yourself that the relation between the vectors {aj} and {qj} in the algorithms in Figure 2
is given by

(
a0 a1 · · · an−1

)
=
(

q0 q1 · · · qn−1

)

ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1

...
...

. . .
...

0 0 · · · ρn−1,n−1

 ,

1

Steps Comment

ρ0,0 := ∥a0∥2
q0 =: a0/ρ0,0

Compute the length of vector a0, ρ0,0 := ∥a0∥2.
Set q0 := a0/ρ0,0, creating a unit vector in the direction of a0.

Clearly, Span({a0}) = Span({q0}). (Why?)

ρ0,1 = qH0 a1

a⊥1 = a1 − ρ0,1q0

ρ1,1 = ∥a⊥1 ∥2
q1 = a⊥1 /ρ1,1

Compute a⊥1 , the component of vector a1 orthogonal to q0.

Compute ρ1,1, the length of a⊥1 .

Set q1 = a⊥1 /ρ1,1, creating a unit vector in the direction of a⊥1 .

Now, q0 and q1 are mutually orthonormal and Span({a0, a1}) =
Span({q0, q1}). (Why?)

ρ0,2 = qH0 a2

ρ1,2 = qH1 a2

a⊥2 = a2 − ρ0,2q0 − ρ1,2q1

ρ2,2 = ∥a⊥2 ∥2
q2 = a⊥2 /ρ2,2

Compute a⊥2 , the component of vector a2 orthogonal to q0 and q1.

Compute ρ2,2, the length of a⊥2 .

Set q2 = a⊥2 /ρ2,2, creating a unit vector in the direction of a⊥2 .

Now, {q0, q1, q2} is an orthonormal basis and Span({a0, a1, a2}) =
Span({q0, q1, q2}). (Why?)

And so forth.

Figure 1: Gram-Schmidt orthogonalization.

for j = 0, . . . , n− 1

a⊥j := aj
for k = 0, . . . , j − 1

ρk,j := qHk aj
a⊥j := a⊥j − ρk,jqk

end
ρj,j := ∥a⊥j ∥2
qj := a⊥j /ρj,j

end

for j = 0, . . . , n− 1
for k = 0, . . . , j − 1

ρk,j := qHk aj
end

a⊥j := aj
for k = 0, . . . , j − 1

a⊥j := a⊥j − ρk,jqk
end
ρj,j := ∥a⊥j ∥2
qj := a⊥j /ρj,j

end

for j = 0, . . . , n− 1
ρ0,j
...

ρj−1,j

 :=

qH0 aj
...

qHj−1aj

 =
(
q0 · · · qj−1

)H
aj

a⊥j := aj −
(
q0 · · · qj−1

)
ρ0,j
...

ρj−1,j

ρj,j := ∥a⊥j ∥2
qj := a⊥j /ρj,j

end

Figure 2: Three equivalent (Classical) Gram-Schmidt algorithms.

2

where

qHi qj =

{
1 for i = j

0 otherwise
and ρi,j =

qHi aj for i < j

∥aj −
∑j−1

i=0 ρi,jqi∥2 for i = j

0 otherwise.

Thus, this relationship between the linearly independent vectors {aj} and the orthonormal vectors {qj} can
be concisely stated as

A = QR,

where A and Q are m× n matrices (m ≥ n), QHQ = I, and R is an n× n upper triangular matrix.

Theorem 3. Let A have linearly independent columns, A = QR where A,Q ∈ Cm×n with n ≤ m, R ∈ Cn×n,
QHQ = I, and R is an upper triangular matrix with nonzero diagonal entries. Then, for 0 < k < n, the first
k columns of A span the same space as the first k columns of Q.

Proof: Partition

A →
(

AL AR

)
, Q →

(
QL QR

)
, and R →

(
RTL RTR

0 RBR

)
,

where AL, QL ∈ Cm×k and RTL ∈ Ck×k. Then RTL is nonsingular (since it is upper triangular and has no
zero on its diagonal), QH

LQL = I, and AL = QLRTL. We want to show that C(AL) = C(QL):

• We first show that C(AL) ⊆ C(QL). Let y ∈ C(AL). Then there exists x ∈ Ck such that y = ALx. But
then y = QLz, where z = RTLx ̸= 0, which means that y ∈ C(QL). Hence C(AL) ⊆ C(QL).

• We next show that C(QL) ⊆ C(AL). Let y ∈ C(QL). Then there exists z ∈ Ck such that y = QLz. But
then y = ALx, where x = R−1

TLz, from which we conclude that y ∈ C(AL). Hence C(QL) ⊆ C(AL).

Since C(AL) ⊆ C(QL) and C(QL) ⊆ C(AL), we conclude that C(QL) = C(AL). □

Theorem 4. Let A ∈ Cm×n have linearly independent columns. Then there exist Q ∈ Cm×n with QHQ = I
and upper triangular R with no zeroes on the diagonal such that A = QR. This is known as the QR
factorization. If the diagonal elements of R are chosen to be real and positive, th QR factorization is
unique.

Proof: (By induction). Note that n ≤ m since A has linearly independent columns.

• Base case: n = 1. In this case A =
(

a0

)
where a0 is its only column. Since A has linearly

independent columns, a0 ̸= 0. Then

A =
(

a0

)
= (q0) (ρ00) ,

where ρ00 = ∥a0∥2 and q0 = a0/ρ00, so that Q = (q0) and R = (ρ00).

3

Algorithm: [Q,R] := QR(A)

Partition A→
(

AL AR

)
,

Q→
(

QL QR

)
,

R→
(

RTL RTR

0 RBR

)
where AL and QL has 0 columns and

RTL is 0× 0
while n(AL) ̸= n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,(

QL QR

)
→
(

Q0 q1 Q2

)
,(

RTL RTR

0 RBR

)
→

 R00 r01 R02

0 ρ11 rT12
0 0 R22

where a1 and q1 are columns, ρ11 is a scalar

r01 := QT
0 a1

a⊥1 := a1 −Q0r01

ρ11 := ∥a⊥1 ∥2
q1 := a⊥1 /ρ11

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,(

QL QR

)
←
(

Q0 q1 Q2

)
,(

RTL RTR

0 RBR

)
←

 R00 r01 R02

0 ρ11 rT12

0 0 R22

endwhile

for j = 0, . . . , n− 1
ρ0,j
...

ρj−1,j

︸ ︷︷ ︸

r01

:=
(

q0 · · · qj−1

)H
︸ ︷︷ ︸

QH
0

aj︸︷︷︸
a1

a⊥j︸︷︷︸
a⊥1

:= aj︸︷︷︸
a1

−
(

q0 · · · qj−1

)
︸ ︷︷ ︸

Q0

ρ0,j
...

ρj−1,j

︸ ︷︷ ︸

r01

ρj,j := ∥a⊥j ∥2 (ρ11 := ∥a⊥1 ∥2)
qj := a⊥j /ρj,j (q1 := a⊥1 /ρ11)

end

Figure 3: (Classical) Gram-Schmidt algorithm for computing the QR factorization of a matrix A.

• Inductive step: Assume that the result is true for all A with n − 1 linearly independent columns.
We will show it is true for A ∈ Cm×n with linearly independent columns.

Let A ∈ Cm×n. Partition A →
(

A0 a1

)
. By the induction hypothesis, there exist Q0 and R00

such that QH
0 Q0 = I, R00 is upper triangular with nonzero diagonal entries and A0 = Q0R00. Now,

compute r01 = QH
0 a1 and a⊥1 = a1 − Q0r01, the component of a1 orthogonal to C(Q0). Because the

columns of A are linearly independent, a⊥1 ̸= 0. Let ρ11 = ∥a⊥1 ∥2 and q1 = a⊥1 /ρ11. Then(
Q0 q1

)(R00 r01

0 ρ11

)
=

(
Q0R00 Q0r01 + q1ρ11

)
=

(
A0 Q0r01 + a⊥1

)
=
(

A0 a1

)
= A.

Hence Q =
(

Q0 q1

)
and R =

(
R00 r01

0 ρ11

)
.

• By the Principle of Mathematical Induction the result holds for all matrices A ∈ Cm×n with
m ≥ n.

4

□
The proof motivates the algorithm in Figure 3 (left) in FLAME notation1.

An alternative for motivating that algorithm is as follows: Consider A = QR. Partition A, Q, and R to
yield (

A0 a1 A2

)
=
(

Q0 q1 Q2

) R00 r01 R02

0 ρ11 rT12
0 0 R22

 .

Assume that Q0 and R00 have already been computed. Since corresponding columns of both sides must be
equal, we find that

a1 = Q0r01 + q1ρ11. (1)

Also, QH
0 Q0 = I and QH

0 q1 = 0, since the columns of Q are mutually orthonormal. Hence QH
0 a1 =

QH
0 Q0r01+QH

0 q1ρ11 = r01. This shows how r01 can be computed from Q0 and a1, which are already known.
Next, a⊥1 = a1 − Q0r01 is computed from (1). This is the component of a1 that is perpendicular to the
columns of Q0. We know it is nonzero since the columns of A are linearly independent. Since ρ11q1 = a⊥1
and we know that q1 has unit length, we now compute ρ11 = ∥a⊥1 ∥2 and q1 = a⊥1 /ρ11, which completes a
derivation of the algorithm in Figure 3.

Exercise 5. Let A have linearly independent columns and let A = QR be a QR factorization of A. Partition

A →
(

AL AR

)
, Q →

(
QL QR

)
, and R →

(
RTL RTR

0 RBR

)
,

where AL and QL have k columns and RTL is k × k. Show that

1. AL = QLRTL: QLRTL equals the QR factorization of AL,

2. C(AL) = C(QL): the first k columns of Q form an orthonormal basis for the space spanned by the first
k columns of A.

3. RTR = QH
LAR,

4. (AR −QLRTR)
HQL = 0,

5. AR −QLRTR = QRRBR, and

6. C(AR −QLRTR) = C(QR).

2 Modified Gram-Schmidt process

We start by considering the following problem: Given y ∈ Cm and Q ∈ Cm×k with orthonormal columns,
compute y⊥, the component of y orthogonal to the columns of Q. This is a key step in the Gram-Schmidt
process in Figure 3.

Recall that if A has linearly independent columns, then A(AHA)−1AHy equals the projection of y onto
the columns space of A (i.e., the component of y in C(A)) and y−A(AHA)−1AHy = (I −A(AHA)−1AH)y
equals the component of y orthogonal to C(A). If Q has orthonormal columns, then QHQ = I and hence

1 The FLAME notation should be intuitively obvious. If it is not, you may want to review the earlier weeks in
Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

5

[y⊥, r] = Proj orthog to QCGS(Q, y) [y⊥, r] = Proj orthog to QMGS(Q, y)

(used by classical Gram-Schmidt) (used by modified Gram-Schmidt)

y⊥ = y y⊥ = y

for i = 0, . . . , k − 1 for i = 0, . . . , k − 1

ρi := qHi y ρi := qHi y⊥

y⊥ := y⊥ − ρiqi y⊥ := y⊥ − ρiqi

endfor endfor

Figure 4: Two different ways of computing y⊥ = (I−QQH)y, the component of y orthogonal to C(Q), where
Q has k orthonormal columns.

Algorithm: [AR] := Gram-Schmidt(A) (overwrites A with Q)

Partition A→
(

AL AR

)
, R→

(
RTL RTR

0 RBR

)
where AL has 0 columns and RTL is 0× 0

while n(AL) ̸= n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
→

 R00 r01 R02

0 ρ11 rT12
0 0 R22

where a1 and q1 are columns, ρ11 is a scalar

CGS MGS MGS (alternative)

r01 := AH
0 a1

a1 := a1 −A0r01 [a1, r01] = Proj orthog to QMGS(A0, a1)

ρ11 := ∥a1∥2 ρ11 := ∥a1∥2 ρ11 := ∥a1∥2
a1 := a1/ρ11 q1 := a1/ρ11 a1 := a1/ρ11

rT12 := aH1 A2

A2 := A2 − a1rT12

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
←

 R00 r01 R02

0 ρ11 rT12

0 0 R22

endwhile

Figure 5: Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right:
Modified Gram-Schmidt algorithm where every time a new column of Q, q1 is computed the component of
all future columns in the direction of this new vector are subtracted out.

QQHy equals the projection of y onto the columns space of Q (i.e., the component of y in C(Q)) and
y −QQHy = (I −QQH)y equals the component of y orthogonal to C(A).

Thus, mathematically, the solution to the stated problem is given by

y⊥ = (I −QQH)y = y −QQHy

= y −
(

q0 · · · qk−1

)(
q0 · · · qk−1

)H
y

6

= y −
(

q0 · · · qk−1

)
qH0
...

qHk−1

 y

= y −
(

q0 · · · qk−1

)
qH0 y
...

qHk−1y

= y −

[
(qH0 y)q0 + · · ·+ (qHk−1y)qk−1

]
= y − (qH0 y)q0 − · · · − (qHk−1y)qk−1.

This can be computed by the algorithm in Figure 4 (left) and is used by what is often called the Classical
Gram-Schmidt (CGS) algorithm given in Figure 3.

An alternative algorithm for computing y⊥ is given in Figure 4 (right) and is used by the Modified
Gram-Schmidt (MGS) algorithm also given in Figure 5. This approach is mathematically equivalent to the
algorithm to its left for the following reason:

The algorithm on the left in Figure 4 computes

y⊥ := y − (qH0 y)q0 − · · · − (qHk−1y)qk−1

by in the ith step computing the component of y in the direction of qi, (q
H
i y)qi, and then subtracting this

off the vector y⊥ that already contains

y⊥ = y − (qH0 y)q0 − · · · − (qHi−1y)qi−1,

leaving us with
y⊥ = y − (qH0 y)q0 − · · · − (qHi−1y)qi−1 − (qHi y)qi.

Now, notice that

qHi
[
y − (qH0 y)q0 − · · · − (qHi−1y)qi−1

]
= qHi y − qHi (qH0 y)q0 − · · · − qHi (qHi−1y)qi−1

= qHi y − (qH0 y) qHi q0︸ ︷︷ ︸
0

− · · · − (qHi−1y) qHi qi−1︸ ︷︷ ︸
0

= qHi y.

What this means is that we can use y⊥ in our computation of ρi instead:

ρi := qHi y⊥ = qHi y,

an insight that justifies the equivalent algorithm in Figure 4 (right).
Next, we massage the MGS algorithm into the third (right-most) algorithm given in Figure 5. For this,

consider the equivalent algorithms in Figure 6 and 7.

3 In Practice, MGS is More Accurate

In theory, all Gram-Schmidt algorithms discussed in the previous sections are equivalent: they compute the
exact same QR factorizations. In practice, in the presense of round-off error, MGS is more accurate than
CGS. We will (hopefully) get into detail about this later, but for now we will illustrate it with a classic
example.

When storing real (or complex for that matter) valued numbers in a computer, a limited accuracy can
be maintained, leading to round-off error when a number is stored and/or when computation with numbers

7

for j = 0, . . . , n− 1
a⊥j := aj
for k = 0, . . . , j − 1

ρk,j := qHk a⊥j
a⊥j := a⊥j − ρk,jqk

end
ρj,j := ∥a⊥j ∥2
qj := a⊥j /ρj,j

end

for j = 0, . . . , n− 1

for k = 0, . . . , j − 1
ρk,j := aHk aj
aj := aj − ρk,jak

end
ρj,j := ∥aj∥2
aj := aj/ρj,j

end

(a) MGS algorithm that computes Q and R from A. (b) MGS algorithm that computes Q and R from A,
overwriting A with Q.

for j = 0, . . . , n− 1
ρj,j := ∥aj∥2
aj := aj/ρj,j
for k = j + 1, . . . , n− 1

ρj,k := aHj ak

ak := ak − ρj,jaj
end

end

for j = 0, . . . , n− 1
ρj,j := ∥aj∥2
aj := aj/ρj,j
for k = j + 1, . . . , n− 1

ρj,k := aHj ak
end
for k = j + 1, . . . , n− 1

ak := ak − ρj,kaj
end

end

(c) MGS algorithm that normalizes the jth column
to have unit length to compute qj (overwriting aj
with the result) and then subtracts the component
in the direction of qj off the rest of the columns
(aj+1, . . . , an−1).

(d) Slight modification of the algorithm in (c) that
computes ρj,k in a separate loop.

for j = 0, . . . , n− 1
ρj,j := ∥aj∥2
aj := aj/ρj,j(

ρj,j+1 · · · ρj,n−1

)
:=(

aHj aj+1 · · · aHj an−1

)(
aj+1 · · · an−1

)
:=(

aj+1 − ρj,j+1aj · · · an−1 − ρj,n−1aj

)
end

for j = 0, . . . , n− 1
ρj,j := ∥aj∥2
aj := aj/ρj,j(

ρj,j+1 · · · ρj,n−1

)
:=

aHj

(
aj+1 · · · an−1

)(
aj+1 · · · an−1

)
:=(

aj+1 · · · an−1

)
− aj

(
ρj,j+1 · · · ρj,n−1

)
end

(e) Algorithm in (d) rewritten without loops. (f) Algorithm in (e) rewritten to expose
the row-vector-times matrix multiplication

aHj

(
aj+1 · · · an−1

)
and rank-1 update(

aj+1 · · · an−1

)
− aj

(
ρj,j+1 · · · ρj,n−1

)
.

Figure 6: Various equivalent MGS algorithms.

8

Algorithm: [A,R] := QR(A)

Partition A→
(

AL AR

)
,

R→
(

RTL RTR

0 RBR

)
where AL and QL has 0 columns and

RTL is 0× 0
while n(AL) ̸= n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,(

RTL RTR

0 RBR

)
→

 R00 r01 R02

0 ρ11 rT12
0 0 R22

where a1 is a column, ρ11 is a scalar

ρ11 := ∥a1∥2
a1 := a1/ρ11

rT12 := aH1 A2

A2 := A2 − a1rT12

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,(

RTL RTR

0 RBR

)
←

 R00 r01 R02

0 ρ11 rT12

0 0 R22

endwhile

for j = 0, . . . , n− 1
ρj,j := ∥aj∥2 (ρ11 := ∥a⊥1 ∥2)
aj := aj/ρj,j (a1 := a1/ρ11)

rT12︷ ︸︸ ︷(
ρj,j+1 · · · ρj,n−1

)
:=

aHj︸︷︷︸
aH1

(
aj+1 · · · an−1

)
︸ ︷︷ ︸

A2

A2︷ ︸︸ ︷(
aj+1 · · · an−1

)
:=

A2︷ ︸︸ ︷(
aj+1 · · · an−1

)
− aj︸︷︷︸

a1

(
ρj,j+1 · · · ρj,n−1

)
︸ ︷︷ ︸

rT12
end

Figure 7: Modified Gram-Schmidt algorithm for computing the QR factorization of a matrix A.

are performed. The machine epsilon or unit roundoff error is defined as the largest positive number ϵmach

such that the stored value of 1 + ϵmach is rounded to 1. Now, let us consider a computer where the only
error that is ever incurred is when 1 + ϵmach is computed and rounded to 1. Let ϵ =

√
ϵmach and consider

the matrix

A =

1 1 1

ϵ 0 0

0 ϵ 0

0 0 ϵ

 =
(

a0 a1 a2

)
(2)

In Figure 8 (left) we execute the CGS algorithm. It yields the approximate matrix

Q ≈

1 0 0

ϵ −
√
2
2 −

√
2
2

0
√
2
2 0

0 0
√
2
2

If we now ask the question “Are the columns of Q orthonormal?” we can check this by computing QHQ,

9

First iteration

ρ0,0 = ∥a0∥2 =
√
1 + ϵ2 =

√
1 + ϵmach

which is rounded to 1.

q0 = a0/ρ0,0 =

1

ϵ

0

0

 /1 =

1

ϵ

0

0

Second iteration

ρ0,1 = qH0 a1 = 1

a⊥1 = a1 − ρ0,1q0 =

0

−ϵ

ϵ

0

ρ1,1 = ∥a⊥1 ∥2 =

√
2ϵ2 =

√
2ϵ

q1 = a⊥1 /ρ1,1 =

0

−ϵ

ϵ

0

 /(
√
2ϵ) =

0

−
√
2
2√
2
2

0

Third iteration

ρ0,2 = qH0 a2 = 1

ρ1,2 = qH1 a2 = 0

a⊥2 = a2 − ρ0,2q0 − ρ1,2q1 =

0

−ϵ

0

ϵ

ρ2,2 = ∥a⊥2 ∥2 =

√
2ϵ2 =

√
2ϵ

q2 = a⊥2 /ρ2,2 =

0

−ϵ

0

ϵ

 /(
√
2ϵ) =

0

−
√
2
2

0
√
2
2

First iteration

ρ0,0 = ∥a0∥2 =
√
1 + ϵ2 =

√
1 + ϵmach

which is rounded to 1.

q0 = a0/ρ0,0 =

1

ϵ

0

0

 /1 =

1

ϵ

0

0

Second iteration

ρ0,1 = qH0 a1 = 1

a⊥1 = a1 − ρ0,1q0 =

0

−ϵ

ϵ

0

ρ1,1 = ∥a⊥1 ∥2 =

√
2ϵ2 =

√
2ϵ

q1 = a⊥1 /ρ1,1 =

0

−ϵ

ϵ

0

 /(
√
2ϵ) =

0

−
√
2
2√
2
2

0

Third iteration

ρ0,2 = qH0 a2 = 1

a⊥2 = a2 − ρ0,2q0 =

0

−ϵ

0

ϵ

ρ1,2 = qH1 a⊥2 = (

√
2/2)ϵ

a⊥2 = a⊥2 − ρ1,2q1 =

0

−ϵ/2

−ϵ/2

ϵ

ρ2,2 = ∥a⊥2 ∥2 =

√
(6/4)ϵ2 = (

√
6/2)ϵ

q2 = a⊥2 /ρ2,2 =

0

− ϵ
2

− ϵ
2

ϵ

 /(

√
6

2
ϵ) =

0
√
6
6

−
√
6
6

−2
√
6

6

Figure 8: Execution of the CGS algorith (left) and MGS algorithm (right) on the example in Eqn. (2).

10

which should equal I, the identity. But

QHQ =

1 0 0

ϵ −
√
2
2 −

√
2
2

0
√
2
2 0

0 0
√
2
2

H

1 0 0

ϵ −
√
2
2 −

√
2
2

0
√
2
2 0

0 0
√
2
2

 =

 1 + ϵmach −
√
2
2 ϵ −

√
2
2 ϵ

−
√
2
2 ϵ 1 1

2

−
√
2
2 ϵ 1

2 1

 .

Clearly, the computed columns of Q are not mutually orthogonal.
Similarly, in Figure 8 (right) we execute the MGS algorithm. It yields the approximate matrix

Q ≈

1 0 0

ϵ −
√
2
2

√
6
6

0
√
2
2 −

√
6
6

0 0 2
√
6

6

 .

If we now ask the question “Are the columns of Q orthonormal?” we can check if QHQ = I. The answer:

QHQ =

1 0 0

ϵ −
√
2
2 −

√
6
6

0
√
2
2 −

√
6
6

0 0 2
√
6

6

H

1 0 0

ϵ −
√
2
2 −

√
6
6

0
√
2
2 −

√
6
6

0 0 2
√
6

6

 =

 1 + ϵmach −
√
2
2 ϵ −

√
6
6 ϵ

−
√
2
2 ϵ 1 0

−
√
6
6 ϵ 0 1

 ,

which shows that for this example MGS yields better orthogonality than does CGS. What is going on? The
answer lies with how a⊥2 is computed in the last step of each of the algorithms.

• In the CGS algorithm, we find that

a⊥2 := a2 − (qH0 a2)q0 − (qH1 a2)q1.

Now, q0 has a relatively small error in it and hence qH0 a2q0 has a relatively) small error in it. It is
likely that a part of that error is in the direction of q1. Relative to qH0 a2q0, that error in the direction
of q1 is small, but relative to a2 − qH0 a2q0 it is not. The point is that then a2 − qH0 a2q0 has a relatively
large error in it in the direction of q1. Subtracting qH1 a2q1 does not fix this and since in the end a⊥2 is
small, it has a relatively large error in the direction of q1. This error is amplified when q2 is computed
by normalizing a⊥2 .

• In the MGS algorithm, we find that
a⊥2 := a2 − (qH0 a2)q0

after which
a⊥2 := a⊥2 − qH1 a⊥2 q1 = [a2 − (qH0 a2)q0]− (qH1 [a2 − (qH0 a2)q0])q1.

This time, if a2−qH1 a⊥2 q1 has an error in the direction of q1, this error is subtracted out when (qH1 a⊥2)q1
is subtracted from a⊥2 . This explains the better orthogonality between the computed vectors q1 and
q2.

Obviously, we have argued via an example that MGS is more accurage than CGS. A more thorough
analysis is needed to explain why this is generally so. This is beyond the scope of this note.

11

4 Modified Gram-Schmidt process

Let us examine the cost of computing the QR factorization of an m× n matrix A. We will count multiplies
and an adds as each as one floating point operation.

We start by reviewing the cost, in floating point operations (flops), of various vector-vector and matrix-
vector operations:

Name Operation Approximate cost (in flops)

Vector-vector operations (x, y ∈ Cn, α ∈ C)
Dot α := xHy 2n

Axpy y := αx+ y 2n

Scal x := αx n

Nrm2 α := ∥a1∥2 2n

Matrix-vector operations (A ∈ Cm×n, α, β ∈ C, with x and y vectors of appropriate size)

Matrix-vector multiplication (Gemv) y := αAx+ βy 2mn

y := αAHx+ βy 2mn

Rank-1 update (Ger) A := αyxH +A 2mn

Now, consider the algorithms in Figure 5. Notice that the columns of A are of size m. During the kth
iteration (0 ≤ k < n), A0 has k columns and A2 has n− k − 1 columns.

4.1 Cost of CGS

Operation Approximate cost (in flops)

r01 := AH
0 a1 2mk

a1 := a1 −A0r01 2mk

ρ11 := ∥a1∥2 2m

a1 := a1/ρ11 m

Thus, the total cost is (approximately)∑n−1
k=0 [2mk + 2mk + 2m+m]

=
∑n−1

k=0 [3m+ 4mk]

= 3mn+ 4m
∑n−1

k=0 k

≈ 3mn+ 4mn2

2 (
∑n−1

k=0 k = n(n− 1)/2 ≈ n2/2

= 3mn+ 2mn2

≈ 2mn2 (3mn is of lower order).

4.2 Cost of MGS

Operation Approximate cost (in flops)

ρ11 := ∥a1∥2 2m

a1 := a1/ρ11 m

rT12 := aH1 A2 2m(n− k − 1)

A2 := A2 − a1r
T
12 2m(n− k − 1)

Thus, the total cost is (approximately)

12

∑n−1
k=0 [2m+m+ 2m(n− k − 1) + 2m(n− k − 1)]

=
∑n−1

k=0 [3m+ 4m(n− k − 1)]

= 3mn+ 4m
∑n−1

k=0(n− k − 1)

= 3mn+ 4m
∑n−1

i=0 i (Change of variable: i = n− k − 1)

≈ 3mn+ 4mn2

2 (
∑n−1

i=0 i = n(n− 1)/2 ≈ n2/2

= 3mn+ 2mn2

≈ 2mn2 (3mn is of lower order).

13

