
Notes on Householder QR Factorization

Robert A. van de Geijn

Department of Computer Science

The University of Texas at Austin

Austin, TX 78712

rvdg@cs.utexas.edu

September 21, 2014

1 Motivation

A fundamental problem to avoid in numerical codes is the situation where one starts with large
values and one ends up with small values with large relative errors in them. This is known as
catastrophic cancellation. The Gram-Schmidt algorithms can inherently fall victim to this: column
aj is successively reduced in length as components in the directions of {q0, . . . , qj−1} are subtracted,
leaving a small vector if aj was almost in the span of the first j columns of A. Application of
a unitary transformation to a matrix or vector inherently preserves length. Thus, it would be
beneficial if the QR factorization can be implementated as the successive application of unitary
transformations. The Householder QR factorization accomplishes this.

The first fundamental insight is that the product of unitary matrices is itself unitary. If, given
A ∈ Cm×n (with m ≥ n), one could find a sequence of unitary matrices, {H0, . . . ,Hn−1}, such that

Hn−1 · · ·H0A =

(
R

0

)
,

where R ∈ Cm×n is upper triangular, then

Hn−1 · · ·H0A = H0 · · ·Hn−1︸ ︷︷ ︸
Q

(
R

0

)
= Q

(
R

0

)
=
(
QL QR

)( R

0

)
= QLR,

where QL equals the first n columns of A. Then A = QLR is the QR factorization of A. The
second fundamental insight will be that the desired unitary transformations {H0, . . . ,Hn−1} can
be computed and applied cheaply.

2 Householder Transformations (Reflectors)

2.1 The general case

In this section we discuss Householder transformations, also referred to as reflectors.

1



u

z

H
x = z + u  x u

u  x u
H

u  x u
H

(I − 2 u u  )x
H

u

v = x − y

y

x

u
(I − 2 u u  )x

H

Figure 1: Left: Illustration that shows how, given vectors x and unit length vector u, the subspace
orthogonal to u becomes a mirror for reflecting x represented by the transformation (I − 2uuH).
Right: Illustration that shows how to compute u given vectors x and y with ‖x‖2 = ‖y‖2.

Definition 1. Let u ∈ Cn be a vector of unit length (‖u‖2 = 1). Then H = I − 2uuH is said to be a
reflector or Householder transformation.

We observe:

• Any vector z that is perpendicular to u is left unchanged:

(I − 2uuH)z = z − 2u(uHz) = z.

• Any vector x can be written as x = z + uHxu where z is perpendicular to u and uHxu is the
component of x in the direction of u. Then

(I − 2uuH)x = (I − 2uuH)(z + uHxu) = z + uHxu− 2u uHz︸︷︷︸
0

− 2uuHuHxu

= z + uHxu− 2uHx uHu︸︷︷︸
1

u = z − uHxu.

This can be interpreted as follows: The space perpendicular to u acts as a “mirror”: any vector
in that space (along the mirror) is not reflected, while any other vector has the component that is
orthogonal to the space (the component outside, orthogonal to, the mirror) reversed in direction,
as illustrated in Figure 1. Notice that a reflection preserves the length of the vector.

Exercise 2. Show that if H is a reflector, then

• HH = I (reflecting the reflection of a vector results in the original vector),

2



• H = HH , and

• HHH = I (a reflection is a unitary matrix and thus preserves the norm).

Next, let us ask the question of how to reflect a given x ∈ Cn into another vector y ∈ Cn with
‖x‖2 = ‖y‖2. In other words, how do we compute vector u so that (I − 2uuH)x = y. From our
discussion above, we need to find a vector u that is perpendicular to the space with respect to
which we will reflect. From Figure 1(right) we notice that the vector from y to x, v = x − y, is
perpendicular to the desired space. Thus, u must equal a unit vector in the direction v: u = v/‖v‖2.

Remark 3. In subsequent discussion we will prefer to give Householder transformations as I−uuH/τ ,
where τ = uHu/2 so that u needs no longer be a unit vector, just a direction. The reason for this
will become obvious later.

In the next subsection, we will need to find a Householder transformation H that maps a vector
x to a multiple of the first unit basis vector (e0).

Let us first discuss how to find H in the case where x ∈ Rn. We seek v so that (I− 2
vT v

vvT )x =
±‖x‖2e0. Since the resulting vector that we want is y = ±‖x‖2e0, we must choose v = x − y =
x∓ ‖x‖2e0.

Exercise 4. Show that if x ∈ Rn, v = x∓ ‖x‖2e0, and τ = vT v/2 then (I − 1
τ vv

T )x = ±‖x‖2e0.

In practice, we choose v = x + sign(χ1)‖x‖2e0 where χ1 denotes the first element of x. The
reason is as follows: the first element of v, ν1, will be ν1 = χ1 ∓ ‖x‖2. If χ1 is positive and ‖x‖2 is
almost equal to χ1, then χ1 − ‖x‖2 is a small number and if there is error in χ1 and/or ‖x‖2, this
error becomes large relative to the result χ1 − ‖x‖2, due to catastrophic cancellation. Regardless
of whether χ1 is positive or negative, we can avoid this by choosing x = χ1 + sign(χ1)‖x‖2e0.

2.2 As implemented for the Householder QR factorization (real case)

Next, we discuss a slight variant on the above discussion that is used in practice. To do so, we view
x as a vector that consists of its first element, χ1, and the rest of the vector, x2: More precisely,
partition

x =

(
χ1

x2

)
,

3



where χ1 equals the first element of x and x2 is the rest of x. Then we will wish to find a Householder

vector u =

(
1

u2

)
so that

I − 1

τ

(
1

u2

)(
1

u2

)T( χ1

x2

)
=

(
±‖x‖2

0

)
.

Notice that y in the previous discussion equals the vector

(
±‖x‖2

0

)
, so the direction of u is given

by

v =

(
χ1 ∓ ‖x‖2

x2

)
.

We now wish to normalize this vector so its first entry equals “1”:

u =
v

ν1
=

1

χ1 ∓ ‖x‖2

(
χ1 ∓ ‖x‖2

x2

)
=

(
1

x2/ν1

)
.

where ν1 = χ1 ∓ ‖x‖2 equals the first element of v. (Note that if ν1 = 0 then u2 can be set to 0.)

2.3 The complex case (optional)

Next, let us work out the complex case, dealing explicitly with x as a vector that consists of its
first element, χ1, and the rest of the vector, x2: More precisely, partition

x =

(
χ1

x2

)
,

where χ1 equals the first element of x and x2 is the rest of x. Then we will wish to find a Householder

vector u =

(
1

u2

)
so that

I − 1

τ

(
1

u2

)(
1

u2

)H( χ1

x2

)
=

(
©±‖x‖2

0

)
.

Here ©± denotes a complex scalar on the complex unit circle. By the same argument as before

v =

(
χ1 − ©±‖x‖2

x2

)
.

We now wish to normalize this vector so its first entry equals “1”:

u =
v

‖v‖2
=

1

χ1 − ©±‖x‖2

(
χ1 − ©±‖x‖2

x2

)
=

(
1

x2/ν1

)
.

where ν1 = χ1 − ©±‖x‖2. (If ν1 = 0 then we set u2 to 0.)

4



Algorithm:

[(
ρ

u2

)
, τ

]
= Housev

((
χ1

x2

))
χ2 := ‖x2‖2

α :=

∥∥∥∥∥
(

χ1

χ2

)∥∥∥∥∥
2

(= ‖x‖2)

ρ = −sign(χ1)‖x‖2 ρ := −sign(χ1)α

ν1 = χ1 + sign(χ1)‖x‖2 ν1 := χ1 − ρ
u2 = x2/ν1 u2 := x2/ν1

χ2 = χ2/|ν1|(= ‖u2‖2)
τ = (1 + uH2 u2)/2 τ = (1 + χ2

2)/2

Figure 2: Computing the Householder transformation. Left: simple formulation. Right: efficient
computation. Note: I have not completely double-checked these formulas for the com-
plex case. They work for the real case.

Exercise 5. Verify that I − 1

τ

(
1

u2

)(
1

u2

)H( χ1

x2

)
=

(
ρ

0

)

where τ = uHu/2 = (1 + uH2 u2)/2 and ρ = ©±‖x‖2.
Hint: ρρ̄ = |ρ|2 = ‖x‖22 since H preserves the norm. Also, ‖x‖22 = |χ1|2 + ‖x2‖22 and

√
z
z̄ = z

|z| .

Again, the choice ©± is important. For the complex case we choose ©± = −sign(χ1) = χ1

|χ1|

2.4 A routine for computing the Householder vector

We will refer to the vector (
1

u2

)
as the Householder vector that reflects x into ©±‖x‖2e0 and introduce the notation[(

ρ

u2

)
, τ

]
:= Housev

((
χ1

x2

))

as the computation of the above mentioned vector u2, and scalars ρ and τ , from vector x. We will
use the notation H(x) for the transformation I− 1

τ uu
H where u and τ are computed by Housev(x).

3 Householder QR Factorization

Let A be an m×n with m ≥ n. We will now show how to compute A→ QR, the QR factorization,
as a sequence of Householder transformations applied to A, which eventually zeroes out all elements
of that matrix below the diagonal. The process is illustrated in Figure 3.

5



Original matrix

[(
ρ11

u21

)
, τ1

]
=

Housev

(
α11

a21

)
(

α11 aT12

a21 A22

)
:=(

ρ11 aT12 − wT12
0 A22 − u21w

T
12

) “Move forward”

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

Figure 3: Illustration of Householder QR factorization.

6



In the first iteration, we partition

A→

(
α11 aT12

a21 A22

)
.

Let [(
ρ11

u21

)
, τ1

]
= Housev

(
α11

a21

)
be the Householder transform computed from the first column of A. Then applying this Householder
transform to A yields(

α11 aT12

a21 A22

)
:=

I − 1

τ1

(
1

u2

)(
1

u2

)H( α11 aT12

a21 A22

)

=

(
ρ11 aT12 − wT12

0 A22 − u21w
T
12

)
,

where wT12 = (aT12 +uH21A22)/τ1. Computation of a full QR factorization of A will now proceed with
the updated matrix A22.

Now let us assume that after k iterations of the algorithm matrix A contains

A→

(
RTL RTR

0 ABR

)
=

 R00 r01 R02

0 α11 aT12

0 a21 A22

 ,

where RTL and R00 are k × k upper triangular matrices. Let[(
ρ11

u21

)
, τ1

]
= Housev

(
α11

a21

)
.

and update

A :=


I 0

0

I − 1
τ1

(
1

u2

)(
1

u2

)H

 R00 r01 R02

0 α11 aT12

0 a21 A22



=

I − 1

τ1

 0

1

u2


 0

1

u2


H

 R00 r01 R02

0 α11 aT12

0 a21 A22



=

 R00 r01 R02

0 ρ11 aT12 − wT12

0 0 A22 − u21w
T
12

 ,

7



where again wT12 = (aT12 + uH21A22)/τ1.
Let

Hk =

I − 1

τ1

 0k

1

u21


 0k

1

u21


H

be the Householder transform so computed during the (k + 1)st iteration. Then upon completion
matrix A contains

R =

(
RTL

0

)
= Hn−1 · · ·H1H0Â

where Â denotes the original contents of A and RTL is an upper triangular matrix. Rearranging
this we find that

Â = H0H1 · · ·Hn−1R

which shows that if Q = H0H1 · · ·Hn−1 then Â = QR.

Exercise 6. Show that
I 0

0

I − 1
τ1

(
1

u2

)(
1

u2

)H
 =

I − 1

τ1

 0

1

u2


 0

1

u2


H .

Typically, the algorithm overwrites the original matrix A with the upper triangular matrix,
and at each step u21 is stored over the elements that become zero, thus overwriting a21. (It is for
this reason that the first element of u was normalized to equal “1”.) In this case Q is usually not
explicitly formed as it can be stored as the separate Householder vectors below the diagonal of the
overwritten matrix. The algorithm that overwrites A in this manner is given in Fig. 4.

We will let
[{U\R}, t] = HouseholderQR(A)

denote the operation that computes the QR factorization of m × n matrix A, with m ≥ n, via
Householder transformations. It returns the Householder vectors and matrix R in the first argument
and the vector of scalars “τi” that are computed as part of the Householder transformations in t.

Theorem 7. Given A ∈ Cm×n the cost of the algorithm in Figure 4 is given by

CHQR(m,n) ≈ 2mn2 − 2

3
n3 flops.

Proof: The bulk of the computation is in wT12 = (aT12 + uH21A22)/τ1 and A22 − u21w
T
12. During the

kth iteration (when RTL is k × k), this means a matrix-vector multiplication (uH21A22) and rank-1

8



Algorithm: [A, t] = HouseholderQR(A)

Partition A→

(
ATL ATR

ABL ABR

)
and t→

(
tT

tB

)
where ATL is 0× 0 and tT has 0 elements

while n(ABR) 6= 0 do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

 and

(
tT

tB

)
→

 t0

τ1

t2


where α11 and τ1 are scalars

[(
α11

a21

)
, τ1

]
:=

[(
ρ11

u21

)
, τ1

]
= Housev

(
α11

a21

)

Update

(
aT12

A22

)
:=

(
I − 1

τ1

(
1

u21

)(
1 uH21

))( aT12

A22

)
via the steps

• wT12 := (aT12 + aH21A22)/τ1

•

(
aT12

A22

)
:=

(
aT12 − wT12

A22 − a21wT12

)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

 and

(
tT

tB

)
←

 t0

τ1

t2


endwhile

Figure 4: Unblocked Householder transformation based QR factorization.

update with matrix A22 which is of size approximately (m−k)×(n−k) for a cost of 4(m−k)(n−k)
flops. Thus the total cost is approximately

n−1∑
k=0

4(m− k)(n− k) = 4

n−1∑
j=0

(m− n+ j)j = 4(m− n)

n−1∑
j=0

j + 4

n−1∑
j=0

j2

= 2(m− n)n(n− 1) + 4
n−1∑
j=0

j2

≈ 2(m− n)n2 + 4

∫ n

0
x2dx = 2mn2 − 2n3 +

4

3
n3 = 2mn2 − 2

3
n3.

�

4 Forming Q

Given A ∈ Cm×n, let [A, t] = HouseholderQR(A) yield the matrix A with the Householder vectors
stored below the diagonal, R stored on and above the diagonal, and the τi stored in vector t. We

9



Original matrix

(
α11 aT12

a21 A22

)
:=(

1− 1/τ1 −(uH21A22)/τ1

−u21/τ1 A22 + u21a
T
12

) “Move forward”

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ×
0 0 0 ×

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ×
0 0 0 ×

1 0 0 0

0 1 0 0

0 0 × ×
0 0 × ×
0 0 × ×

1 0 0 0

0 1 0 0

0 0 × ×
0 0 × ×
0 0 × ×

1 0 0 0

0 × × ×
0 × × ×
0 × × ×
0 × × ×

1 0 0 0

0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

Figure 5: Illustration of the computation of Q.

10



now discuss how to form the first n columns of Q = H0H1 · · ·Hn−1. The computation is illustrated
in Figure ??.

Notice that to pick out the first n columns we must form

Q

(
In×n

0

)
= H0 · · ·Hn−1

(
In×n

0

)
= H0 · · ·Hk−1 Hk · · ·Hn−1

(
In×n

0

)
︸ ︷︷ ︸

Bk

.

where Bk is defined as indicated.

Lemma 8. Bk has the form

Bk = Hk · · ·Hn−1

(
In×n

0

)
=

(
Ik×k 0

0 B̃k

)
.

Proof: The proof of this is by induction on k:

• Base case: k = n. Then Bn =

(
In×n

0

)
, which has the desired form.

• Inductive step: Assume the result is true for Bk. We show it is true for Bk−1:

Bk−1 = Hk−1Hk · · ·Hn−1

(
In×n

0

)
= Hk−1Bk = Hk−1

(
Ik×k 0

0 B̃k

)
.

=

 I(k−1)×(k−1) 0

0 I − 1
τk

(
1

uk

)(
1 uHk

)

 I(k−1)×(k−1) 0 0

0 1 0

0 0 B̃k



=

 I(k−1)×(k−1) 0

0

(
I − 1

τk

(
1

uk

)(
1 uHk

))( 1 0

0 B̃k

) 

=

 I(k−1)×(k−1) 0

0

(
1 0

0 B̃k

)
−

(
1

uk

)(
1/τk yTk

)
 where yTk = uHk B̃k/τk

=

 I(k−1)×(k−1) 0

0

(
1− 1/τk −yTk
−uk/τk Bk − ukyTk

) 

=

 I(k−1)×(k−1) 0 0

0 1− 1/τk −yTk
0 −uk/τk Bk − ukyTk

 =

(
I(k−1)×(k−1) 0

0 B̃k−1

)
.

11



Algorithm: [A] = FormQ(A, t)

Partition A→

(
ATL ATR

ABL ABR

)
and t→

(
tT

tB

)
where ATL is n(A)× n(A) and tT has n(A) elements

while n(ATR) 6= 0 do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

 and

(
tT

tB

)
→

 t0

τ1

t2


where α11 and τ1 are scalars

Update

(
α11 aT12

a21 A22

)
:=

(
I − 1

τ1

(
1

u21

)(
1 uH21

))( 1 0

0 A22

)
via the steps

• α11 := 1− 1/τ1

• aT12 := −(aH21A22)/τ1

• A22 := A22 + a21a
T
12

• a21 := −a21/τ1

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

 and

(
tT

tB

)
←

 t0

τ1

t2


endwhile

Figure 6: Algorithm for overwriting A with Q from the Householder transformations stored as
Householder vectors below the diagonal of A (as produced by [A, t] = HouseholderQR(A) ).

• By the Principle of Mathematical Induction the result holds for B0, . . . , Bn.

�

Theorem 9. Given [A, t] = HouseholderQR(A) from Figure 4, the algorithm in Figure 6 overwrites A
with the first n = n(A) columns of Q as defined by the Householder transformations stored below
the diagonal of A and in the vector t.

Proof: The algorithm is justified by the proof of Lemma 8. �

Theorem 10. Given A ∈ Cm×n the cost of the algorithm in Figure 6 is given by

CFormQ(m,n) ≈ 2mn2 − 2

3
n3 flops.

12



Algorithm: [y] = ApplyQt(A, t, y)

Partition A→

(
ATL ATR

ABL ABR

)
, t→

(
tT

tB

)
, and y →

(
yT

yB

)
where ATL is 0× 0 and tT , yT has 0 elements

while n(ABR) 6= 0 do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
tT

tB

)
→

 t0

τ1

t2

, and

(
yT

yB

)
→

 y0

ψ1

y2


where α11, τ1, and ψ1 are scalars

Update

(
ψ1

y2

)
:=

(
I − 1

τ1

(
1

u21

)(
1 uH21

))( ψ1

y2

)
via the steps

• ω1 := (ψ1 + aH21y2)/τ1

•

(
ψ1

y2

)
:=

(
ψ1 − ω1

y2 − ω1u2

)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

 ,

(
tT

tB

)
←

 t0

τ1

t2

, and

(
yT

yB

)
←

 y0

ψ1

y2


endwhile

Figure 7: Algorithm for computing y := Hn−1 · · ·H0y given the output from routine
HouseholderQR.

Proof: Hence the proof for Theorem 7 can be easily modified to establish this result. �

Exercise 11. If m = n then Q could be accumulated by the sequence

Q = (· · · ((IH0)H1) · · ·Hn−1).

Give a high-level reason why this would be (much) more expensive than the algorithm in Figure 6.

5 Applying QH

In a future Note, we will see that the QR factorization is used to solve the linear least-squares
problem. To do so, we need to be able to compute ŷ = QHy where QH = Hn−1 · · ·H0.

13



Let us start by computing H0y:I − 1

τ1

(
1

u2

)(
1

u2

)H( ψ1

y2

)
=

(
ψ1

y2

)
−

(
1

u2

) (
1

u2

)H (
ψ1

y2

)
/τ1︸ ︷︷ ︸

ω1

=

(
ψ1

y2

)
− ω1

(
1

u2

)
=

(
ψ1 − ω1

y2 − ω1u2

)
.

More generally, let us compute Hky:I − 1

τ1

 0

1

u2


 0

1

u2


H

 y0

ψ1

y2

 =

 y0

ψ1 − ω1

y2 − ω1u2

 ,

where ω1 = (ψ1 + uH2 y2)/τ1. This motivates the algorithm in Figure 7 for computing y :=
Hn−1 · · ·H0y given the output matrix A and vector t from routine HouseholderQR.

The cost of this algorithm can be analyzed as follows: When yT is of length k, the bulk of
the computation is in an inner product with vectors of length m − k (to compute ω1) and an
axpy operation with vectors of length m − k to subsequently update ψ1 and y2. Thus, the cost is
approximately given by

n−1∑
k=0

4(m− k) ≈ 4mn− 2n2.

Notice that this is much cheaper than forming Q and then multiplying.

14


