
Notes on LU Factorization

Robert A. van de Geijn

Department of Computer Science

The University of Texas

Austin, TX 78712

rvdg@cs.utexas.edu

October 11, 2014

The LU factorization is also known as the LU decomposition and the operations it performs are equivalent
to those performed by Gaussian elimination. We STRONGLY recommend that the reader consult “Linear
Algebra: Foundations to Frontiers - Notes to LAFF With” [12] Weeks 6 and 7.

1 Definition and Existence

Definition 1. LU factorization (decomposition) Given a matrix A ∈ Cm×n with m ≤ n its LU factorization
is given by A = LU where L ∈ Cm×n is unit lower trapezoidal and U ∈ Cn×n is upper triangular.

The first question we will ask is when the LU factorization exists. For this, we need a definition.

Definition 2. The k×k principle leading submatrix of a matrix A is defined to be the square matrix ATL ∈ Ck×k

such that A =

(
ATL ATR

ABL ABR

)
.

This definition allows us to indicate when a matrix has an LU factorization:

Theorem 3. Existence Let A ∈ Cm×n and m ≤ n have linearly independent columns. Then A has a unique
LU factorization if and only if all its principle leading submatrices are nonsingular.

The proof of this theorem is a bit involved and can be found in Section 4.

2 LU Factorization

We are going to present two different ways of deriving the most commonly known algorithm. The first is
a straight forward derivation. The second presents the operation as the application of a sequence of Gauss
transforms.

2.1 First derivation

Partition A, L, and U as follows:

A→

(
α11 aT12
a21 A22

)
, L→

(
1 0

l21 L22

)
, and U →

(
υ11 uT12
0 U22

)
.

1

http://www.ulaff.net
http://www.ulaff.net

Then A = LU means that(
α11 aT12
a21 A22

)
=

(
1 0

l21 L22

)(
υ11 uT12
0 U22

)
=

(
υ11 uT12
l21υ11 l21u

T
12 + L22U22

)
.

This means that
α11 = υ11 aT12 = uT12
a21 = υ11l21 A22 = l21u

T
12 + L22U22

or, equivalently,

α11 = υ11 aT12 = uT12
a21 = υ11l21 A22 − l21uT12 = L22U22

.

If we let U overwrite the original matrix A this suggests the algorithm

• l21 = a21/α11.

• a21 = 0.

• A22 := A22 − l21aT12.

• Continue by overwriting the updated A22 with its LU factorization.

This is captured in the algorithm in Figure 1.

2.2 Gauss transforms

Definition 4. A matrix Lk of the form Lk =

 Ik 0 0

0 1 0

0 l21 0

 where Ik is k × k is called a Gauss transform.

Example 5. Gauss transforms can be used to take multiples of a row and subtract these multiples from other
rows: 

1 0 0 0

0 1 0 0

0 −λ21 1 0

0 −λ31 0 1




âT0

âT1
âT2
âT3

 =


âT0

âT1(
âT2
âT3

)
−

(
λ21

λ31

)
âT1

 =


âT0

âT1
âT2 − λ21âT1
âT3 − λ31âT1

 .

Notice the similarity with what one does in Gaussian Elimination: take a multiples of one row and subtract
these from other rows.

Now assume that the LU factorization in the previous subsection has proceeded to where A contains A00 a01 A02

0 α11 aT12
0 a21 A22


where A00 is upper triangular (recall: it is being overwritten by U !). What we would like to do is eliminate

the elements in a21 by taking multiples of the “current row”
(
α11 aT12

)
and subtract these from the rest

2

Algorithm: Compute LU factorization of A, overwriting L with factor
L and A with factor U

Partition A→

(
ATL ATR

ABL ABR

)
, L→

(
LTL 0

LBL LBR

)
where ATL and LTL are 0× 0

while n(ATL) < n(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
LTL LTR

LBL LBR

)
→

 L00 0 0

lT10 λ11 0

L20 l21 L22


where α11, λ11 are 1× 1
l21 := a21/α11

A22 := A22 − l21aT12
(a21 := 0)

or, alternatively,

l21 := a21/α11 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0

0 1 0

0 −l21 0


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12


Continue with(

ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
LTL 0

LBL LBR

)
←

 L00 0 0

lT10 λ11 0

L20 l21 L22


endwhile

Figure 1: Most commonly known algorithm for overwriting a matrix with its LU factorization.

of the rows:
(
a21 A22

)
. The vehicle is a Gauss transform: we must determine l21 so that I 0 0

0 1 0

0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 .

This means we must pick l21 = a21/α11 since I 0 0

0 1 0

0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02

0 α11 aT12
0 a21 − α11l21 A22 − l21aT12

 .

The resulting algorithm is summarized in Figure 1 under “or, alternatively,”. Notice that this algorithm is

3

identical to the algorithm for computing LU factorization discussed before!
How can this be? The following set of exercises explains it.

Exercise 6. Show that  Ik 0 0

0 1 0

0 −l21 I


−1

=

 Ik 0 0

0 1 0

0 l21 I


Now, clearly, what the algorithm does is to compute a sequence of n Gauss transforms L̂0, . . . , L̂n−1

such that L̂n−1L̂n−2 · · · L̂1L̂0A = U . Or, equivalently, A = L0L1 · · ·Ln−2Ln−1U , where Lk = L̂−1
k . What

will show next is that L = L0L1 · · ·Ln−2Ln−1 is the unit lower triangular matrix computed by the LU
factorization.

Exercise 7. Let L̃k = L0L1 . . . Lk. Assume that L̃k has the form L̃k−1 =

 L00 0 0

lT10 1 0

L20 0 I

, where L̃00 is k×k.

Show that L̃k is given by L̃k =

 L00 0 0

lT10 1 0

L20 l21 I

 .. (Recall: L̂k =

 I 0 0

0 1 0

0 −l21 I

.)

What this exercise shows is that L = L0L1 · · ·Ln−2Ln−1 is the triangular matrix that is created by
simply placing the computed vectors l21 below the diagonal of a unit lower triangular matrix.

2.3 Cost of LU factorization

The cost of the LU factorization algorithm given in Figure 1 can be analyzed as follows:

• Assume A is n× n.

• During the kth iteration, ATL is initially k × k.

• Computing l21 := a21/α11 is typically implemented as β := 1/α11 and then the scaling l21 := βa21.
The reason is that divisions are expensive relative to multiplications. We will ignore the cost of the
division (which will be insignificant if n is large). Thus, we count this as n− k − 1 multiplies.

• The rank-1 update of A22 requires (n− k − 1)2 multiplications and (n− k − 1)2 additions.

• Thus, the total cost (in flops) can be approximated by

n−1∑
k=0

[
(n− k − 1) + 2(n− k − 1)2

]
=

n−1∑
j=0

[
j + 2j2

]
(Change of variable: j = n− k − 1)

=

n−1∑
j=0

j + 2

n−1∑
j=0

j2

≈ n(n− 1)

2
+ 2

∫ n

0

x2dx

=
n(n− 1)

2
+

2

3
n3

≈ 2

3
n3

4

Notice that this involves roughly half the number of floating point operations as are required for a Householder
transformation based QR factorization.

3 LU Factorization with Partial Pivoting

It is well-known that the LU factorization is numerically unstable under general circumstances. In particular,
a backward stability analysis, given for example in [2, 5, 4] and summarized in Section 9, shows that the
computed matrices Ľ and Ǔ statisfy

(A+ ∆A) = ĽǓ where |∆A| ≤ γn|Ľ||Ǔ |.

(This is the backward error result for the Crout variant for LU factorization, discussed later in this note.
Some of the other variants have an error result of (A + ∆A) = ĽǓ where |∆A| ≤ γn(|A| + |Ľ||Ǔ |).) Now,
if α is small in magnitude compared to the entries of a21 then not only will l21 have large entries, but the
update A22 − l21aT12 will potentially introduce large entries in the updated A22 (in other words, the part of
matrix A from which the future matrix U will be computed), a phenomenon referred to as element growth.
To overcome this, we take will swap rows in A as the factorization proceeds, resulting in an algorithm known
as LU factorization with partial pivoting.

3.1 Permutation matrices

Definition 8. An n × n matrix P is said to be a permutation matrix, or permutation, if, when applied to a
vector x = (χ0, χ1, . . . , χn−1)

T
, it merely rearranges the order of the elements in that vector. Such a permutation

can be represented by the vector of integers, (π0, π1, . . . , πn−1)
T

, where {π0, π1, . . . , πn−1} is a permutation of the

integers {0, 1, . . . , n− 1} and the permuted vector Px is given by (χπ0
, χπ1

, . . . , χπn−1
)
T

.

If P is a permutation matrix then PA rearranges the rows of A exactly as the elements of x are rearranged
by Px.

We will see that when discussing the LU factorization with partial pivoting, a permutation matrix that
swaps the first element of a vector with the π-th element of that vector is a fundamental tool. We will denote
that matrix by

P (π) =



In if π = 0
0 0 1 0

0 Iπ−1 0 0

1 0 0 0

0 0 0 In−π−1

 otherwise,

where n is the dimension of the permutation matrix. In the following we will use the notation Pn to indicate
that the matrix P is of size n. Let p be a vector of integers satisfying the conditions

p = (π0, . . . , πk−1)
T
, where 1 ≤ k ≤ n and 0 ≤ πi < n− i, (1)

then Pn(p) will denote the permutation:

Pn(p) =

(
Ik−1 0

0 Pn−k+1(πk−1)

)(
Ik−2 0

0 Pn−k+2(πk−2)

)
· · ·

(
1 0

0 Pn−1(π1)

)
Pn(π0).

Remark 9. In the algorithms, the subscript that indicates the matrix dimensions is omitted.

5

Algorithm: Compute LU factorization with partial pivoting of A, overwriting L
with factor L and A with factor U . The pivot vector is returned in
p.

Partition A→
(

ATL ATR

ABL ABR

)
,

L→
(

LTL 0

LBL LBR

)
, p→

(
pT

pB

)
.

where ATL and LTL are 0× 0 and pT is 0× 1

while n(ATL) < n(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
LTL LTR

LBL LBR

)
→

 L00 0 0

lT10 λ11 0

L20 l21 L22

,

(
pT

pB

)
→

 p0

π1

p2


where α11, λ11, π1 are 1× 1

π1 = maxi

(
α11

a21

)
(

α11 aT12
a21 A22

)
:= P (π1)

(
α11 aT12
a21 A22

)
l21 := a21/α11

A22 := A22 − l21aT12
(a21 := 0)

or, alternatively,

π1 = maxi

(
α11

a21

)
 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

(
I 0

0 P (π1)

) A00 a01 A02

0 α11 aT12
0 a21 A22


l21 := a21/α11 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0

0 1 0

0 −l21 0


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12


Continue with(

ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
LTL 0

LBL LBR

)
←

 L00 0 0

lT10 λ11 0

L20 l21 L22

,

(
pT

pB

)
←

 p0

π1

p2


endwhile

Figure 2: LU factorization with partial pivoting.

6

Example 10. Let aT0 , a
T
1 , . . . , a

T
n−1 be the rows of a matrix A. The application of P (p) to A yields a matrix

that results from swapping row aT0 with aTπ0
, then swapping aT1 with aTπ1+1, aT2 with aTπ2+2, until finally aTk−1 is

swapped with aTπk−1+k−1.

Remark 11. For those familiar with how pivot information is stored in LINPACK and LAPACK, notice that
those packages store the vector of pivot information (π0 + 1, π1 + 2, . . . , πk−1 + k)

T
.

3.2 The algorithm

Having introduced our notation for permutation matrices, we can now define the LU factorization with
partial pivoting: Given an n × n matrix A, we wish to compute a) a vector p of n integers which satisfies
the conditions (1), b) a unit lower trapezoidal matrix L, and c) an upper triangular matrix U so that
P (p)A = LU . An algorithm for computing this operation is typically represented by

[A, p] := LUpiv(A),

where upon completion A has been overwritten by {L\U}.
Let us start with revisiting the first derivation of the LU factorization. The first step is to find a first

permutation matrix P (π1) such that the element on the diagonal in the first column is maximal in value.
For this, we will introduce the function maxi(x) which, given a vector x, returns the index of the element in
x with maximal magnitude (absolute value). The algorithm then proceeds as follows:

• Partition A, L as follows:

A→

(
α11 aT12
a21 A22

)
, and L→

(
1 0

l21 L22

)
.

• Compute π1 = maxi

(
α11

a21

)
.

• Permute the rows:

(
α11 aT12
a21 A22

)
:= P (π1)

(
α11 aT12
a21 A22

)
.

• Compute l21 := a21/α11.

• Update A22 := A22 − l21aT12.

Now, in general, assume that the computation has proceeded to the point where matrix A has been
overwritten by  A00 a01 A02

0 α11 aT12
0 a21 A22


where A00 is upper triangular. If no pivoting was added one would compute l21 := a21/α11 followed by the
update A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0

0 1 0

0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 .

Now, instead one performs the steps

7

• Compute π1 = maxi

(
α11

a21

)
.

• Permute the rows:

 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

(
I 0

0 P (π1)

) A00 a01 A02

0 α11 aT12
0 a21 A22


• Compute l21 := a21/α11.

• Update A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0

0 1 0

0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 .

This algorithm is summarized in Figure 2.
Now, what this algorithm computes is a sequence of Gauss transforms L̂0, . . . , L̂n−1 and permulations

P0, . . . , Pn−1 such that

L̂n−1Pn−1 · · · L̂0P0A = U

or, equivalently,
A = PT0 L0 · · · P̂Tn−1Ln−1U,

where Lk = L̂−1
k . What we will finally show is that there are Gauss transforms L̄0, . . . L̄n−1 (here the “bar”

does NOT mean conjugation. It is just a symbol) such that

A = PT0 · · ·PTn−1 L̄0 · · · L̄n−1︸ ︷︷ ︸
L

U

or, equivalently,

P (p)A = Pn−1 · · ·P0A = L̄0 · · · L̄n−1︸ ︷︷ ︸
L

U,

which is what we set out to compute.
Here is the insight. Assume that after k steps of LU factorization we have computed pT , LTL, LBL, etc.

so that

P (pT)A =

(
LTL 0

LBL I

)(
ATL ATR

0 ABR

)
,

where ATL is upper triangular and k × k.

Now compute the next step of LU factorization with partial pivoting with

(
ATL ATR

0 ABR

)
:

• Partition (
ATL ATR

0 ABR

)
→

 A00 a01 A02

0 α11 aT12
0 a01 A02



• Compute π1 = maxi

(
α11

a21

)

8

Algorithm: Compute LU factorization with partial pivoting of A, overwriting L
with factor L and A with factor U . The pivot vector is returned in
p.

Partition A→
(

ATL ATR

ABL ABR

)
, L→

(
LTL 0

LBL LBR

)
, p→

(
pT

pB

)
.

where ATL and LTL are 0× 0 and pT is 0× 1

while n(ATL) < n(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
LTL LTR

LBL LBR

)
→

 L00 0 0

lT10 λ11 0

L20 l21 L22

,

(
pT

pB

)
→

 p0

π1

p2


where α11, λ11, π1 are 1× 1

π1 = maxi

(
α11

a21

)
(

lT10 α11 aT12
L20 a21 A22

)
:= P (π1)

(
lT10 α11 aT12
L20 a21 A22

)
l21 := a21/α11

A22 := A22 − l21aT12
(a21 := 0)

or, alternatively,

π1 = maxi

(
α11

a21

)
 A00 a01 A02

lT10 α11 aT12
L20 a21 A22

 :=

(
I 0

0 P (π1)

) A00 a01 A02

lT10 α11 aT12
L20 a21 A22


l21 := a21/α11 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0

0 1 0

0 −l21 0


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12


Continue with(

ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
LTL 0

LBL LBR

)
←

 L00 0 0

lT10 λ11 0

L20 l21 L22

,

(
pT

pB

)
←

 p0

π1

p2


endwhile

Figure 3: LU factorization with partial pivoting.

9

Algorithm: Compute LU factorization with partial pivoting of A, over-
writing A with factors L and U . The pivot vector is re-
turned in p.

Partition A→

(
ATL ATR

ABL ABR

)
, p→

(
pT

pB

)
.

where ATL is 0× 0 and pT is 0× 1

while n(ATL) < n(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
pT

pB

)
→

 p0

π1

p2


where α11, λ11, π1 are 1× 1

π1 = maxi

(
α11

a21

)
(

aT10 α11 aT12
A20 a21 A22

)
:= P (π1)

(
aT10 α11 aT12
A20 a21 A22

)
a21 := a21/α11

A22 := A22 − a21aT12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
pT

pB

)
←

 p0

π1

p2


endwhile

Figure 4: LU factorization with partial pivoting, overwriting A with the factors.

• Permute

 A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

(
I 0

0 P (π1)

) A00 a01 A02

0 α11 aT12
0 a21 A22


• Compute l21 := a21/α11.

• Update  A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12


After this,

P (pT)A =

(
LTL 0

LBL I

)(
I 0

0 P (π1)

) I 0 0

0 1 0

0 l21 I


 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 (2)

10

But

(
LTL 0

LBL I

)(
I 0

0 P (π1)

) I 0 0

0 1 0

0 l21 I


 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12



=

(
I 0

0 P (π1)

)(
LTL 0

P (π1)LBL I

) I 0 0

0 1 0

0 l21 I


 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12



=

(
I 0

0 P (π1)

)(
LTL 0

L̄BL I

) I 0 0

0 1 0

0 l21 I


 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 , ,

NOTE: There is a “bar” above some of L’s and l’s. Very hard to see!!! For this reason, these
show up in red as well. Here we use the fact that P (π1) = P (π1)T because of its very special structure.

Bringing the permutation to the left of (2) and “repartitioning” we get

(
I 0

0 P (π1)

)
P (p0)︸ ︷︷ ︸

P

(
p0

π1

)
A =

 L00 0 0

l̄T10 1 0

L̄20 0 I


 I 0 0

0 1 0

0 l21 I


︸ ︷︷ ︸ L00 0 0

l̄T10 1 0

L̄20 l21 I



 A00 a01 A02

0 α11 aT12
0 0 A22 − l21aT12

 .

This explains how the algorithm in Figure 3 compute p, L, and U (overwritingA with U) so that P (p)A = LU .
Finally, we recognize that L can overwrite the entries of A below its diagonal, yielding the algorithm in

Figure 4.

4 Proof of Theorem 1

Proof:
(⇒) Let nonsingular A have a (unique) LU factorization. We will show that its principle leading submatrices
are nonsingular. Let (

ATL ATR

ABL ABR

)
︸ ︷︷ ︸

A

=

(
LTL 0

LBL LBR

)
︸ ︷︷ ︸

L

(
UTL UTR

0 UBR

)
︸ ︷︷ ︸

U

be the LU factorization of A where ATL, LTL, and UTL are k × k. Notice that U cannot have a zero on
the diagonal since then A would not have linearly independent columns. Now, the k × k principle leading
submatrix ATL equals ATL = LTLUTL which is nonsingular since LTL has a unit diagonal and UTL has no
zeroes on the diagonal. Since k was chosen arbitrarily, this means that all principle leading submatrices are
nonsingular.

(⇐) We will do a proof by induction on n.

11

Base Case: n = 1. Then A has the form A =

(
α11

a21

)
where α11 is a scalar. Since the principle leading

submatrices are nonsingular α11 6= 0. Hence A =

(
1

a21/α11

)
︸ ︷︷ ︸

L

α11︸︷︷︸
U

is the LU factorization of A.

This LU factorization is unique because the first element of L must be 1.

Inductive Step: Assume the result is true for all matrices with n = k. Show it is true for matrices with
n = k + 1.

Let A of size n = k+ 1 have nonsingular principle leading submatrices. Now, if an LU factorization of
A exists, A = LU , then it would have to form A00 a01

aT10 α11

A20 a21


︸ ︷︷ ︸

A

=

 L00 0

lT10 1

L20 l21


︸ ︷︷ ︸

L

(
U00 u01

0 υ11

)
︸ ︷︷ ︸

U

. (3)

If we can show that the different parts of L and U exist and are unique, we are done. Equation (3)
can be rewritten as A00

aT10
A20

 =

 L00

lT10
L20

U00 and

 a01

α11

a21

 =

 L00u01

lT10u01 + υ11

L20u01 + l21υ11

 .

Now, by the Induction Hypothesis L11, lT10, and L20 exist and are unique. So the question is whether
u01, υ11, and l21 exist and are unique:

• u01 exists and is unique. Since L00 is nonsingular (it has ones on its diagonal) L00u01 = a01
has a solution that is unique.

• υ11 exists, is unique, and is nonzero. Since lT10 and u01 exist and are unique, υ11 = α11−lT10u01
exists and is unique. It is also nonzero since the principle leading submatrix of A given by(

A00 a01

aT10 α11

)
=

(
L00 0

lT10 1

)(
U00 u01

0 υ11

)
,

is nonsingular by assumption and therefore υ11 must be nonzero.

• l21 exists and is unique. Since υ11 exists and is nonzero, l21 = a21/υ11 exists and is uniquely
determined.

Thus the m× (k + 1) matrix A has a unique LU factorization.

By the Principle of Mathematical Induction the result holds.

Exercise 12. Implement LU factorization with partial pivoting with the FLAME@lab API, in M-script.

12

5 LU with Complete Pivoting

LU factorization with partial pivoting builds on the insight that pivoting (rearranging) rows in a linear
system does not change the solution: if Ax = b then P (p)Ax = P (p)b, where p is a pivot vector. Now, if r
is another pivot vector, then notice that P (r)TP (r) = I (a simple property of pivot matrices) and AP (r)T

permutes the columns of A in exactly the same order as P (r)A permutes the rows of A.
What this means is that if Ax = b then P (p)AP (r)T [P (r)x] = P (p)b. This supports the idea that one

might want to not only permute rows of A, as in partial pivoting, but also columns of A. This is done in a
variation on LU factorization that is known as LU factorization with complete pivoting.

The idea is as follows: Given matrix A, partition

A =

(
α11 aT12
a21 A22

)
.

Now, instead of finding the largest element in magnitude in the first column, find the largest element in
magnitude in the entire matrix. Let’s say it is element (π0, ρ0). Then, one permutes(

α11 aT12
a21 A22

)
:= P (π0)

(
α11 aT12
a21 A22

)
P (ρ0)T ,

making α11 the largest element in magnitude. This then reduces the magnitude of multipliers and element
growth.

It can be shown that the maximal element growth experienced when employing LU with complete pivoting
indeed reduces element growth. The problem is that it requires O(n2) comparisons per iteration. Worse, it
completely destroys the ability to utilize blocked algorithms, which attain much greater performance.

In practice LU with complete pivoting is not used.

6 Solving Ax = y Via the LU Factorization with Pivoting

Given nonsingular matrix A ∈ Cm×m, the above discussions have yielded an algorithm for computing
permutation matrix P , unit lower triangular matrix L and upper triangular matrix U such that PA = LU .
We now discuss how these can be used to solve the system of linear equations Ax = y.

Starting with
Ax = y

we multiply both sizes of the equation by permutation matrix P

PAx = Py︸︷︷︸
ŷ

and substitute LU for PA
L Ux︸︷︷︸

z

ŷ.

We now notice that we can solve the lower triangular system

Lz = ŷ

after which x can be computed by solving the upper triangular system

Ux = z.

13

Algorithm: Solve Lz = y, overwriting y (Variant 1)

Partition L→
(
LTL LTR

LBL LBR

)
, y →

(
yT

yB

)
where LTL is 0× 0, yT has 0 rows

while m(LTL) < m(L) do

Repartition(
LTL LTR

LBL LBR

)
→

 L00 l01 L02

lT10 λ11 lT12
L20 l21 L22

,

(
yT

yB

)
→

 y0

ψ1

y2


where λ11 is 1× 1, ψ1 has 1 row

y2 := y2 − ψ1l21

Continue with(
LTL LTR

LBL LBR

)
←

 L00 l01 L02

lT10 λ11 lT12

L20 l21 L22

,

(
yT

yB

)
←

 y0

ψ1

y2


endwhile

Algorithm: Solve Lz = y, overwriting y (Variant 2)

Partition L→
(
LTL LTR

LBL LBR

)
, y →

(
yT

yB

)
where LTL is 0× 0, yT has 0 rows

while m(LTL) < m(L) do

Repartition(
LTL LTR

LBL LBR

)
→

 L00 l01 L02

lT10 λ11 lT12
L20 l21 L22

,

(
yT

yB

)
→

 y0

ψ1

y2


where λ11 is 1× 1, ψ1 has 1 row

ψ1 := ψ1 − lT10y0

Continue with(
LTL LTR

LBL LBR

)
←

 L00 l01 L02

lT10 λ11 lT12

L20 l21 L22

,

(
yT

yB

)
←

 y0

ψ1

y2


endwhile

Figure 5: Algorithms for the solution of a unit lower triangular system Lz = y that overwrite y with z.

7 Solving Triangular Systems of Equations

7.1 Lz = y

First, we discuss solving Lz = y where L is a unit lower triangular matrix.

Variant 1

Consider Lz = y where L is unit lower triangular. Partition

L→

(
1 0

l21 L22

)
, z →

(
ζ1

z2

)
and y →

(
ψ1

y2

)
.

Then (
1 0

l21 L22

)
︸ ︷︷ ︸

L

(
ζ1

z2

)
︸ ︷︷ ︸

z

=

(
ψ1

y2

)
︸ ︷︷ ︸

y

.

Multiplying out the left-hand side yields(
ζ1

ζ1l21 + L22z2

)
=

(
ψ1

y2

)
and the equalities

ζ1 = ψ1

ζ1l21 + L22z2 = y2,

14

which can be rearranged as

ζ1 = ψ1

L22z2 = y2 − ζ1l21.

These insights justify the algorithm in Figure 5 (left), which overwrites y with the solution to Lz = y.

Variant 2

An alternative algorithm can be derived as follows: Partition

L→

(
L00 0

lT10 1

)
, z →

(
z0

ζ1

)
and y →

(
y0

ψ1

)
.

Then (
L00 0

lT10 1

)
︸ ︷︷ ︸

L

(
z0

ζ1

)
︸ ︷︷ ︸

z

=

(
y0

ψ1

)
︸ ︷︷ ︸

y

.

Multiplying out the left-hand side yields(
L00z0

lT10z0 + ζ1

)
=

(
y0

ψ1

)
and the equalities

L00z0 = y0

lT10z0 + ζ1 = ψ1.

The idea now is as follows: Assume that the elements of z0 were computed in previous iterations in the
algorithm in Figure 5 (left), overwriting y0. Then in the current iteration we can compute ζ1 := ψ0 − lT10z0,
overwriting ψ1.

Discussion

Notice that Variant 1 casts the computation in terms of an axpy operation while Variant 2 casts it in terms
of dot products.

7.2 Ux = z

Next, we discuss solving Ux = y where U is an upper triangular matrix (with no assumptions about its
diagonal entries).

Exercise 13. Derive an algorithm for solving Ux = y, overwriting y with the solution, that casts most
computation in terms of dot products. Hint: Partition

U →

(
υ11 uT12
0 U22

)
.

Call this Variant 1 and use Figure 6 to state the algorithm.

Exercise 14. Derive an algorithm for solving Ux = y, overwriting y with the solution, that casts most
computation in terms of axpy operations. Call this Variant 2 and use Figure 6 to state the algorithm.

15

Algorithm: Solve Uz = y, overwriting y (Variant 1)

Partition U →
(
UTL UTR

UBL UBR

)
, y →

(
yT

yB

)
where UBR is 0× 0, yB has 0 rows

while m(UBR) < m(U) do

Repartition(
UTL UTR

UBL UBR

)
→

 U00 u01 U02

uT10 υ11 uT12

U20 u21 U22

,

(
yT

yB

)
→

 y0

ψ1

y2


where υ11 is 1× 1, ψ1 has 1 row

Continue with(
UTL UTR

UBL UBR

)
←

 U00 u01 U02

uT10 υ11 uT12
U20 u21 U22

,

(
yT

yB

)
←

 y0

ψ1

y2


endwhile

Algorithm: Solve Uz = y, overwriting y (Variant 2)

Partition U →
(
UTL UTR

UBL UBR

)
, y →

(
yT

yB

)
where UBR is 0× 0, yB has 0 rows

while m(UBR) < m(U) do

Repartition(
UTL UTR

UBL UBR

)
→

 U00 u01 U02

uT10 υ11 uT12

U20 u21 U22

,

(
yT

yB

)
→

 y0

ψ1

y2


where υ11 is 1× 1, ψ1 has 1 row

Continue with(
UTL UTR

UBL UBR

)
←

 U00 u01 U02

uT10 υ11 uT12
U20 u21 U22

,

(
yT

yB

)
←

 y0

ψ1

y2


endwhile

Figure 6: Algorithms for the solution of an upper triangular system Ux = y that overwrite y with x.

8 Other LU Factorization Algorithms

There are actually five different (unblocked) algorithms for computing the LU factorization that were dis-
covered over the course of the centuries1. The LU factorization in Figure 1 is sometimes called classical LU
factorization or the right-looking algorithm. We now briefly describe how to derive the other algorithms.

Finding the algorithms starts with the following observations.

• Our algorithms will overwrite the matrix A, and hence we introduce Â to denote the original contents
of A. We will say that the precondition for the algorithm is that

A = Â

(A starts by containing the original contents of A.)

• We wish to overwrite A with L and U . Thus, the postcondition for the algorithm (the state in which
we wish to exit the algorithm) is that

A = L\U ∧ LU = Â

(A is overwritten by L below the diagonal and U on and above the diagonal, where multiplying L and
U yields the original matrix A.)

1For a thorough discussion of the different LU factorization algorithms that also gives a historic perspective, we recommend
“Matrix Algorithms Volume 1“ by G.W. Stewart [13]

16

• All the algorithms will march through the matrices from top-left to bottom-right. Thus, at a repre-
sentative point in the algorithm, the matrices are viewed as quadrants:

A→

(
ATL ATR

ABL ABR

)
, L→

(
LTL 0

LBL LBR

)
, and U →

(
UTL UTR

0 UBR

)
.

where ATL, LTL, and UTL are all square and equally sized.

• In terms of these exposed quadrants, in the end we wish for matrix A to contain(
ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL L\UBR

)

where

(
LTL 0

LBL LBR

)(
UTL UTR

0 UBR

)
=

(
ÂTL ÂTR

ÂBL ÂBR

)

• Manipulating this yields what we call the Partitioned Matrix Expression (PME), which can be viewed
as a recursive definition of the LU factorization:(

ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL L\UBR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL LBLUTR + LBRUBR = ÂBR

Now, consider the code skeleton for the LU factorization in Figure 7. At the top of the loop (right after
the while), we want to maintain certain contents in matrix A. Since we are in a loop, we haven’t yet
overwritten A with the final result. Instead, some progress toward this final result have been made.
The way we can find what the state of A is that we would like to maintain is to take the PME and
delete subexpression. For example, consider the following condition on the contents of A:(

ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL ÂBR − LBLUTR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

.

What we are saying is that ATL, ATR, and ABL have been completely updated with the corresponding
parts of L and U , and ABR has been partially updated. This is exactly the state that the
algorithm that we discussed previously in this document maintains! What is left is to factor
ABR, since it contains ÂBR − LBLUTR, and ÂBR − LBLUTR = LBRUBR.

• By carefully analyzing the order in which computation must occur (in compiler lingo: by performing
a dependence analysis), we can identify five states that can be maintained at the top of the loop, by
deleting subexpressions from the PME. These are called loop invariants and are listed in Figure 8.

• Key to figuring out what updates must occur in the loop for each of the variants is to look at how the
matrices are repartitioned at the top and bottom of the loop body.

17

•

Algorithm: A := LU(A)

Partition A→

(
ATL ATR

ABL ABR

)
, L→

(
LTL LTR

LBL LBR

)
, U →

(
UTL UTR

UBL UBR

)
where ATL is 0× 0, LTL is 0× 0, UTL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
LTL LTR

LBL LBR

)
→

 L00 l01 L02

lT10 λ11 lT12
L20 l21 L22

,

(
UTL UTR

UBL UBR

)
→

 U00 u01 U02

uT10 υ11 uT12
U20 u21 U22


where α11 is 1× 1, λ11 is 1× 1, υ11 is 1× 1

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
LTL LTR

LBL LBR

)
←

 L00 l01 L02

lT10 λ11 lT12

L20 l21 L22

,

(
UTL UTR

UBL UBR

)
←

 U00 u01 U02

uT10 υ11 uT12

U20 u21 U22


endwhile

Figure 7: Code skeleton for LU factorization.

18

Variant Algorithm State (loop invariant)

1 Bordered

(
ATL ATR

ABL ABR

)
=

(
L\UTL ÂTR

ÂBL ÂBR

)

∧
LTLUTL = ÂTL ((((((((

LTLUTR = ÂTR

((((((((
LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

2 Left-looking

(
ATL ATR

ABL ABR

)
=

(
L\UTL ÂTR

LBL ÂBR

)

∧
LTLUTL = ÂTL ((((((((

LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

3 Up-looking

(
ATL ATR

ABL ABR

)
=

(
L\UTL UTR

ÂBL ÂBR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

((((((((
LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

4 Crout variant

(
ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL ÂBR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

5 Classical LU

(
ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL ÂBR − LBLUTR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

Figure 8: Loop invariants for various LU factorization algorithms.

19

8.1 Variant 1: Bordered algorithm

Consider the loop invariant:(
ATL ATR

ABL ABR

)
=

(
L\UTL ÂTR

ÂBL ÂBR

)

∧
LTLUTL = ÂTL ((((((((

LTLUTR = ÂTR

((((((((
LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

At the top of the loop, after repartitioning, A contains

L\U00 â01 Â02

âT10 α̂11 âT12
Â20 â21 Â22

while at the bottom it must contain
L\U00 u01 Â02

lT10 υ11 âT12
Â20 â21 Â22

where the entries in blue are to be computed. Now, considering LU = Â we notice that

L00U00 = Â00 L00u01 = â01 L00U02 = Â02

lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12

L20U00 = Â20 L20u01 + υ11l21 = â21 L20U02 + l21u
T
12 + L22U22 = Â22

where the entries in red are already known. The equalities in yellow can be used to compute the desired
parts of L and U :

• Solve L00u01 = a01 for u01, overwriting a01 with the result.

• Solve lT10U00 = aT10 (or, equivalently, UT00(lT10)T = (aT10)T for lT10), overwriting aT10 with the result.

• Compute υ11 = α11 − lT10u01, overwriting α11 with the result.

Exercise 15. If A is an n× n matrix, show that the cost of Variant 1 is approximately 2
3n

3 flops.

8.2 Variant 2: Left-looking algorithm

Consider the loop invariant:(
ATL ATR

ABL ABR

)
=

(
L\UTL ÂTR

LBL ÂBR

)

∧
LTLUTL = ÂTL ((((((((

LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

At the top of the loop, after repartitioning, A contains

L\U00 â01 Â02

lT10 α̂11 âT12
L20 â21 Â22

20

while at the bottom it must contain
L\U00 u01 Â02

lT10 υ11 âT12
L20 l21 Â22

where the entries in blue are to be computed. Now, considering LU = Â we notice that

L00U00 = Â00 L00u01 = â01 L00U02 = Â02

lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12

L20U00 = Â20 L20u01 + υ11l21 = â21 L20U02 + l21u
T
12 + L22U22 = Â22

The equalities in yellow can be used to compute the desired parts of L and U :

• Solve L00u01 = a01 for u01, overwriting a01 with the result.

• Compute υ11 = α11 − lT10u01, overwriting α11 with the result.

• Compute l21 := (α21 − L20u01)/υ11, overwriting a21 with the result.

8.3 Variant 3: Up-looking variant

Exercise 16. Derive the up-looking variant for computing the LU factorization.

8.4 Variant 4: Crout variant

Consider the loop invariant:(
ATL ATR

ABL ABR

)
=

(
L\UTL UTR

LBL ÂBR

)

∧
LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL (((((((((((((

LBLUTR + LBRUBR = ÂBR

At the top of the loop, after repartitioning, A contains

L\U00 u01 U02

lT10 α̂11 âT12
L20 â21 Â22

while at the bottom it must contain
L\U00 u01 U02

lT10 υ11 uT12
L20 l21 Â22

where the entries in blue are to be computed. Now, considering LU = Â we notice that

L00U00 = Â00 L00u01 = â01 L00U02 = Â02

lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12

L20U00 = Â20 L20u01 + υ11l21 = â21 L20U02 + l21u
T
12 + L22U22 = Â22

The equalities in yellow can be used to compute the desired parts of L and U :

21

Algorithm: A := L\U = LU(A)

Partition A→

(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22


where α11 is 1× 1

A00 contains L00 and U00 in its strictly lower and upper triangular part, respectively.

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

Bordered Left-looking Up-looking Crout variant Classical LU

a01 := L−1
00 a01 a01 := L−1

00 a01 Exercise in 8.3

aT10 := aT10U
−1
00

α11 := α11 − aT21a01 α11 := α11 − aT21a01 α11 := α11 − aT21a01
aT12 := aT12 − aT10A02

a21 := a21 −A20a01 a21 := a21 −A20a01

a21 := a21/α11 a21 := a21/α11 a21 := a21/α11

A22 := A22 − a21aT12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22


endwhile

Figure 9: All five LU factorization algorithms.

• Compute υ11 = α11 − lT10u01, overwriting α11 with the result.

• Compute l21 := (α21 − L20u01)/υ11, overwriting a21 with the result.

• Compute uT12 := aT12 − lT10U02, overwriting aT12 with the result.

8.5 Variant 5: Classical LU factorization

We have already derived this algorithm. You may want to try rederiving it using the techniques discussed
in this section.

8.6 All algorithms

All five algorithms for LU factorization are summarized in Figure 9.

Exercise 17. Implement all five LU factorization algorithms with the FLAME@lab API, in M-script.

22

Exercise 18. Which of the five variants can be modified to incorporate partial pivoting?

8.7 Formal derivation of algorithms

The described approach to deriving algorithms, linking the process to the a priori identification of loop
invariants, was first proposed in [10]. It was refined into what we call the “worksheet” for deriving algorithms
hand-in-hand with their proofs of correctness, in [3]. A book that describes the process at a level also
appropriate for the novice is “The Science of Programming Matrix Computations” [14].

9 Numerical Stability Results

The numerical stability of various LU factorization algorithms as well as the triangular solve algorithms can
be found in standard graduate level numerical linear algebra texts and references [8, 11, 13]. Of particular
interest may be the analysis of the Crout variant (Variant 4) in [5], since it uses our notation as well as the
results in “Notes on Numerical Stability”. (We recommend the technical report version [4] of the paper,
since it has more details as well as exercises to help the reader understand.) In that paper, a systematic
approach towards the derivation of backward error results is given that mirrors the systematic approach to
deriving the algorithms given in [10, 3, 14].

Here are pertinent results from that paper, assuming floating point arithmetic obeys the model of com-
putation given in “Notes on Numerical Stability” (as well as [5, 4, 11]). It is assumed that the reader is
familiar with those notes.

Theorem 19. Let A ∈ Rn×n and let the LU factorization of A be computed via the Crout variant (Variant 4),
yielding approximate factors Ľ and Ǔ . Then

(A+ ∆A) = ĽǓ with |∆A| ≤ γn|Ľ||Ǔ |.

Theorem 20. Let L ∈ Rn×n be lower triangular and y, z ∈ Rn with Lz = y. Let ž be the approximate solution
that is computed. Then

(L+ ∆L)ž = y with |∆L| ≤ γn|L|.

Theorem 21. Let U ∈ Rn×n be upper triangular and x, z ∈ Rn with Ux = z. Let x̌ be the approximate solution
that is computed. Then

(U + ∆U)x̌ = z with |∆U | ≤ γn|U |.

Theorem 22. Let A ∈ Rn×nand x, y ∈ Rn with Ax = y. Let x̌ be the approximate solution computed via the
following steps:

• Compute the LU factorization, yielding approximate factors Ľ and Ǔ .

• Solve Ľz = y, yielding approximate solution ž.

• Solve Ǔx = ž, yielding approximate solution x̌.

Then (A+ ∆A)x̌ = y with |∆A| ≤ (3γn + γ2n)|Ľ||Ǔ |.
The analysis of LU factorization without partial pivoting is related that of LU factorization with partial

pivoting. We have shown that LU with partial pivoting is equivalent to the LU factorization without partial
pivoting on a pre-permuted matrix: PA = LU , where P is a permutation matrix. The permutation doesnt
involve any floating point operations and therefore does not generate error. It can therefore be argued that,
as a result, the error that is accumulated is equivalent with or without partial pivoting

23

10 Is LU with Partial Pivoting Stable?

Exercise 23. Apply LU with partial pivoting to

A =



1 0 0 · · · 0 1

−1 1 0 · · · 0 1

−1 −1 1 · · · 0 1
...

...
...

. . .
...

...

−1 −1 · · · 1 1

−1 −1 · · · −1 1


.

Pivot only when necessary.

From this exercise we conclude that even LU factorization with partial pivoting can yield large (exponential)
element growth in U . You may enjoy the collection of problems for which Gaussian elimination with partial
pivoting in unstable by Stephen Wright [15].

In practice, this does not seem to happen and LU factorization is considered to be stable.

11 Blocked algorithms

It is well-known that matrix-matrix multiplication can achieve high performance on most computer archi-
tectures [1, 9, 7]. As a result, many dense matrix algorithms are reformulated to be rich in matrix-matrix
multiplication operations. An interface to a library of such operations is known as the level-3 Basic Linear
Algebra Subprograms (BLAS) [6]. In this section, we show how LU factorization can be rearranged so that
most computation is in matrix-matrix multiplications.

11.1 Blocked classical LU factorization (Variant 5)

Partition A, L, and U as follows:

A→

(
A11 A12

A21 A22

)
, L→

(
L11 0

L21 L22

)
, and U →

(
U11 U12

0 U22

)
,

where A11, L11, and U11 are b× b. Then A = LU means that(
A11 A12

A21 A22

)
=

(
L11 0

L21 L22

)(
U11 U12

0 U22

)
=

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
.

This means that
A11 = L11U11 A12 = L11U12

A21 = L21U11 A22 = L21U12 + L22U22

or, equivalently,

A11 = L11U11 A12 = L11U12

A21 = L21U11 A22 − L21U12 = L22U22

.

If we let L and U overwrite the original matrix A this suggests the algorithm

• Compute the LU factorization A11 = L11U11, overwriting A11 with L\U11. Notice that any of the
“unblocked” algorithms previously discussed in this note can be used for this factorization.

24

Algorithm: A := LU(A)

Partition A→

(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

A00 contains L00 and U00 in its strictly lower and upper triangular part, respectively.

Variant 1:

A01 := L00
−1A01

A10 := A10U00
−1

A11 := A11 −A10A01

A11 := LU(A11)

Variant 2:

A01 := L00
−1A01

A11 := A11 −A10A01

A11 := LU(A11)

A21 := (A21 −A20A01)U11
−1

Variant 3:

A10 := A10U00
−1

A11 := A11 −A10A01

A11 := LU(A11)

A12 := A12 −A10A02

Variant 4:

A11 := A11 −A10A01

A11 := LU(A11)

A21 := (A21 −A20A01)U−1
11

A12 := L11
−1(A12 −A10A02)

Variant 5:

A11 := LU(A11)

A21 := A21U11
−1

A12 := L11
−1A12

A22 := A22 −A21A12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 10: Blocked algorithms for computing the LU factorization.

• Solve L11U12 = A12, overwriting A12 with U12. (This can also be expressed as A12 := L−1
11 A12.)

• Solve L21U11 = A21, overwiting A21 with U21. (This can also be expressed as A21 := A21U
−1
11 .)

• Update A22 := A22 −A21A12.

• Continue by overwriting the updated A22 with its LU factorization.

If b is small relative to n, then most computation is in the last step, which is a matrix-matrix multiplication.
Similarly, blocked algorithms for the other variants can be derived. All are given in Figure 10.

11.2 Blocked classical LU factorization with pivoting (Variant 5)

Pivoting can be added to some of the blocked algorithms. Let us focus once again on Variant 5.

25

Algorithm: [A, p] := LUpiv blk(A, p)

Partition A→

(
ATL ATR

ABL ABR

)
, p→

(
pT

pB

)
where ATL is 0× 0, pT has 0 elements.

while n(ATL) < n(A) do

Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

,

(
pT

pB

)
→

 p0

p1

p2


where A11 is b× b, p1 has b elements

Variant 2:

A01 := L00
−1A01

A11 := A11 −A10A01

A21 := A21 −A20A01[(
A11

A21

)
, p1

]
:=

LUpiv(

(
A11

A21

)
, p1)(

A10 A12

A20 A22

)
:=

P (p1)

(
A10 A12

A20 A22

)

Variant 4:

A11 := A11 −A10A01

A21 := A21 −A20A01[(
A11

A21

)
, p1

]
:=

LUpiv(

(
A11

A21

)
, p1)(

A10 A12

A20 A22

)
:=

P (p1)

(
A10 A12

A20 A22

)
A12 := A12 −A10A02

A12 := L11
−1A12

Variant 5:

[(
A11

A21

)
, p1

]
:=

LUpiv(

(
A11

A21

)
, p1)(

A10 A12

A20 A22

)
:=

P (p1)

(
A10 A12

A20 A22

)

A12 := L11
−1A12

A22 := A22 −A21A12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22

,

(
pT

pB

)
←

 p0

p1

p2


endwhile

Figure 11: Blocked algorithms for computing the LU factorization with partial pivoting.
.

Partition A, L, and U as follows:

A→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 , L→

 L00 0 0

L10 L11 0

L20 L21 L22

 , and U →

 U00 U01 U02

0 U11 U12

0 0 U22

 ,

where A00, L00, and U00 are k × k, and A11, L11, and U11 are b× b.

26

Assume that the computation has proceeded to the point where A contains A00 A01 A02

A10 A11 A12

A20 A21 A22

 =

 L\U00 U01 U02

L10 Â11 − L10U01 A12 − L10U02

L20 Â21 − L20U01 A22 − L20U02

 ,

where, as before, Â denotes the original contents of A and

P (p0)

 Â00 Â01 Â02

Â10 Â11 Â12

Â20 Â21 Â22

 =

 L00 0 0

L10 I 0

L20 0 I


 U00 U01 U02

0 A11 A12

0 A21 A22

 .

In the current blocked step, we now perform the following computations

• Compute the LU factorization with pivoting of the “current panel”

(
A11

A21

)
:

P (p1)

(
A11

A21

)
=

(
L11

L21

)
U11,

overwriting A11 with L\U11 and A21 with L21.

• Correspondingly, swap rows in the remainder of the matrix(
A10 A12

A20 A22

)
:= P (p1)

(
A10 A12

A20 A22

)
.

• Solve L11U12 = A12, overwriting A12 with U12. (This can also be more concisely written as A12 :=
L−1
11 A12.)

• Update A22 := A22 −A21A12.

Careful consideration shows that this puts the matrix A in the state A00 A01 A02

A10 A11 A12

A20 A21 A22

 =

 L\U00 U01 U02

L10 L\U11 U12

L20 L21 Â22 − L20U02 − L21U12

 ,

where

P (

(
p0

p1

)
)

 Â00 Â01 Â02

Â10 Â11 Â12

Â20 Â21 Â22

 =

 L00 0 0

L10 L11 0

L20 L21 I


 U00 U01 U02

0 U11 U12

0 0 A22

 .

Similarly, blocked algorithms with pivoting for some of the other variants can be derived. All are given
in Figure 10.

12 Variations on a Triple-Nested Loop

All LU factorization algorithms presented in this note perform exactly the same floating point operations
(with some rearrangement of data thrown in for the algorithms that perform pivoting) as does the triple-
nested loop that implements Gaussian elimination:

27

for j = 0, . . . , n− 1 (zero the elements below (j, j) element)
for i = j + 1, . . . n− 1

αi,j := αi,j/αj,j (compute multiplier λi,j , overwriting αi,j)
for k = j + 1, . . . , n− 1 (subtract λi,j times the jth row from ith row)

αi,k := αi,k − αi,jαj,k
endfor

endfor
endfor

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

[2] Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algorithms.
PhD thesis, 2006.

[3] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1–26,
March 2005.

[4] Paolo Bientinesi and Robert A. van de Geijn. The science of deriving stability analyses. FLAME
Working Note #33. Technical Report AICES-2008-2, Aachen Institute for Computational Engineering
Sciences, RWTH Aachen, November 2008.

[5] Paolo Bientinesi and Robert A. van de Geijn. Goal-oriented and modular stability analysis. SIAM J.
Matrix Anal. Appl., 32(1):286–308, March 2011. We suggest you read FLAME Working Note #33 for
more details.

[6] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[7] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems
on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.

[8] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, 3rd edition, 1996.

[9] Kazushige Goto and Robert van de Geijn. Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Soft., 34(3):12:1–12:25, May 2008.

[10] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[11] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[12] Margaret E. Myers, Pierce M. van de Geijn, and Robert A. van de Geijn. Linear Algebra: Foundations
to Frontiers - Notes to LAFF With. Self published, 2014. Available from http://www.ulaff.net.

[13] G. W. Stewart. Matrix Algorithms Volume 1: Basic Decompositions. SIAM, 1998.

[14] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming Matrix Computa-
tions. www.lulu.com/contents/contents/1911788/, 2008.

[15] Stephen J. Wright. A collection of problems for which Gaussian elimination with partial pivoting is
unstable. SIAM J. Sci. Comput., 14(1):231–238, 1993.

28

http://www.ulaff.net
http://www.ulaff.net

	Definition and Existence
	LU Factorization
	LU Factorization with Partial Pivoting
	Proof of Theorem 1
	LU with Complete Pivoting
	Solving A x = y Via the LU Factorization with Pivoting
	Solving Triangular Systems of Equations
	Other LU Factorization Algorithms
	Numerical Stability Results
	Is LU with Partial Pivoting Stable?
	Blocked algorithms
	Variations on a Triple-Nested Loop

