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The theory of non-orthogonal spin-adaptation for closed-shell molecular

systems is presented, with an emphasis on application to the coupled cluster

family of electronic structure methods. To aid in the derivation of e�cient and

compact working equations, a new diagrammatic interpretation of the Gold-

stone diagrams is derived which only requires a small number of the many

distinct diagrams and which directly produces equations in a factored form in

terms of “spin-summed” tensor elements. This diagrammatic interpretation

is applied to coupled cluster methods with quadruple excitations (CCSDTQ),

including coupled cluster with a perturbative correction for quadruple excita-

tions (CCSDT(Q)) and to CCSDTQ gradients and properties. The advantages

of the non-orthogonal spin-adaption with respect to simplification and factor-

ization of the working equations and to e�cient implementation are presented

and discussed. Additionally, specific optimizations of the implementation for

often-overlooked issues such as tensor transposition, disk access, and removal
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of redundant and/or unnecessary operations are detailed. The resulting algo-

rithm is implemented for the CCSDTQ and CCSDT(Q) methods and com-

pared to existing codes, where a one to two order-of-magnitude improvement

in e�ciency is observed. The new implementation is also used for calculations

on several larger molecular systems to illustrate the scalability of the method.
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Chapter 1

Introduction

1.1 The Need for High Accuracy in Quantum Chem-
istry

Among the most successful electronic structure methods today are

those based on the coupled cluster approximation.1–6 Out of this general fam-

ily, CCSD(T) (coupled cluster singles and doubles with perturbative triples),7,8

has been so successful as to have been called the “gold standard” of electronic

structure theory. However, the success of CCSD(T) is not universal. For cal-

culations which require extreme accuracy – especially in the range of what is

commonly called “sub-chemical” accuracy (e.g. † 1 kJ/mol for bond energies

and other thermochemical quantities) – CCSD(T) by itself is insu�cient even

at the basis set limit.9,10 Additionally, the presence of multi-reference charac-

ter in the electronic wavefunction poses a formidable challenge for CCSD(T)

as it is based on a truncated, single-reference description of the wavefunction.

In the first case, accuracy can be increased by using a method which

provides a more rigorous accounting of the correlation energy, which for cou-

pled cluster means moving to higher levels of excitation such as full triple and

then quadruple excitations. In the second case, a truly multi-reference descrip-

tion of the wavefunction is perhaps the “right” way to approach the problem,
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but doing so within the coupled cluster framework (to maintain its extremely

useful characteristics such as size extensivity) is not straightforward and is still

an area of ongoing research.11–19 However, the nature of coupled cluster sug-

gests and practical experience20–22 confirms that simply adding higher levels

of excitation can (to a point) ameliorate multi-reference e↵ects.

The need for extreme levels of accuracy is a very real problem in quan-

tum chemistry, and is continually becoming more important as theory takes

on a more predictive role, augmenting (and sometimes identifying problems

with) experimental data. As larger and more complex molecular systems

are studied, there are commonly many conformational structures which are

very close in energy. Accurately ranking these (not necessarily chemically-

or spectroscopically-similar) structures and then further accurately comput-

ing their structural properties is critical to describing the total system.23–26

In a related field, extremely accurate determinations of the energy of minima

and transition states is critical to obtaining good kinetic and thermodynamic

predictions, even for well-isolated structures.27–30 In an unrelated field, ex-

treme accuracy in the description of the electronic wavefunction is necessary

to accurately describe properties such as the nuclear quadrupole coupling mo-

ment, which has a strong dependence on the electronic structure. Accurate

values of these constants are necessary to calculate useful predictive hyperfine

spectra of molecular (or even atomic) systems.31–33 Other electronic properties

such as optical rotation are also heavily dependent on the quality of descrip-

tion of the electronic structure, requiring very accurate calculations to achieve

2



convergence.34,35

1.2 Coupled Cluster Theory

Coupled cluster is a wavefunction-based method – that is, it provides a

way to compute a wavefunction (which may be an approximation of the exact

wavefunction) of a molecular system and, through the Schrödinger equation,

defines the energy and other properties of the system. The specific wavefunc-

tion form prescribed by coupled cluster is an exponential excitation operator

applied to some reference state,1,2,36–38

| 
CC

y “ eT̂ |�0y (1.1)

The function |�0y is a single-particle wavefunction, i.e. it has no direct

interaction between electrons (although it has indirect interactions for example

through the self-consistent field procedure). The purpose of coupled cluster

then is to account for this lack of electronic interaction, called electron correla-

tion. While the electron correlation is usually only a small fraction of the total

energy (about 10%), it is critical in quantitatively describing any molecular

property. Furthermore, for high accuracy calculations, the correlation energy

must be calculated to a very high accuracy itself, often to greater than 95%.

Fortunately, coupled cluster provides a roadmap for achieving this goal,

in that the level of accuracy (and level of cost of course) of the calculation can

be controlled by the cluster operator T̂ . In second-quantized terms, this op-

erator annihilates electrons in orbitals (single-particle functions) which are
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occupied in the reference state |�0y, and then creates an equal number in pre-

viously unoccupied (virtual) orbitals. The e↵ect is to “excite” these electrons

into higher orbitals. The total excitation operator can then be broken down

into a sum over operators which excite a particular number of electrons si-

multaneously, up to a maximum number of excitations N which controls the

accuracy,

T̂ “
N

ÿ

k“1

T̂
k

(1.2)

T̂
k

“ 1

pk!q2
ÿ

a1...a
k

i1...i
k

ta1...ak
i1...i

k

a:
a1
. . . a:

a

k

a
i

k

. . . a
i1 (1.3)

These operators are defined in terms of second-quantized annihilation opera-

tors (a
p

) and creation operators (a:
p

), which perform the actual electron exci-

tation, and a set of weights ta1...ak
i1...i

k

called amplitudes. The a indices run over

virtual (unoccupied) orbitals and the i indices over occupied orbitals. The

exponential nature of the wavefunction provides size extensivity,36 meaning

that the energy and wavefunction are separable in the limit of non-interacting

fragments, and the implicit inclusion of some of the e↵ects of higher-order ex-

citations when the excitation operator T̂ is truncated (i.e. N † n
elec

, when

N “ n
elec

coupled cluster gives the complete correlation energy). The value

of N defines the particular coupled cluster method, with N “ 2 for CCSD,

N “ 3 for CCSDT, N “ 4 for CCSDTQ etc.

Given the form of the wavefunction, the task is then to determine how

to solve for the values of the amplitudes ta1...ak
i1...i

k

and then use them to compute

the energy. Inserting the coupled cluster wavefunction into the Schrödinger

4



equation gives,

ĤeT̂ |�0y “ E
CC

eT̂ |�0y (1.4)

It is possible to solve for the coupled cluster amplitudes by variationally min-

imizing the energy. However, since the wavefunction is defined in terms of

an exponential operator, the expansion of the resulting equations does not

terminate cleanly. Instead, the equations are solved by projection, where the

inverse of the exponential operator is applied from the left, followed by some

single-particle “bra” state. When this state is the reference, the energy is

obtained,

x�0|e´T̂ ĤeT̂ |�0y “ x�0|e´T̂E
CC

eT̂ |�0y
“ x�0|E

CC

|�0y
“ E

CC

(1.5)

since the reference state is normalized. When the applied “bra” state is an

excited state (i.e. one in which electrons have been moved from occupied to

virtual orbitals), a set of coupled non-linear equations are obtained,

x�a1...a
k

i1...i
k

|e´T̂ ĤeT̂ |�0y “ x�a1...a
k

i1...i
k

|e´T̂E
CC

eT̂ |�0y
“ x�a1...a

k

i1...i
k

|E
CC

|�0y
“ 0 (1.6)

since now the single-particles states are orthogonal. The “excited” single-

particle states can be defined similarly to T̂ by,

x�a1...a
k

i1...a
k

| “ x�0|aa1 . . . aa
k

a:
i

k

. . . a:
i1

(1.7)
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When as many states x�a1...a
k

i1...i
k

| are projected onto as there are ta1...ak
i1...i

k

, then the

equations define the amplitudes.

The combination of operators e´T̂ ĤeT̂ has special significance, as it

essentially fills the role of the Hamiltonian in a non-symmetric analogue to the

Schrödinger equation,

e´T̂ ĤeT̂ |�0y “ E
CC

|�0y, but x�0|e´T̂ ĤeT̂ ‰ x�0|E
CC

(1.8)

This combination is commonly referred to as H̄, and is important also for the

description of excited states, response properties, and so on. This operator

has an interesting structure due to the expansion of the exponential operators.

Using the Baker-Campbell-Hausdor↵ formula,

e´T̂ ĤeT̂ “ Ĥ ` rĤ, T̂ s ` 1

2
rrĤ, T̂ s, T̂ s

`1

6
rrrĤ, T̂ s, T̂ s, T̂ s ` 1

24
rrrrĤ, T̂ s, T̂ s, T̂ s, T̂ s . . . (1.9)

The use of Wick’s theorem39 to calculate matrix elements results in “contrac-

tions” between pairs of annihilation and creation operators of the form,

a
a

a:
b

, a:
i

a
j

(1.10)

Looking at the operators in T̂ , it is clear that it may only be contracted with

an operator on the left. However, an operator appearing to the left doesn’t

necessarily result in a contraction, so that two cases are possible,

X̂T̂ ›Ñ contracted ` uncontracted (1.11)

T̂ X̂ ›Ñ uncontracted (1.12)

6



Thus, by applying the commutator, we retain only the contracted terms,

rX̂, T̂ s “ X̂T̂ ´ T̂ X̂

“ pcontracted ` uncontractedq ´ uncontracted

“ contracted (1.13)

The nested commutators in the CBH expansion select terms where Ĥ is con-

tracted by at least one operator with each T̂ to the right. Recognizing the T̂

expansion as the Taylor expansion of the exponential, we can apply the much

abbreviated notation,

H̄ “
´

ĤeT̂
¯

c

(1.14)

where the subscript c denotes that each T̂ must be contracted with Ĥ. Since

the Hamiltonian contains at most four operators and each one may only be

contracted once, the expansion of the exponential terminates naturally at T̂ 4.

As an additional simplifying step, the Hamiltonian is converted to nor-

mal order (i.e. to a form where no contractions between operators within Ĥ

are possible using Wick’s theorem),

Ĥ “ T̂ ` V̂ Ñ Ĥ
N

“ F̂
N

` V̂
N

“ Ĥ ´ x�0|Ĥ|�0y (1.15)

The F̂
N

operator is the usual Fock matrix from self-consistent field (SCF) the-

ory40–43 and the expectation value x�0|Ĥ|�0y is the SCF energy. The Hamil-

tonian can then be written quite simply using second-quantized operators as,

Ĥ
N

“
ÿ

pq

f p

q

ta:
p

a
q

u
N

` 1

4

ÿ

pqrs

vpq
rs

ta:
p

a:
q

a
s

a
r

u
N

(1.16)

7



where all indices are summed over both occupied and virtual orbitals, while

t. . .u
N

indicates that the enclosed operators are in normal order, i.e. no con-

tractions are to be done between operators inside the braces. From this point,

all operators are assumed to be in their normal ordered form (the T̂ operator

is already in normal-ordered form naturally). Finally, the equations for the

energy and for the amplitudes may be represented schematically by using a

tensor notation. Here, we write the Hamiltonian as H “ F`V “ F1 `D`V

where the tensor D contains the diagonal elements of F (which for an SCF

reference are sums of orbital energies), and the amplitudes as T (if amplitudes

of a specific excitation level k are needed, they are represented as T
k

). It

is implicitly understood that all terms must be contracted. The amplitude

equations then become,

0 “ F ` V ` FT ` VT ` 1
2FT

2 ` 1
2VT2 ` 1

6VT3 ` 1
24VT4 (1.17)

Ó
´DT “ F ` V ` F1T ` VT ` 1

2FT
2 ` 1

2VT2 ` 1
6VT3 ` 1

24VT4 (1.18)

Ó
Z ” F ` V ` F1T ` VT ` 1

2FT
2 ` 1

2VT2 ` 1
6VT3 ` 1

24VT4 (1.19)

and the energy equation is (including only terms which are non-zero after

applying Wick’s theorem),

E “ FT ` VT ` 1

2
VT2 (1.20)

where the T operators in this expression must not only be connected to the

Hamiltonian (i.e. at least one operator contracted), they must be fully con-

8



tracted with it (such fully-contracted expression are commonly referred to as

“closed”).

The procedure for obtaining the coupled cluster energy is then: first,

solve the amplitude equations by first setting T “ ´D´1pF ` Vq, then itera-

tively solve for Z, obtain a new T as ´D´1Z, and repeat until the change in

T is small enough, and second, calculate the energy from the converged T.

1.3 Diagrammatic Form of the Coupled Cluster Equa-
tions

Using Wick’s theorem to calculate the individual matrix elements in

equation (1.5) and equation (1.6) is straightforward but tedious. The overall

factor of unique terms is most commonly 1, with the presence of identically

contracted T̂ operators sometimes bringing this down to 1
2 or 1

4 . On the other

hand, the numerical factor on terms generated by Wick’s theorem is a product

of the factor from the expansion of eT̂ and any factors from equation (1.3)

or equation (1.16). For terms from a combination like 1
2VT2

1T3, the Wick’s

theorem prefactor is 1
2 ¨ 1

4 ¨ 1
62 “ 1

288 , meaning that for each unique term, there

are 288 (assuming a final factor of 1) di↵erent contractions which must be

enumerated.

An alternative method of generating the matrix elements is by the use

of diagrams.1,2,44–46 In this method, a graphical representation of the Hamilto-

nian and T̂ operators is manipulated to represent individual terms of the final

equations, with a one-to-one correspondence between (topologically) unique

9



f
a

i f
a

b f
i

j f
i

a

v
ab

ij v
ab

ic v
ai

jk

v
ab

cd v
ij

kl v
ai

jb

v
ia

bc v
ij

ak v
ij

a

Figure 1.1: The normal-ordered Hamiltonian in the Brandow diagrammatic
representation.

diagrams and unique terms. The most common form of diagrams are the

Brandow (also called antisymmetrized Goldstone) diagrams.46 In this form,

the Hamiltonian is represented by a collection of 13 “vertices”, as depicted in

figure 1.1.

The operators in the diagrammatic form are represented by horizon-

tal lines, called vertices. These vertices have one or more semi-vertical lines

emanating from them, corresponding to the component second-quantized oper-

ators, or, referring to the tensor elements such as vpq
rs

and ta1...ak
i1...i

k

, corresponding

to the tensor indices. Upward-directed lines, as indicated by arrows, refer to

10



t
a

i t
abc

ijkt
ab

ij

t
abcd

ijkl

Figure 1.2: The cluster operator in the Brandow diagrammatic representation.

operators and indices over virtual orbitals (labeled in this work with the letters

abcdefgh), while downward-directed lines refer to occupied orbitals (labeled

with the letters ijklmnop). Additionally, lines which are directed away from

the vertex (i.e. upward and above, or downward and below) correspond to

creation operators or upper indices of tensors, while inward-directed lines cor-

respond to annihilation operators or lower tensor indices. Thus, it can be seen

that the 13 diagrams in figure 1.1 correspond to all possible assignments of the

pqrs operators/indices of the Hamiltonian to either the virtual or occupied or-

bital set. The coupled cluster amplitudes can be represented similarly as shown

in figure 1.2, where the vertices are distinguished from the Hamiltonian by a

solid rather than a dashed line.

Matrix elements can be constructed by taking the vertices of all opera-

tors in the expression, placing them in top-to-bottom order as they appear in

the expression left-to-right, and then connecting lines on the bottom of higher

vertices with lines on the top of lower ones. The lines must be contracted

11



such that virtual (upward) lines are connected with virtual lines and occupied

with occupied. Furthermore, lines which are left uncontracted must match the

single-particle states on the left and right of the matrix element. For example,

a matrix element with states x�ab

ij

| . . . |�c

k

y would need two virtual and two oc-

cupied uncontracted lines extending above the diagram (for the left state) and

one virtual and one occupied line extending below. These uncontracted lines

are called “external” lines, and are labeled with the same letters as the indices

on the single-particle states. Lines which are contracted between two vertices

are given a single label (in connection with Wick’s theorem, this corresponds

to summation over both lines and a Kronecker delta).

There are often multiple ways to contract the lines of the vertices to-

gether within the restrictions given. Some of the possibilities are identical,

since the anticommutation of the second-quantized operators results in anti-

symmetry of the lines on a given vertex. For example, considering the diagram

for vab
ij

, both the pair of virtual lines and the pair of occupied lines may be

switched with the only result being a change in sign of the tensor element, i.e.

vab
ij

“ ´vba
ij

“ ´vab
ji

“ vba
ji

. The same is true for the remaining Hamiltonian

elements and for the amplitudes, although for T̂3 and higher permutations of

three or more lines/indices are also possible. So, the diagrams which must

be considered are those that are topologically distinct, that is diagrams which

are not related by a permutation of lines on the vertices. Since the order and

position of the contracted lines is not important, the diagrams may simply be

classified by the number of occupied and virtual lines contracted between each

12
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Figure 1.3: Topologically unique diagrams for the matrix element
x�ab

ij

|12ĤN

T̂2T̂
2
1 |�0y.

pair of vertices. To illustrate this point, the topologically unique diagrams

for the matrix element x�ab

ij

|12ĤN

T̂2T̂
2
1 |�0y are given in figure 1.3. Note that

since the single-particle state on the right, |�0y, is the (Fermi) vacuum, there

are no lines extending downward from the diagrams. This is the case for all

of the diagrams in the amplitude equations. Since the coupled cluster energy

also has x�0| on the left, it can’t have any external lines at all, leading to only

“closed” diagrams.

To produce equations from the diagrams, a set of rules is used to inter-

pret the diagrams. These rules determine which tensor elements are needed,

what numerical factors and sign the term has, which indices should be summed

over, and what other operations must be applied to the expression. The rules

for the Brandow diagrams are:46

R1. Each vertex contributes a tensor element Xall´out´labels

all´in´labels

, where the iden-
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tity of X is determined by the type of the line. Dashed lines are Hamil-

tonian elements, solid lines are cluster amplitudes, and wavy lines are

intermediates.

R2. Each set of n identical lines (lines of the same type, going the same

direction, between the same vertices) gives a factor of 1
n! .

R3. The overall sign is equal to p´1ql`h, where l is the number of loops (a

path which either goes from one point along contracted lines returning

to that same point, or from an external line to another external line on

the same side) and h is the number of occupied (hole) lines.

R4. Each set of n identically-connected vertices from an exponential expan-

sion (e.g. the coupled cluster amplitudes) gives a factor of 1
n! .

R5. Contracted lines are summed over all spin-orbitals.

R6. External lines of the same type (in{out, hole{particle) which appear on

di↵erent vertices are antisymmetrized.

Using these rules, we find for the value of the first diagram in figure 1.3,

´P pabqP pijq
ÿ

efmn

vmn

ef

tfb
ni

ta
m

te
i

(1.21)

Rule 1 determines the tensor elements, while rule 2 does not apply in this

case. Rule 3 gives a sign of -1 since there are three loops and four occupied

lines. Rule 4, even though there are two T̂1 vertices from the exponential,

has no e↵ect, since the vertices are not connected the same way (so that we

14



are implicitly counting both the identical cases of “ta
m

te
i

” and “te
i

ta
m

” each

with the proper factor of 1
2). Rule 5 gives the summation of the contracted

efmn indices. Finally, rule 6 gives the factors P pabqP pijq, where for exam-

ple P ppqqXr. . . p . . . q . . .s “ Xr. . . p . . . q . . .s ´ Xr. . . q . . . p . . .s. These factors

ensure the antisymmetry of the matrix element. Similarly, we can derive the

equations for all of the diagrams giving

x�ab

ij

|1
2
Ĥ

N

T̂2T̂
2
1 |�0y “ ´P pabqP pijq

ÿ

efmn

vmn

ef

tfb
ni

ta
m

te
i

´ P pijq
ÿ

efmn

vmn

ef

tab
im

te
i

tf
n

´P pabq
ÿ

efmn

vmn

ef

tae
ij

tb
m

tf
n

` 1

4
P pabq

ÿ

efmn

vmn

ef

tef
ij

ta
m

tb
n

`1

4
P pijq

ÿ

efmn

vmn

ef

tab
mn

te
i

tf
j

(1.22)

where the terms in the RHS are given in the same order as the diagrams. Note

that the last two terms now have numerical factors: a 1
2 from rule 2 since either

two virtual or two occupied lines run from the Hamiltonian to T̂2, and a factor

of 1
2 from rule 4 since there are two identically-connected T̂1 vertices. The entire

amplitude equations are not given here as Brandow diagrams or spin-orbital

equations (as the equations above are, since each label runs over both spin-↵

and spin-� orbitals). Instead, a new form of diagrammatic interpretation will

be derived for the case of a closed-shell system, where spin may be removed

from the equations.
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1.4 Quadruple Excitations

Given the need for very high accuracy in quantum chemical calcula-

tions, and the possibility of the coupled cluster method to attain this through

systematic improvement of the wavefunction description (increasing N), the

obvious question is then, “What level of excitation is su�cient?” For thermo-

dynamic and kinetic problems, experience with protocols such as HEAT47–49

and W450–52 show that full quadruple excitations (CCSDTQ)53 are “essen-

tially exact” for most problems of chemical interest. CCSDTQ calculations on

biradical systems (perhaps the most commonly encountered and practically

important class of multi-reference problem) such as ozone and C2
20–22,54–56

show that again, CCSDTQ gives a highly accurate description of the elec-

tronic correlation despite still being based on a single-reference description.

What about those cases that need a still more accurate description of correla-

tion? Previous studies of excitations beyond quadruples show that, in general,

the additional contribution of pentuple excitations (CCSDTQP) is small, not

only compared to the CCSDTQ contribution, but can even be smaller than

the hextuple excitations (CCSDTQPH) in some cases.22 Thus, if one were

to be really serious about wringing out the last drop of correlation energy,

one should go two levels of excitation further. In terms of computational

cost, though, this requires going from an Opn10q method (CCSDTQ), where

n scales with the system size, to a whopping Opn14q method (CCSDTQPH).

What’s more, non-iterative approximations to CCSDTQ such as CCSDT(Q)

and CCSDT(Q)⇤ 57,58 often gain nearly the same level of accuracy as full CCS-
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DTQ with “only” an Opn9q cost. As Opn9 ´n10q is already at (or beyond) the

limit of computational feasibility even for small molecules and basis sets, it is

clear that CCSDTQ and its approximations are the most accurate practical

electronic structure methods available for non-trivial problems. The combina-

tion of extreme accuracy and (relative) computational savings for CCSDT(Q)

et al. presents the opportunity to establish a new “platinum standard” for

electronic structure calculations.

Since CCSDTQ is so important to high-accuracy calculations, it is nat-

urally desirable to have an e�cient computer implementation. Here I present

such an implementation and describe how both the use of a non-orthogonally

spin-adapted representation (for closed-shell cases) and a focus on optimiza-

tion of the program architecture provide for highly e�cient yet modular and

(in terms of code complexity and maintainability) manageable code.
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Chapter 2

Non-orthogonal Spin-adaptation

In this chapter, the usual rules for interpreting coupled cluster diagrams

in terms of spin-orbital Hamiltonian and amplitude elements are translated to

an algebraic equation using permutation operators. The relationship between

the spin-orbital and “orbital” or spin-free amplitudes (described below), also

written in terms of algebraic permutations, is then used, along with several

important theorems, to rearrange the spin-orbital equation into an orbital one.

The orbital equation is then further manipulated to expose two types of special

permutation operators, denoted spin-summation operators, which can be used

to factorize and simplify the equation. Lastly, the resulting algebraic equation

is translated back into diagrammatic rules which can be used to generate

compact, e�cient equations in terms of orbital amplitudes and Hamiltonian

elements.

2.1 From Spin-orbital to Orbital

The amplitudes, Hamiltonian elements, and diagrammatic rules pre-

sented in the previous chapter are all in what is called the spin-orbital rep-

resentation. In this representation, each orbital label, whether it runs over

18



occupied or virtual orbitals or both, encompasses orbitals with both spin-↵

(or spin up) and spin-� (spin-down) spin functions augmenting a spatial part.

The product or the spin and spatial (orbital) functions is the total spin-orbital

function, of which there are an equal number of ↵ and � spin in total. How-

ever, there may be an unequal number of ↵ and � orbitals which are occupied

in the single-particle reference function, and the spatial parts may be di↵er-

ent for the ↵ and � spin functions, for example in UHF calculations43 (also

called DODS – di↵erent orbitals for di↵erent spins). In this case, the ↵ and

� spin-orbitals functions are completely di↵erent and must be handled sep-

arately. The spin-orbital functions are still separable, though, and the spin

parts may be integrated over separately when forming matrix elements. Due

to the spin-selection rules of the spin-independent Hamiltonian, only matrix

elements which conserve both the number of ↵ and � spin electrons are non-

zero. The amplitudes may have non-zero total spin, but the spin-projection

quantum number must be zero, so that again there must be an equal number

of ↵ and � annihilation and, separately, creation operators. Exceptions to this

rule do sometimes occur: for example in coupled cluster equation-of-motion

theory (CC-EOM), where an excitation operator is used which may ionize

or attach an electron (so that the spin-projection quantum number is ˘1
2)

59

or change the total spin of the wavefunction (i.e. a spin-projection quantum

number of ˘1).60

The spin-orbital tensors such as vpq
rs

and the amplitudes may then be

broken up into several “spin cases” with the spin combinations that integrate
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Figure 2.1: Typical spin-orbital diagram in the CCSDTQ amplitude equations.

to 0 excluded. For example,

vab
ij

Ñ
!

vab
ij

, vab̄
ij̄

, vāb̄
īj̄

)

(2.1)

where ↵ orbitals are written as usual but � orbitals are written with an over-

bar. This is referred to as the spin-integrated representation, and for the

working equations requires the expansion of each term into several terms over

all valid combinations of spin cases. Both the spin-orbital and spin-integrated

tensor elements have the same antisymmetry of the labels (since the annihi-

lation and creation operators anticommute regardless of spin), so that it is

not necessary to consider for example a full six spin cases for vab
ij

, but only

the three shown. However, more spin cases are needed for example for vab
ci

since vab̄
c̄i

and vāb
c̄i

are not related by antisymmetry, and for vai
bj

the full six

spin cases are in fact all distinct. The expansion of spin-orbital equations into

spin-integrated ones can introduce a significant amount of complexity. For

example, the diagram shown in figure 2.1 expands as (for only the zabc̄d̄
ijk̄l̄

spin

case),
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(spin-orbital)

´P pab{c{dqP pi{jk{lq∞
em

vmd

el

tab
im

tec
jk

(2.2)

⇤

´P pabqP pcdq
!

P pklq∞
em

vmd̄

el̄

tc̄b
k̄m

tea
ji

` P pijq∞
ēm̄

vm̄a

ēi

tbc̄
jm̄

tēd̄
k̄l̄

)

´P pijqP pklq
!

P pcdq∞
em

vmd̄

el̄

tab
mj

tec̄
ik̄

` P pabq∞
ēm̄

vm̄a

ēi

tc̄d̄
k̄m̄

tēb
l̄j

)

´P pabqP pklq∞
em̄

vm̄b

l̄e

tc̄d̄
k̄m̄

tea
ji

´ P pcdqP pijq∞
ēm

vmd̄

jē

tab
im

tēc̄
l̄k̄

´P pabqP pcdqP pijqP pklq
!

∞

em

vma

ei

td̄b
l̄m

tec̄
jk̄

` ∞

ēm̄

vm̄d̄

ēl̄

tbc̄
jm̄

taē
ik̄

`∞

em̄

vm̄a

l̄e

tbd̄
jm̄

tec̄
ik̄

` ∞

ēm

vmd̄

jē

tc̄b
k̄m

taē
il̄

)

(2.3)

(spin-integrated)

Doing the expansion for all spin cases for all 198 diagrams in the CCS-

DTQ amplitude equations, and then implementing the result is a daunting

proposition in terms of complexity, tedium, and possibility of error.

If the number of occupied ↵ and � orbitals are the same, and the same

spatial orbitals are used for both spin functions, then some interesting and

useful relationships arise between the spin-integrated spin cases, though. The

most useful relationship is spin-reversal symmetry, where the value of a tensor

element is unchanged on interchange of ↵ and � spin functions, for example,

vab
ij

“ vāb̄
īj̄

(2.4)

tabc̄
ijk̄

“ tāb̄c
īj̄k

(2.5)
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This reduces the number of independent spin cases by roughly 1
2 , and similarly

the complexity of the equations by a similar amount. However, it is possible

to go further. Spin cases with all indices of the same spin can be formed by

antisymmetrizing spin cases of mixed spin, for example,

vab
ij

“ vab̄
ij̄

´ vab̄
jī

“ vab̄
ij̄

´ vbā
ij̄

(2.6)

tabcd
ijkl

“ tabcd̄
ijkl̄

´ tabcd̄
ijlk̄

´ tabcd̄
ilkj̄

´ tabcd̄
ljkī

“ tabc̄d̄
ijk̄l̄

´ tabc̄d̄
ikj̄l̄

´ tabc̄d̄
kjīl̄

´ tabc̄d̄
ilk̄j̄

´ tabc̄d̄
ljk̄ī

` tabc̄d̄
kl̄ij̄

(2.7)

Using this relation, the number of spin cases for the Hamiltonian, T̂1, T̂2, and

T̂3 is reduced to one, and for T̂4 to two (tabcd̄
ijkl̄

and tabc̄d̄
ijk̄l̄

).

This is still not the end, however, as it is possible to use tensor el-

ements which have no spin functions at all.1,2,61 These quantities are called

orbital tensor elements, also called spin-free, and sometimes skeleton, quan-

tities. These tensor elements are distinguished in this work by an inverted

chevron (a hacek) over the quantity, for example v̌ab
ij

. The spin-integrated ten-

sor elements, even those of mixed spin, are formed from the orbital elements

by antisymmetrization of the same-spin indices, for example,

vab
ij

“ v̌ab
ij

´ v̌ba
ji

(2.8)

tabcd̄
ijkl̄

“ ťabcd
ijkl

´ ťabdc
ijkl

´ ťadcb
ijkl

´ ťdbca
ijkl

` ťbcad
ijkl

` ťcabd
ijkl

(2.9)

tabc̄d̄
ijk̄l̄

“ ťabcd
ijkl

´ ťbacd
ijkl

´ ťabdc
ijkl

` ťbadc
ijkl

(2.10)

The relationship for the one-particle operators (F and T̂1) is trivial,

as well as for the mixed-spin cases of the two-particle Hamiltonian and T̂2.
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In this way, only using the all-same-spin relationship above su�ces to give

directly the orbital form for CCSD. For CCSDT and CCSDTQ, however, the

orbital relationship is somewhat more complicated. The orbital quantities do

not have antisymmetry of their labels, since anticommutation of the creation

and annihilation operators is only fixed after re-addition of the spin functions.

They do have a di↵erent kind of symmetry, though, in that interchange of

columns of indices (i.e. simultaneously interchanging labels in the same po-

sitions in the top and bottom labels) gives the same result with no change

in sign. This column symmetry relates to the indistinguishability of electron

excitations regardless of spin. Thus, the amplitudes have symmetries like,

ťabc
ijk

“ ťacb
ikj

“ ťcba
kji

“ ťbac
jik

“ ťbca
jki

“ ťcab
kij

(2.11)

ťabcd
ijkl

“ ťabdc
ijlk

“ ťcbad
kjil

“ ťbdac
jlik

“ . . . (2.12)

Lastly, because the orbital amplitudes are specific to a closed-shell ref-

erence function, the final correlated wavefunction is guaranteed to be a pure

singlet state. For this reason, the orbital form is also known as the non-

orthogonally spin-adapted formalism. The “non-orthogonal” qualifier refers

to the fact that the excited one-particle functions produced by applying the

orbital amplitude operator are not orthogonal to one another. Additionally,

the excited functions are actually linearly dependent for triple excitations and

higher, so that the orbital amplitude elements for T̂3 and T̂4 are not uniquely

or numerically well-determined. Applying the antisymmetrization operations

necessary to get the spin-integrated spin cases removes these indeterminacies,
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so that the spin-integrated (and of course spin-orbital) equations are numeri-

cally well-determined. Controlling the numerical e↵ect of this indeterminacy

in the orbital equations will be discussed in a later section.

The use of the orbital quantities instead of the spin-integrated ones

has the potential to produce much simpler and easier to implement equations.

But, it is tedious to do a direct expansion of the spin-orbital or spin-integrated

equations to the orbital ones, and from there it is necessary to factor the result

in an obscure way to obtain the most compact representation. This “optimal”

orbital form has been used for some time for CCD and CCSD,62–64 but for

CCSDT and especially CCSDTQ, the techniques of the following sections are

critical for deriving useful equations.

2.2 Goldstone Diagrams and their Limitations

While the majority of the work on Goldstone diagrams has been for-

mulated and applied in the area of many-body perturbation theory,36,44,45 it

is the goal of the present work to apply Goldstone diagrammatics, and as

an extension our new spin-summed diagrams, to more general theories, espe-

cially including higher-order coupled cluster. The main di↵erences in applying

Goldstone diagrams in this case are: 1) the coupled cluster amplitude equa-

tions involve open diagrams instead of only closed energy diagrams, and 2) the

vertices are not limited to two-body quantities. These di↵erences, especially

the second, require some reformulation of the traditional rules for interpret-

ing Goldstone diagrams, and also require some explanation of the relationship
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Figure 2.2: Diagrams for the MBPT[2] energy.

between the three- and higher-body spin-free quantities and their explicitly

spin-labeled relatives.

Before going into detail on these points, however, let us first review

some of the basic theory of Goldstone diagrams, as it relates to the other di-

agrammatic techniques. For the essentials of diagrammatic methods in quan-

tum chemistry in general the reader is referred to the books of Shavitt and

Bartlett,38 Szabo and Ostlund,65 and the review of Crawford and Schaefer.37

As a first example, take the simplest (non-zero correction to HF) many-body

perturbation theory, MBPT[2] (also called MP2). The Brandow and Gold-

stone diagrams for the MPBT[2] energy are given in figure 2.2.

The integrals (dashed line) in the Brandow diagrams are the usual anti-

symmetrized two-electron elements of the Hamiltonian, xpq||rsy ” vpq
rs

. In the

Goldstone diagrams, however, the orbital (or spin-free) integrals, xpq|rsy ” v̌pq
rs

are used, with the relationship vpq
rs

“ v̌pq
rs

´ v̌qp
rs

. While the orbital integrals do

not have any antisymmetric permutational symmetry, they still have a “col-

umn” symmetry v̌pq
rs

“ v̌qp
sr

since simultaneous excitations commute regardless

of spin. This symmetry is a fundamental feature of the orbital integrals, but
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also coupled cluster amplitudes or any other quantity expressed in the orbital

representation. Relative to the Brandow representation, the Goldstone formu-

lation introduces an additional diagram, since the interchange of two lines on

either vertex produces a topologically distinct diagram (i.e. v̌ab
ij

‰ ˘v̌ab
ji

). It

should be noted that the second Goldstone diagram can be produced from the

first by a permutation of lines on either the top or bottom vertex, and permu-

tation of either the hole or particle lines due to the aforementioned symmetry.

Also, both Goldstone diagrams, when interpreted as Brandow diagrams, are

equal. This is the case in general, so that each Goldstone diagram correspond-

ing to a Brandow diagram is equal to all the others when itself interpreted as a

Brandow diagram. This illustrates the fact that the Brandow representation is

not unique, which will be important when interpreting the Brandow diagrams

using our new spin-summation rules.

The traditional rules for interpreting Goldstone diagrams state that

(omitting the energy denominators for simplicity),38

R11. Each vertex contributes an orbital tensor element: X̌all´out´labels

all´in´labels

, where

X̌ is determined by the type of line – dashed for V , solid for T̂ , wavy for

intermediates, etc.

R21. Each closed loop contributes an overall factor of 2.

R31. The overall sign is equal to p´1ql`h, where l is the number of closed loops

and h is the number of hole lines.
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R41. If the diagram is symmetric with respect to a left-right reflection, the

overall factor is multiplied by 1
2 .

R51. Internal lines are summed over all spatial orbitals.

Applying these to the diagrams of figure 2.2 gives,

E “
ÿ

abij

v̌ab
ij

p2v̌ij
ab

´ v̌ji
ab

q (2.13)

Evaluating the Brandow diagram with the appropriate rules (given explicitly

below) gives, in terms of explicitly spin-integrated quantities,

E “ 1

4

ÿ

abij

vab
ij

vij
ab

`
ÿ

ab̄ij̄

vab̄
ij̄

vij̄
ab̄

` 1

4

ÿ

āb̄̄ij̄

vāb̄
īj̄

v īj̄
āb̄

“ 1

2

ÿ

abij

vab
ij

vij
ab

`
ÿ

ab̄ij̄

vab̄
ij̄

vij̄
ab̄

“ 1

2

ÿ

abij

pv̌ab
ij

´ v̌ba
ij

qpv̌ij
ab

´ v̌ji
ab

q `
ÿ

abij

v̌ab
ij

v̌ij
ab

“
ÿ

abij

v̌ab
ij

p2v̌ij
ab

´ v̌ji
ab

q (2.14)

since in the closed shell case we have vpq
rs

“ vp̄q̄
r̄s̄

“ vpq̄
rs̄

´ vqp̄
rs̄

“ v̌pq
rs

´ v̌qp
rs

. This

gives precisely the same result as using the Goldstone representation, as it

must.

These same rules also hold for open diagrams containing only one- and

two-body vertices, such as in the coupled cluster singles and double model

(CCSD). As an example, take the “ring” part of the T̂2 ˆ V Ñ T̂2 equations,

whose various diagrams are given in figure 2.3.
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Figure 2.3: Diagrams for the “ring” part of T̂2 ˆ V Ñ T̂2.

A straightforward interpretation of the Goldstone diagrams in figure 2.3

gives the following (labeling the result as žab
ij

):

žab
ij

“ p1 ` P ai

bj

q
ÿ

em

 

2ťae
im

v̌mb

ej

´ ťae
im

v̌bm
ej

´ ťea
im

v̌mb

ej

´ ťeb
im

v̌am
ej

(

“ p1 ` P ai

bj

q
ÿ

em

"

1

2
p2ťae

im

´ ťea
im

qp2v̌mb

ej

´ v̌bm
ej

q (2.15)

´p1
2

` P a

b

qťea
im

v̌bm
ej

*

(2.16)

where P x

y

exchanges the groups of labels x and y simultaneously. The factor

p1 ` P ai

bj

q replaces the usual antisymmetrization operators in the Brandow

representation, and gives the result the proper permutational symmetry. While

not generally listed with the canonical set of Goldstone diagram evaluation

rules, this need for this permutation factor is well understood in CCSD. The

second factorization is the optimal form,62–64 and while it may seem bizarre, it

is in fact a general feature of many non-orthogonally spin-adapted diagrams.
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Figure 2.4: Diagrams for T̂3 ˆ V Ñ T̂1.

The spin-integrated equations can be obtained fairly easily from the Brandow

diagram to give for the spin case zab̄
ij̄

“ žab
ij

,

zab̄
ij̄

“
ÿ

em

tae
im

vmb̄

ej̄

`
ÿ

ēm̄

taē
im̄

vm̄b̄

ēj̄

´
ÿ

em̄

teb̄
im̄

vam̄
ej̄

`
ÿ

em

tb̄e
j̄m

vma

ei

`
ÿ

ēm̄

tb̄ē
j̄m̄

vm̄a

ēi

´
ÿ

ēm

tēa
j̄m

vb̄m
ēi

(2.17)

which is again the same as the equation derived from the Goldstone diagrams

after expansion and conversion of the spin-integrated quantities.

When the diagram contains higher than two-particle vertices, however,

the rules as stated above are not su�cient. For example, take the term T̂3 ˆ
V Ñ T̂1 from the CCSDT equations. The six diagrams given in figure 2.4b are
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the “most correct” set of Goldstone diagrams obtainable from permutation of

lines on the amplitude or integral vertices relative to some Brandow diagram.

Only diagrams which are unique with respect to the permutation symmetry

of the orbital quantities are retained, but there are still diagrams which are

relatable to each other by relabeling of the contracted indices. The total

contribution from these diagrams is,

ža
i

“
ÿ

mnef

v̌mn

ef

´

4ťaef
imn

´ 2ťaef
min

´ 2ťaef
nmi

´ 2ťaef
inm

` ťaef
mni

` ťaef
nim

¯

(2.18)

The corresponding spin-integrated equation for za
i

“ zā
ī

“ ža
i

is,

za
i

“ 1

4

ÿ

mnef

vmn

ef

taef
imn

`
ÿ

mn̄ef̄

vmn̄

ef̄

taef̄
imn̄

` 1

4

ÿ

m̄n̄ēf̄

vm̄n̄

ēf̄

taēf̄
im̄n̄

. (2.19)

Expanding the above in terms of orbital amplitudes and integrals gives,

ža
i

“ 1

2

ÿ

mnef

v̌mn

ef

´

4ťaef
imn

´ 2ťaef
min

´ 2ťaef
nmi

´ 2ťaef
inm

` ťaef
mni

` ťaef
nim

¯

(2.20)

which is the same as equation (2.18), but with an extra factor of 1
2 . Rearrang-

ing the Goldstone diagrams to try and produce a plane of symmetry to invoke

rule 41 fails to correct the situation, as does adding more or removing some of

the Goldstone diagrams. Additionally, even for this relatively simple case, enu-

merating the correct set of Goldstone diagrams (correct since they produce the

proper equation apart from a factor) is di�cult to get right without knowing

the answer beforehand and tedious even if one does know. These di�culties,

combined with the need for extra permutation factors for open diagrams (as

was seen in the CCSD example), clearly show the need for modifications to

the usual Goldstone evaluation rules.

30



2.3 Non-orthogonally Spin-adapted Diagrams

The Goldstone rules, while quite useful for many-body perturbation

theory, CCSD, and other two-body theories, are not su�ciently general for

CCSDT and CCSDTQ diagrammatics. Furthermore, the Goldstone rules re-

quire the enumeration of all unique Goldstone diagrams, of which there are

quite a few for each Brandow diagram in CCSDTQ. The resulting equations

must also be factorized by hand after applying the Goldstone rules to obtain

a compact, e�cient set of equations. So, it would be desirable to derive a

diagrammatic interpretation which, 1) requires only the Brandow diagrams or

only a very few additional diagrams, 2) produces compact, already-factored

orbital equations, and 3) can be unambiguously applied to any order of coupled

cluster and other many-body theories.

Rather than use the MBPT Goldstone rules as a starting point, the

approach taken here is to start with the spin-orbital interpretation of the

Brandow diagrams, and then use the basic ideas of the Goldstone diagrams,

that the spin-orbital quantities are related to the orbital ones by antisym-

metrization and that summation over closed loops gives a factor of 2 due to

summation over both spins, to directly derive “non-orthogonally spin-adapted

diagrammatics”. The Brandow diagrammatic rules are given by rules R1-R6

in section §1.3.

Since the orbital quantities are related to the spin-orbital and spin-

integrated ones by antisymmetry, this antisymmetry then forms the relation-

ship between the two diagrammatics. To formalize the issue, consider the set
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of permutations of indices on a vertex v, tP
v

ppqqu, where p and q run over all

indices out of either the top (out) or bottom (in) labels of v. Each of these per-

mutations exchanges the indicated labels, but only on the given vertex. Since

the relevant transformations describe antisymmetry of either in (annihilation)

or out (creation) lines (operators), we must also associate with each P
v

ppqq a

minus sign and restrict p and q to be either both in or both out labels. Of

course pairwise permutations are idempotent, such that,

P
v

ppqq2 “ 1 (2.21)

Additionally, each label p has, due to the column symmetry of the orbital

quantities, a column-symmetric partner p˚. The column-symmetric partner

is simply the label in the same column when all labels are written out, e.g.

v...p...q...
...p

˚
...q

˚
...

. Then, since v...p...q...
...p

˚
...q

˚
...

“ v...q...p...
...q

˚
...p

˚
...

we have,

P
v

ppqq “ P
v

pp˚q˚q (2.22)

P
v

ppqqP
v

pp˚q˚q “ 1 (2.23)

Instead of giving unity, the product of a permutation with its column-

symmetric partner (or equivalently itself) can also be written as a symmetric

double permutation,

P
v

ppqqP
v

pp˚q˚q “ P
v

ppqqS
v

pp
p

˚
q

q

˚q (2.24)

where the symmetric permutation interchanges both sets of labels simultane-

ously. The same can also be done when the labels are on di↵erent vertices,
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which provides a way to enforce the column symmetry of a tensor contraction

product.

Given a spin-orbital diagram, all of the related orbital Goldstone dia-

grams are obtained by an antisymmetrization operation built up from the set of

column-symmetry-unique permutations. This antisymmetrization operation,

however, generally contains permutations which involve more than two indices.

In the general case the unique permutations of more than two out of n indices

can be formed from the set of two-index permutations P ” tP ppqqun
p†q“1 by

taking only ordered products,

P̃ k ” tP pi
p1iq1qP pi

p2iq2q . . . P pi
p

k

i
q

k

q |
p1 † p2 † . . . † p

k

^ p
l

† q
l

@lun
p1...p

k

,q1...q
k

“1 (2.25)

A
P

” tP̃ kun´1
k“0 (2.26)

The special case P̃ 0 “ t1u even if P is the empty set. All of the permutations

of n objects are then given by A
P

(see theorem 1 in the appendix).

In manipulating sets of permutations and their antisymmetrizers, it is

quite helpful to be able to separate the permutations of a set of indices into

those of some disjoint partitioning. In particular, the total antisymmetrizer

can be written as a product of subset antisymmetrizers and a special partial

antisymmetrizer which contains permutations between the subsets (see theo-

rem 2),

A
P

“ A
P1AP2ÃP1´P2
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“ Ã
P1´P2AP1AP2 (2.27)

where A
P1 is the antisymmetrizer for the indices in set 1 (of size n1, and

similarly for set 2 of size n2), while the special antisymmetrizer Ã
P1´P2 is

given by,

˜̃P k

1´2 ” tP pi
p1iq1q . . . P pi

p

k

i
q

k

q | p1 † . . . † p
k

^ q1 † . . . † q
k

^p
l

† q
l

@ lun1,n1`n2
p1...p

k

“1,q1...q
k

“n1`1 (2.28)

Ã
P1´P2 ” t ˜̃P k

1´2umintn1,n2u
k“0 (2.29)

To simplify the derivation of the new rules, it su�ces to consider only

diagrams of one or two vertices. This is not restrictive since the factorization

of the target equations into unary and binary terms can be performed at

the spin-orbital diagram stage, and then the resulting diagrams in terms of

intermediates transformed into orbital equations.

Since diagrams of only one vertex are trivial (this corresponds to simply

adding or assigning one quantity to another), we can consider only the general

two-vertex diagram of figure 2.5. Each vertex v in this form has: n
a;v particle´

out (particle being synonymous with virtual or unoccupied) and n
i;v hole´ in

(hole meaning occupied) lines which extend upward and n
b;v particle´ in and

n
j;v hole´ out lines which extend downward, to give n

v

total lines. The upper

vertex is labeled A and the lower B. Usually, the operators will be number-

conserving such that n
a;v `n

j;v “ n
b;v `n

i;v, and it will simplify the discussion

to make this assumption at first. Of the labels on each vertex, the first n
e

§
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n a;A n i;A

n b;A

n j;A

n m

n e

n i;B n a;B

n j;B

n b;B

B

A

Figure 2.5: General form of a two-vertex Brandow diagram and the grouping
of lines into various sets. The “extra” lines on the right may be either hole or
particle lines.
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minpn
b;A, na;Bq of the particle´in vertices on A and the particle´out vertices

on B are contracted together as are the first n
m

§ minpn
j;A, ni;Bq of the hole´

out and hole ´ in vertices on A and B respectively. The individual labels are

conveniently called a1;A . . . a
n

a;A;A, e1 . . . en
e

, etc. The possible permutations of

the labels relevant to antisymmetry are then:

P
o;A ” tP

A

pa
k;Aal;Aquna;A

k†l“1 Y tP
A

pj
k;Ajl;Aqunj;A

k†l“1

YtP
A

pa
k;Ajl;Aquna;A,n

j;A

k,l“1 (2.30)

P
i;A ” tP

A

pb
k;Abl;Aqunb;A

k†l“1 Y tP
A

pi
k;Ail;Aquni;A

k†l“1

YtP
A

pb
k;Ail;Aqunb;A,n

i;A

k,l“1 (2.31)

and similarly for B. Since there are an equal number of out and in vertices, the

column symmetry of the orbital quantities means that each permutation in P
o;A

is related to a permutation in P
i;A and vice versa, for example P

A

pa1;Aa2;Aq Ø
P
A

pa˚
1;Aa

˚
2;Aq “ P

A

pi1;Ab1;Aq for Aa1a2
i1b1

. Only one set is needed to produce

distinct Goldstone diagrams and we can arbitrarily choose P
A

” P
o;A. The

final set of permutations P
A

and its unique products form the relationship

between the spin-orbital and orbital quantities,

Apq...

rs...

“
n

A

´1
ÿ

k“0

P̃ k

A

Ǎpq...

rs...

“ A
A

Ǎpq...

rs...

(2.32)

where the application of the set P̃ k

A

sums over each element applied to the

object in turn.

Besides permutations of the two diagram vertices, we must also consider

permutations of the external labels. To use the language defined above, the
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external lines can be considered to belong also to a third C vertex, with sets

of permutations defined similarly to A and B (except of course no lines are

contracted). Rule 6 gives permutations (and products of permutations since

multiple indices may be antisymmetrized) between labels of the same type on

di↵erent vertices, conveniently denoted by,

P
Brandow

” P
a;Brandow

Y P
b;Brandow

Y P
i;Brandow

Y P
j;Brandow

“ tP pa
k;Aal;Bquna;A,n

a;B

k“1,l“n

e

`1 Y tP pb
k;Abl;Bqunb;A,n

b;B

k“n

e

`1,l“1 Y
tP pi

k;Ail;Bquni;A,n

i;B

k“n

m

`1,l“1 Y tP pj
k;Ajl;Bqunj;A,n

j;B

k“1,l“n

m

`1 (2.33)

Ã
Brandow

” t ˜̃P k

a;Brandow

umintn
a;A,n

a;B´n

e

u
k“0 b

t ˜̃P k

b;Brandow

umintn
b;A´n

e

,n

b;Bu
k“0 b

t ˜̃P k

i;Brandow

umintn
i;A´n

m

,n

i;Bu
k“0 b

t ˜̃P k

j;Brandow

umintn
j;A,n

j;B´n

m

u
k“0 (2.34)

The permutations here are not labeled with a vertex subscript because they

a↵ect the labeling of all vertices (including the external “vertex” C).

Armed with the relationship between the spin-orbital (ABC) and or-

bital (ǍB̌Č) quantities and an explicit form for the Brandow antisymmetriza-

tion operator, we can now write a preliminary relationship between the two

diagrammatics,

C “ Ã
Brandow

F
s

F
e

F
h

F
p

ÿ

AB (2.35)

Ù
A

C

Č “ Ã
Brandow

F
s

F
e

F
h

F
p

F
c

ÿ

A
A

A
B

ǍB̌ (2.36)
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F
h

and F
p

are the factors for identical contracted hole and particle lines, respec-

tively, from rule 2. F
s

is the sign factor from rule 3, and F
e

is the exponential

factor from rule 4. The summation from rule 5 goes over spin-orbitals in the

first equation, but over spatial orbitals in the second, with the additional fac-

tor F
c

accounting for the factor of 2 for each closed loop. The indices on A,

B, and C and on the summation are implicit in the following derivation.

The first logical thing to do is to somehow remove the antisymmetriza-

tion operation on Č so that an equation for a specific orbital tensor “orbital

case” (i.e. a specific ordering of the out and in labels since there is no antisym-

metry) can be obtained. The antisymmetrizer A
C

mixes di↵erent orderings of

labels on Č, for example vab
ci

“ v̌ab
ci

´ v̌ba
ci

, where the labels are of the same type.

These two orderings correspond to the same orbital quantity since the a and

b labels run over the same set of spatial orbitals. However, A
c

also contains

permutations which mix labels of di↵erent types, for example, vai
bj

“ v̌ai
bj

´ v̌ai
jb

,

where now the di↵erent permutations are completely unrelated orbital quan-

tities. In particular, the di↵erent “types” of orbital quantities related to the

same spin-orbital one can be classified by a number n
s

which counts the num-

ber of hole labels and particle labels in the same column (this is also the

number of external loops when C is viewed as a diagram itself). For example,

v̌ai
bj

has n
s

“ 0 while v̌ai
jb

has n
s

“ 2.

Using theorem 4, A
C

can be split into several parts, each of which

applies to a specific n
s

value,

A
a;CA

j;CÃ
a

i

´j

i

;CÃ
a

b

´j

b

;CČn

s

“ Ã
Brandow

F
s

F
e

F
h

F
p

F
c

ÿ

`

A
A

A
B

ǍB̌
˘

n

s

(2.37)
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where for example A
a;C antisymmetrizes the particle ´ out labels on Č and

Ã
a

i

´j

i

;C exchanges hole ´ in labels partnered with particle ´ in labels and

those partnered with hole ´ out labels (on Č). The notation p. . .q
n

x

means

that only permutations which give external labels consistent with the given

value of n
s

are retained (Ã
Brandow

can not change n
s

). The antisymmetrization

operators on the LHS can be cleaned up somewhat by inserting the identity as

pna

i

;C !nj

i

;C !na

b

;C !nj

b

;C !q´1Aa

i

;CAj

i

;CAa

b

;CAj

b

;C which is possible since for example

A
a;CAa

i

;C “ A
a;Cpna

i

;C !q´1. Now, we can simplify by using theorem 2,

A
a;CA

j;CÃ
a

i

´j

i

;CÃ
a

b

´j

b

;CČn

s

“
A

a;CA
j;CAa

i

;CAj

i

;CAa

b

;CAj

b

;CÃ
a

i

´j

i

;CÃ
a

b

´j

b

;C

na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !
Č

n

s

“ A
a;CA

j;CA
i;CA

b;C

na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !
Č

n

s

(2.38)

On the RHS a similar trick can be applied, by inserting additional

antisymmetrizers so that the Brandow antisymmetrizer becomes,

Ã
Brandow

“ Ã
Brandow

A
a;AA

j;AA
i;A{mA

b;A{eAa;B{eAj;B{mA
i;BA

b;B

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

“ A
a;CA

j;CA
i;CA

b;C

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

(2.39)

Both the LHS and the RHS now have the same set of antisymmetrizers applied,

so that a single orbital case of Č can be extracted from both sides by removing

this antisymmetrization step. Of course, the equation obtained this way is not

unique, and that is the root of the indeterminacy of the orbital tensor elements.

However, the equation is valid when the antisymmetrizers are re-applied, and
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is unique when the procedure here is followed, so that the orbital quantities

obtained this way can be considered the “canonical” form. After removing the

antisymmetrizers, the orbital equation becomes,

Č “
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

F
h

F
p

F
c

∞

`

A
A

A
B

ǍB̌
˘

Č

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

(2.40)

where now Č is has a definite ordering of the labels, and the notation p. . .q
Č

retains only contributions which match this ordering.

At this point, the equation is very similar to the usual Goldstone inter-

pretation, in that the antisymmetrizers A
A

A
B

produce the unique Goldstone

diagrams (with some over-counting which cancels the factorials). However,

with the equation in a formal representation, the antisymmetrizers can be ma-

nipulated further to expose the desired compact, factorized result directly. In

order to proceed we must first do two things: first, while the antisymmetrizers

produce all of the Goldstone diagrams from some initial diagram determined

by the label ordering of ǍB̌, it will prove advantageous to choose this initial

ordering carefully as the one which has the maximal number of closed loops,

and second, starting from this ordering we will subdivide the labels on each

fragment into three groups, c, x, and u. The c labels are contracted labels

whose partner label is also contracted on both vertices. The x labels are ei-

ther contracted with an uncontracted partner or vice versa on at least one

vertex. The u labels are uncontracted with uncontracted partners. Choosing

a well-defined initial ordering is important since these classifications depend

on that ordering. For some Brandow diagrams, there will be more than one
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Goldstone diagram with the maximal number of closed loops. At this point it

su�ces to choose any of these, although it will be shown below that the final

interpretation will depend equally on each of these representative diagrams.

The antisymmetrizers A
A

and A
B

can be decomposed into di↵erent

partitions of these groups using theorem 2. The first step is to remove the

redundant permutations over c and x labels, since a permutation of these labels

on Ǎ is the same as permutation on B̌ followed by relabeling the contracted

labels. This gives,

Č “
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

F
h

F
p

F
c

∞

´

A
A

A
cx;BA

u;BÃ
cx´u;BǍB̌

¯

Č

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

“
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ
ÿ

´

A
A

A
u;BÃ

cx´u;BǍB̌
¯

Č

(2.41)

Since the number of cx labels is the greater of the the number of contracted

hole and particle lines, then A
cx;B � n

cx

! cancels either F
h

or F
p

. A
A

can also

be decomposed, but this time it is better to break it into c and xu groups,

Č “
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ
ÿ

´

A
xu;AA

c;AÃ
c´xu;AA

u;BÃ
cx´u;BǍB̌

¯

Č

(2.42)

The next step is to use the rather esoteric form of theorem 3, though

its purpose will become clear after some more manipulation,
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Č “
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ
ÿ

´

A
xu;AA

u;BA
c;AÃ

c´xu;AÃ
cx´u;BǍB̌

¯

Č

“
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ
ÿ

ˆ

A
xu;AA

xu;BA
c;AÃ

c´xu;A
n
u;B!

pn
x

` n
u;Bq!Ãcx´u;BǍB̌

˙

Č

“
na

i

;C !nj

i

;C !na

b

;C !nj

b

;C !Fs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ

ÿ

¨

˝A
xu;AA

xu;BA
c;AÃ

c´xu;A

mintn
c

,n

u;Bu
ÿ

k“0

k!

pn
x

` kq!
˜̃P k

c´u;BǍB̌

˛

‚

Č

(2.43)

The second equality is obtained by inserting n

u;B !
pn

x

`n

u;Bq!Ax;BÃ
x´u;B and using

theorem 2. Before finally dealing with A
xu

and the factorials in the denomina-

tor, we can use the factorials in the numerator to build a useful operator. Since

this equation is only “really” valid after re-application of the antisymmetrizers

A
a;CA

j;CA
i;CA

b;C , then the fact that these contain all of the permutations in,

for example, Aa

i

;C allows us to “reconstitute” these antisymmetrizers on the

RHS,

Č “
Aa

i

;CAj

i

;CAa

b

;CAj

b

;CFs

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ

ÿ

¨

˝A
xu;AA

xu;BA
c;AÃ

c´xu;A

mintn
c

,n

u;Bu
ÿ

k“0

k!

pn
x

` kq!
˜̃P k

c´u;BǍB̌

˛

‚

Č

(2.44)

But, since we are now applying the same permutations twice, we can
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use equation (2.24) to change this into a symmetrizer,

Č “ S
C

F
s

F
e

maxtF
h

, F
p

uF
c

n
a;A!nj;A!pni;A ´ n

m

q!pn
b;A ´ n

e

q!pn
a;B ´ n

e

q!pn
j;B ´ n

m

q!n
i;B!nb;B!

ˆ

ÿ

¨

˝A
xu;AA

xu;BA
c;AÃ

c´xu;A

mintn
c

,n

u;Bu
ÿ

k“0

k!

pn
x

` kq!
˜̃P k

c´u;BǍB̌

˛

‚

Č

(2.45)

where the symmetrizer S
C

is defined as,

S
C

” Sa

i

;C Y Sj

i

;C Y Sa

b

;C Y Sj

b

;C

“
!

S
C

pak
a

˚
k

a

l

a

˚
l

q | a˚
k

P i ^ a˚
l

P i
)

n

a;C

k†l“1
Y

!

S
C

pjk
j

˚
k

j

l

j

˚
l

q | j˚
k

P i ^ j˚
l

P i
)

n

j;C

k†l“1
Y

!

S
C

pak
a

˚
k

a

l

a

˚
l

q | a˚
k

P b ^ a˚
l

P b
)

n

a;C

k†l“1
Y

!

S
C

pjk
j

˚
k

j

l

j

˚
l

q | j˚
k

P b ^ j˚
l

P b
)

n

j;C

k†l“1
(2.46)

S
C

”
!

S̃k

a

i

;C

)

n

a

i

;C´1

k“0
b

!

S̃k

j

i

;C

)

n

j

i

;C
´1

k“0
b

!

S̃k

a

b

;C

)

n

a

b

;C´1

k“0
b

!

S̃k

j

b

;C

)

n

j

b

;C
´1

k“0
(2.47)

This symmetrization step is quite important as it ensures the column symmetry

of Č, which is extremely useful in practical implementation of non-orthogonally

spin-adapted methods (and of course is assumed in this diagrammatic deriva-

tion).

The last simplification to make is to deal with the factorials in the de-

nominator and the antisymmetrizers A
xu;A and A

xu;B. The antisymmetrizers

have three types of permutations: 1) permutations of external labels of the

same type (or who have partners of the same type), 2) permutations of external
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labels which are not of the same type, and so which change n
s

, and 3) per-

mutations involving partially contracted labels (labels from the set x). Since

the factor of n
a;A! could be canceled by antisymmetrizer A

a;A and so on for

each factor, we must examine which permutations from A
xu;A are “missing” to

form A
a;AA

j;AA
i;A{mA

b;A{e and similarly for B. Additionally, if a factor of n
x

!

is multiplied and divided in the sum over k then, as careful analysis shows, it

is actually simpler to relate the xu antisymmetrizers for both vertices into the

daunting string of operators, A
a;AA

j;AA
i;A{mA

b;A{eAa;B{eAj;B{mA
i;BA

b;BA
x

,

which can simultaneously cancel all of the remaining factorials. Since permu-

tations of type 2) and permutations in 3) which, due to the column symmetry

of Č also change n
s

can be ignored, the “only” remaining permutations needed

to cancel the factors are Aa

i

;AAa

b

;AAj

i

;AAj

b

;AAa

i

;AAj

i

;AAa

b

;AAj

b

;AAa

i

;xAj

i

;xAa

b

;xAj

b

;x

where the A
...;x antisymmetrizers permute labels which are of the upper type

on Ǎ and whose column-symmetric partners in Č are of the lower type on B̌.

This seemingly complicated set of antisymmetrizers is actually quite

simple when examined diagrammatically, as it simply antisymmetrizes pairs

of external labels of the same combined type pa
i

, j

i

, etc.) which are either

on the same vertex or both partially contracted. In essence these are “iden-

tical” external pairs. Since these permutations are lacking in A
xu;AA

xu;B,

they must be inserted as an identity with the corresponding factors na

i

;A! etc.

in the denominator (this can be done since all of these permutations are in

A
a;CA

j;CA
i;CA

b;C). However, these need not remain in the denominator for

long as they also exactly cancel the over-counting (i.e. symmetrization of al-
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ready symmetric pairs of labels) in S
C

. These can then be removed, and a

“unique” symmetrizer S̃
C

inserted instead, which only symmetrizes pairs of

external labels of the same type where either the in and/or the out labels are on

di↵erent vertices. The final expression for the non-orthogonally spin-adapted

tensor element is,

Č “ S̃
C

F
s

F
e

maxtF
h

, F
p

uF
c

ˆ
ÿ

¨

˝A
c;AÃ

c´xu;A

mintn
c

,n

u;Bu
ÿ

k“0

ˆ

n
x

` k
k

˙´1
˜̃P k

c´u;BǍB̌

˛

‚

Č

“ S̃
C

F
s

F
e

maxtF
h

, F
p

uF
c

ÿ

SS
A

ÄSS
B

ǍB̌ (2.48)

where the restriction that the result matches the orbital case of Č is implicit

from this point.

The sign factor F
s

is determined for the initial diagrammatic ordering

of ǍB̌, as the individual permutations in the expression above carry their own

sign change factors. The factor of maxtF
h

, F
p

u “ pn
c

!q´1 is also determined

once for the initial ordering, as further permutations will change the topology

(and hence the “instantaneous” value of n
c

), but the over-counting factor which

led to this term is fixed by the initial ordering. The factor F
e

is independent

of permutation. However, the additional closed loop factor F
c

does depend on

the permutation of ǍB̌ and so will be a↵ected by the permutations above. The

way in which this factor varies can be determined easily, though, since we chose

the initial ordering of ǍB̌ with the maximal number of closed loops. Thus,

each individual permutation in SS
A

or ÄSS
B

necessarily reduces the number

45



of loops by one, and hence F
c

by a factor of two. When there are multiple

closed loops, SS
A

or ÄSS
B

by itself will continue to reduce the number of loops

with additional compound permutations, until all closed loops are gone and

these operators run out of permutations. But, when permutations from both

operators are applied simultaneously, the result may not reduce the number of

loops. This occurs when the permutations from both operators permute the

same contracted label (or its partner). Then, the first permutation breaks the

loop, but the second then simply moves one end of the new broken loop to the

other vertex. If the ends of the loop (the external labels) are of the same type,

then this gives a relabeling of the result (with a change in sign!). If not, then

this changes the result to a di↵erent value of n
s

, and so these permutations

are discarded. Note that in the first case, even though the orbital case is

di↵erent due to the relabeling, we could simply have considered the initial

ǍB̌ to be relabeled so that the result still is the desired orbital case of Č, so

these contributions must be kept. Also, in the second case, even though the

permutations are discarded, the orbital case they describe would have opposite

sign from what the permutations give since the number of loops is not in fact

decreased.

In truth, however, some combinations of cross permutations which,

individually, change n
s

may combine so that the net e↵ect on n
s

is zero. In

this case, an orbital case of a certain number of closed loops is transformed

to another of the same number of closed loops. If such permutations exist

applied to the initial ordering, then there are multiple Goldstone diagrams with
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the same number of closed loops. In this case, though, the spin-summation

operators above can be applied to each maximal orbital case separately, with

the permutations which relate them ignored as if they led to orbital cases of

di↵erent n
s

.

So, while the e↵ect of F
c

can be incorporated easily into either SS
A

or

ÄSS
B

by itself, simultaneously incorporating into both operators creates addi-

tional permutational cross products which must be handled. This expression

can be conveniently factorized ignoring these cross terms for now with the

spin-summed quantities Ǎ
SS

and B̌
Ä

SS

, defined as,

Ǎ
SS

“ F
c

SS
A

Ǎ

“
mintn

c

,n

x

`n

u;Au
ÿ

k“0

n

c

´1
ÿ

l“0

F
c

˜̃P k

c´xu;AP̃
l

c;AǍ

“
#

n

c

π

k“1

˜

2 `
n

c

ÿ

i“k`1

P pc
k

c
i

q `
n

x

`n

u;A
ÿ

i“1

P pc
k

xu
i

q
¸+

Ǎ (2.49)

B̌
Ä

SS

“ F
c

ÄSS
B

B̌

“
mintn

c

,n

u;Bu
ÿ

k“0

2mintn
c

,n

u;Bu´k

ˆ

n
x

` k
k

˙´1
˜̃P k

c´u;BB̌ (2.50)

where c is the set of contracted labels (which is the same for Ǎ and B̌) and

xu is all other labels on Ǎ (the same as x Y u
A

). The factorized expression is

now,

Č “ S̃
F
s

F
e

n
c

!2mintn
c

,n

u;Bu
ÿ

Ǎ
SS

B̌
Ä

SS

` real cross terms ´ extra cross terms

(2.51)

After permutations from SS
A

and/or ÄSS
B

have been applied, the re-
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maining permutations are the same as those of SS
A

ÄSS
B

ǍB̌ in the new per-

mutation, since these are those that further reduce the number of closed loops.

Thus, the cross terms arise from simultaneous permutations of SS
A

and ÄSS
B

(the “real” cross terms) can be written in terms of the same equation above

applied to a di↵erent orbital case of ǍB̌. Likewise, the “extra” cross terms

which arise from the forced factorization into Ǎ
SS

and B̌
Ä

SS

are of the same

form, but with an additional factor of 1
2 due to the inclusion of F

c

in both

parts. So, for each extra cross term, we must subtract a suitable term with

the proper factors of 2 and

ˆ

n
x

` k
k

˙´1

. Since each cross permutation does

not actually decrease the number of loops (and hence change the sign), this

means that for an odd permutation from SS
A

(since ÄSS
B

has already broken

all the closed loops) we must add the corresponding orbital case (evaluated

itself using the same rules above), or for an even permutation from SS
A

, we

must subtract the orbital case. When the permutations involve external la-

bels of the same type, then we must add in the same term, but now with

an additional factor of 2 and permuting the external labels. The orbital case

which is added may itself have cross terms, so that by recursively decomposing

the equation in this way considerable e↵ort is saved. The final procedure for

forming the compact, factored non-orthogonally spin-adapted equations can

be summarized in the following rules:

R12. Each vertex contributes an orbital tensor element: X̌all´out´labels

all´in´labels

, where

X̌ is determined by the type of line – dashed for V , solid for T̂ , wavy for

intermediates, etc.
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R22. One vertex is spin-summed as Ǎ
SS

and the other as B̌
Ä

SS

. For each set of

permutations on Ǎ and B̌ which only involve the same contracted labels,

add the equation for the resulting orbital case multiplied by the proper

factors from SS
A

and ÄSS
B

, and a minus sign if the permutation from

SS
A

is even. If the external labels in the permutations are of the same

type, then add the resulting orbital case again multiplied by 2 and with

the external labels permuted to match Č.

R32. The overall sign is equal to p´1ql`h, where l is the number of closed loops

and h is the number of hole lines.

R42. Apply a factor of 1
l! where l is the number of closed loops.

R52. Each set of n identically-connected vertices from an exponential expan-

sion (e.g. the coupled cluster amplitudes) gives a factor of 1
n! .

R62. Internal lines are summed over all spatial orbitals.

R72. Pairs of external lines of the same type, which either go in or out on

di↵erent vertices are symmetrized.

R82. Apply a factor of 2´mintl,eu, where l is the number of closed loops and e

is the number of external pairs of lines on B̌.

where these rules must be applied to every “maximal” Goldstone diagram.

For writing the final non-orthogonally spin-adapted equations down, a

combined notation for Ǎ
SS

and B̌
Ä

SS

with index labels is adopted which shows
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directly how to compute the spin-summed quantity. First, zero or more sets

of labels (and their partners) are topped with a hacek (̌ ). For Ǎ
SS

, each label

in c is topped, while for B̌
Ä

SS

the set of all c labels is topped with a single

hacek, but only if there are any u labels. Then, some set of labels is topped

with a chevron (̂ ), or this may be omitted in which case all remaining indices

are assumed to be as if they were so decorated. For Ǎ
SS

this is all remaining

labels pxu), and for B̌
Ä

SS

this is only the u labels. For example, one might

have,

Ǎ
SS

“ Ǎm̌ňab

ěf̌gj

“ Ǎm̌ň

x

ab

ěf̌

x

gj

(2.52)

B̌
Ä

SS

“ B̌
|

efgĉ

}mnik̂

(2.53)

The procedure for spin-summation is then: 1) for the first group of labels ǐ (of

size ň) topped with a hacek, apply the permutation operator,

mintň,n̂u
ÿ

k“0

2mintň,n̂u´k

ˆ

n
x

` k
k

˙´1
˜̃P k

ǐ

ˆ́
i

(2.54)

where î are all n̂ indices either topped with a chevron or indices other than ǐ

topped with a hacek and n
x

is the number of indices initially without either

decoration, 2) remove the hacek from ǐ, and 3) repeat from 1) until no more

suitable indices remain. Using the examples above, this gives,

Ǎm̌ň

x

ab

ěf̌

x

gj

“ p2 ` P pnaq ` P pnbqq p2 ` P pmnq ` P pmaq ` P pmbqq ˆ
Ǎmnab

efgj

(2.55)

B̌
|

efgĉ

}mnik̂

“ p2 ` 1

2
P pecq ` 1

2
P pfcqqB̌efgc

mnik

(2.56)
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Using this notation, the equations can be written without the need to explicitly

include complicated permutation operators and numerical factors.

It should be noted that the above definition of the spin-summed quanti-

ties is not quite correct for diagrams where Ǎ does not have any x or u indices.

In this case, the last “haceked” index group should still give a factor of two,

but the definition above gives 2mintň,n̂u “ 1. Thus, vertices which are “fully

spin-summed” (i.e. each index is topped with a hacek) should be multiplied by

an additional factor of 2. The need for this caveat is an unfortunate side-a↵ect

of treating the two types of spin-summation with the same notation. It should

also be noted that the same derivation as above could be applied with Ǎ and

B̌ reversed. That is, ending up with Ǎ
Ä

SS

and B̌
SS

. In some situations it may

be desirable to make this switch so that the resulting equations are simpler.

Generally, this would be when only one vertex has any u labels, in which case

this vertex should be the spin-summed vertex with SS instead of ÄSS.

2.4 Examples

The rules given in the previous section are hard to absorb on a first

(or even third) reading, and are best illustrated by example. In this section,

several such examples are given which span a range of diagrammatic topologies

and which exemplify the nuances of the non-orthogonal spin-adaptation rules.

The first example is the MBPT[2] energy diagram, which was given in

figure 2.2. Both Goldstone diagrams in part c do not need to be used, since the

first diagram has more closed loops than the second. Thus only this diagram
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needs to be evaluated using the rules. The sign from rule 32 is positive, since

there are two loops and two hole lines. Rules 52, 72, and 82 have no e↵ect,

while rule 42 gives a factor of 1
2 . Rule 62 gives a sum over spatial orbitals

efmn. Finally, the real meat of the diagram is given by rules 12 and 22 which

give, in total (and remembering the factor of 2 since v̌ ǐǰ
ǎb̌

is fully spin-summed),

1

2

ÿ

efmn

v̌ab
ij

v̌ ǐǰ
ǎb̌

“
ÿ

efmn

v̌ab
ij

`

2v̌ij
ab

´ v̌ji
ab

˘

(2.57)

which is of course the same as derived using the Goldstone or Brandow dia-

grams.

The second example, the ring part of T̂2 ˆ V Ñ T̂2, has also already

been derived using Goldstone and Brandow diagrams. The diagrams are given

in figure 2.3. Again, only the first diagram in part c is required. Taking either

v̌ as Ǎ and ť as B̌ or vice versa results in a factor of 1
2 from rules 32 ´ 52 and

82, a sum over em from rule 62, and now a symmetrizer of
`

1 ` P ai

bj

˘

from rule

72. Rules 12 and 22 give the spin-summation, for a total result of,

1

2

`

1 ` P ai

bj

˘

ÿ

em

 

v̌m̌b

ěj

ťěa
m̌i

´ `

1 ` 2P i

j

˘

v̌mb

je

ťea
im

(

The use of the non-orthogonally spin-adapted rules directly gives the factored,

“optimal” form, without the need for any manual intervention.

The third example is T̂3 ˆ V Ñ T̂1, whose diagrams are given in 2.4.

Using the first diagram in part c and taking v̌ as B̌ and ť as Ǎ, we can see

that rules 32-82 simply give a summation
∞

efmn

and factor of 1
2 . Rules 1

2 and
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a bi j

m e n f

(a) Primary orbital case

a bj i

m enf

(b) Secondary orbital case

Figure 2.6: Diagrams for T̂4 ˆ V Ñ T̂2.

22 then give the very simple form,

1

2

ÿ

efmn

v̌mn

ef

ťěf̌a
m̌ňi

“ 1

2

ÿ

mnef

v̌mn

ef

´

4ťaef
imn

´ 2ťaef
min

´ 2ťaef
nmi

´ 2ťaef
inm

` ťaef
mni

` ťaef
nim

¯

(2.58)

again exactly as it should be (including the factor of 1
2 missing in the Goldstone

approach). If instead we were to choose v̌ as Ǎ and ť as B̌, we would find that

now rule 82 gives a factor of 1
2 , while rules 12 and 22 give the total result,

1

4

ÿ

efmn

v̌m̌ň

ěf̌

ť
|

efa

}mni

“ 1

4

ÿ

mnef

`

4v̌mn

ef

´ 2v̌mn

fe

˘

´

2ťaef
imn

´ ťaef
min

´ ťaef
nmi

¯

“ 1

2

ÿ

mnef

v̌mn

ef

´

4ťaef
imn

´ 2ťaef
min

´2ťaef
nmi

´ 2ťaef
inm

` ťaef
mni

` ťaef
nim

¯

(2.59)

for this diagram, there is not much di↵erence in the complexity of the equa-

tions, whichever choice is made.

For more complicated diagrams, however, there may be a significant

di↵erence. Consider the contribution of T̂4 ˆ V Ñ T̂2 whose diagrammatic

form is given in figure 2.6. If we choose v̌ “ B̌ and ť “ Ǎ, then following the

rules gives again a simple result,

1

2

ÿ

efmn

v̌mn

ef

ťěf̌ab
m̌ňij

(2.60)
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a i

f en m

a

em

b j

(a) Primary orbital cases

a i

fen m

b j

em

i a

(b) Secondary orbital cases

Figure 2.7: Factorized diagrams for the ring part of 1
2 T̂

2
2 ˆ V Ñ T̂2.

However, if instead we were to choose v̌ “ Ǎ and ť “ B̌, we would arrive at

the considerably more complicated form,

1

8

ÿ

efmn

!

v̌m̌ň

ěf̌

ť
|

efab

}mnij

` `

1 ` 2P i

j

˘

v̌mn

fe

ťefab
ijmn

)

(2.61)

The second term in this expression arises because we have permutations on

Ǎ (P pmnq) and on B̌ (P pmiqP pnjq) which involve the same set of contracted

labels. Thus by rule 22 we must add the resulting orbital case (shown in

figure 2.6b), and since the external labels ij are of the same type, include a

third term which is twice a permutation of this. Of course, the end result

is identical, but the first choice of spin-summation requires only one tensor

contraction and is considerably more compact. So, to reiterate what was

stated at the end of the previous section, when only one vertex has any u

labels, then this vertex should be the spin-summed vertex with SS
A

instead

of ÄSS
B

.

Next consider a slight extension of the T̂2 ˆV Ñ T̂2 ring example given

earlier. The non-linear term (also only the ring part) 1
2 T̂

2
2 ˆ V Ñ T̂2 can be

factored as W̃ “ 1
2 T̂2 ˆ V , T̂2 ˆ W̃ Ñ T̂2. The two diagrams for this example

are given in figure 2.7. Using the rules we come up with the fairly simple form
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for ˜̌W am

ie

,

˜̌W am

ie

“ 1

2

ÿ

fn

!

ťf̌a
ňi

v̌ňm
f̌e

´ ťfa
in

v̌nm
ef

)

(2.62)

The second term in this expression is another orbital case (by rule 22) of W̃ ,

name ˜̌W am

ei

which is given by the secondary diagram,

˜̌W am

ei

“ ´
ÿ

fn

ťfa
in

v̌nm
ef

(2.63)

Since this orbital case is required explicit along with the “primary” case (as

will be seen in the next equation), there is actually very little overhead in

computing the second term in ˜̌W am

ie

since it can simply be copied from ˜̌W am

ei

without needing to do another actual tensor contraction. The second diagram

gives the contribution to T̂2, and was examined with integrals instead of inter-

mediates (the result is the same) using the Goldstone approach in a previous

section. Using the non-orthogonally spin-adapted rules it is,

1

2

`

1 ` P ai

bj

˘

ÿ

em

!

ťěb
m̌j

˜̌W m̌a

ěi

´ `

1 ` 2P i

j

˘

ťeb
jm

˜̌Wma

ie

)

(2.64)

The secondary spin case of W̃ is used in the second term, which corresponds

to the secondary orbital case of the T̂2 ˆ W̃ diagram. This time the secondary

orbital case is not useful on its own, and so a real second contraction is needed.

This factorized form is common in the non-orthogonally spin-adapted

equations, as can be seen by examining the ring diagram for T̂4 ˆ V Ñ T̂4,

whose diagrams are given in figure 2.8. As one might expect, applying the

non-orthogonally spin-adapted rules gives a result very similar in form to that
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a i

em

b jc kd l

(a) Primary orbital case

b j

em

i ac kd l

(b) Example secondary orbital case

Figure 2.8: Diagrams for the ring part of T̂4 ˆ V Ñ T̂4.

a i

em fn go

b j

(a) Primary orbital case

ai

em fn go

bj

(b) Secondary orbital case

Figure 2.9: Diagrams for the ring part of ⇤̂4 ˆ T̂4 Ñ �.

for T̂2,

1
2

`

1 ` P ai

bj

` P ai

ck

` P ai

dl

˘

∞

em

 

ťěbcd
m̌jkl

v̌m̌a

ěi

´ `

1 ` 2P i

j

˘

ťebcd
jmkl

v̌ma

ie

´ p1 ` 2P i

k

q ťebcd
kjml

v̌ma

ie

´ p1 ` 2P i

l

q ťebcd
ljkm

v̌ma

ie

(

(2.65)

Now there are three “secondary” orbital cases which must be added, since m

may be transposed with either j, k, or l. Applying a symmetrization operator

(essentially, using S
C

instead of S̃
C

), simplifies the expression a bit,

1
2

´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘ ˆ
∞

em

 

1
6 ť

ěbcd

m̌jkl

v̌m̌a

ěi

´ 1
2

`

1 ` 2P i

j

˘

ťebcd
jmkl

v̌ma

ie

(

(2.66)

and exposes the structure of the equivalent T̂2 ˆ V Ñ T̂2 term.

As the previous diagram generalizes the form of T̂2 ˆ V Ñ T̂2 diagram

(or equivalently with W̃ ), we can also generalize in one way the intermediate

diagram W̃ “ 1
2 T̂2 ˆ V . Besides being an intermediate in the coupled cluster
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Figure 2.10: More complicated diagrams.

amplitude equations, we can replace V with ⇤̂2 (and remove the 1
2) and get

one of the contributions (the ring contribution, of course) to the two-particle

density �. Extending this by taking T̂2 Ñ T̂4 and ⇤̂2 Ñ ⇤̂4, we arrive at the

equivalent contribution from CCSDTQ, whose diagrams are given in figure 2.9.

Following the rules gives,

1

12

ÿ

efgmno

!

�̌m̌ňǒi

ěf̌ ǧa

ť
}

efgb

~mnoj

´ 3�̌m̌ňoi

ěf̌ag

ťefgb
mnjo

)

(2.67)

Unlike the case in the CCSDTQ amplitudes, here the three permutations which

give a second orbital case are all identical through relabeling of the contracted

labels (although this is similar to the fully symmetrized form). Also, in the

secondary orbital case, there is still some spin-summation of ⇤̂. But, since

there are no u labels left on either vertex there is not a third layer of orbital

cases. Also note that ť
}

efgb

~mnoj

“ ťefgb̌
mnoǰ

, so that only the “normal” spin-summed

amplitudes are needed.

Of course, ring type diagrams are not the only complicated cases made
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easier by the non-orthogonally spin-adapted rules. Consider the case of fig-

ure 2.10, which now has c, x, and u labels on both vertices (which we will

simply label as Ǎ and B̌ as in the previous section). The rules now call for

a non-trivial spin-summation of B̌ as well as two distinct secondary orbital

cases to be added,

´1

2

ÿ

emn

"

Ǎm̌nj

ědb

B̌ ěcâ

m̌nî

´ 1

2
p1 ` 2P a

c

q Ǎmnj

deb

B̌eca

inm

´ 1

2
Ǎmnj

bde

B̌eca

inm

*

The second added orbital case is again another “useful” case of the tensor

product, so that this requires two unique contractions and one addition. Note

that the presence of x labels in B̌
Ä

SS

necessitates the additional factors of 1
2 on

the added orbital cases. Despite the nuances introduced by having all three

types of labels on each vertex, the overall structure and complexity of this

expression is very similar to the others already presented.

A closely related diagram is given in figure 2.11. The only change is

to take the bj labels on Ǎ and make them upwards-pointing, but now we find

that there are two “maximal loop” diagrams, and four secondary orbital cases.

Both of these primary diagrams must be considered, and the rules must be

applied to each independently. The total result is,

´1
2

`

1 ` P ai

bj

˘

∞

emn

 

Ǎm̌nb

ědj

B̌ ěcâ

m̌nî

´ 1
2 p1 ` 2P a

c

q Ǎmnb

dej

B̌eca

inm

´1
2 p1 ` 2P a

b

q Ǎmnb

jde

B̌eca

inm

( ´ 1
2

`

1 ` P ai

bj

˘

∞

emn

 

Ǎm̌nc

ějd

B̌ ěbâ

m̌nî

´1
2 p1 ` 2P a

b

q Ǎmnc

jed

B̌eba

inm

´ 1
2 p1 ` 2P a

c

q Ǎmnc

dje

B̌eba

inm

(

(2.68)

These are all “real” contractions now as each describes a simple permutation

of the same final orbital case. This diagram is actually possible for a certain
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Figure 2.11: More more complicated diagrams.

factorization of CCSDTQ, where a three-body intermediate with the shape of

Ǎ is used. However, factorizations of this type are ine�cient, not only because

of the large number of contractions needed for this diagram, but because the

three downward lines of the intermediate must come from the two-particle

Hamiltonian V . Then, an alternate factorization would be to split the whole

diagram on the other side of the V vertex to give an intermediate with one

downward index. This alternate factorization will always have a leading-order

asymptotic cost a factor of Opn2q less. These contributions have also been eval-

uated using the Goldstone approach as an additional check, and the reduction

in complexity, even though the final, factorized result is itself not particularly

simple, is enormous. The form given here is also not at all obvious from the
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(c) Tertiary orbital cases

Figure 2.12: Very complicated diagrams.

Goldstone equations, so that it would be quite di�cult to arrive at the same

result without the rules derived above or a deep familiarity with these types

of equations.

As a last example, let us consider the deceptively simple-looking dia-

gram in figure 2.12. The complexity of this diagram comes from the fact that

the secondary orbital cases, which must be added to correct the cross terms,

themselves have a very complicated structure which involves yet another layer

of orbital cases (and additional factors from the presence of x labels). How-
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ever, judiciously following the rules, recursively applying them to the “lower”

orbital cases, one arrives at,

1
8

∞

efmn

!

Ǎm̌ňkl

ěf̌cd

B̌
|

efab

}mnij

´4
”

1
2Ǎ

m̌nkl

ěcfd

B̌ ěfab̂

m̌inĵ

´ 1
6 p1 ` 2P a

b

q
´

Ǎmnkl

cefd

B̌efab

jinm

` Ǎmnkl

fced

B̌efab

jinm

¯

´ 1
6Ǎ

mnkl

dcfe

B̌efab

jinm

ı

´4
”

1
2Ǎ

m̌nkl

ědcf

B̌ ěfab̂

m̌inĵ

´ 1
6 p1 ` 2P a

b

q
´

Ǎmnkl

decf

B̌efab

jinm

` Ǎmnkl

fdce

B̌efab

jinm

¯

´ 1
6Ǎ

mnkl

cdef

B̌efab

jinm

ı

´4
”

1
2Ǎ

m̌nkl

ěcfd

B̌ ěf âb

m̌jîn

´ 1
6 p1 ` 2P a

b

q
´

Ǎmnkl

cefd

B̌efab

ijmn

` Ǎmnkl

fced

B̌efab

ijmn

¯

´ 1
6Ǎ

mnkl

dcfe

B̌efab

ijmn

ı

´4
”

1
2Ǎ

m̌nkl

ědcf

B̌ ěf âb

m̌jîn

´ 1
6 p1 ` 2P a

b

q
´

Ǎmnkl

decf

B̌efab

ijmn

` Ǎmnkl

fdce

B̌efab

ijmn

¯

´ 1
6Ǎ

mnkl

cdef

B̌efab

ijmn

ı

´ p1 ` 2P a

b

q
´

Ǎmnkl

fced

B̌efab

ijmn

` Ǎmnkl

cefd

B̌efab

ijmn

` Ǎmnkl

decf

B̌efab

ijmn

` Ǎmnkl

fdce

B̌efab

ijmn

¯

´Ǎmnkl

cdef

B̌efab

ijmn

´ Ǎmnkl

dcfe

B̌efab

ijmn

` 2 p1 ` 2P a

b

q Ǎmnkl

fecd

B̌efab

ijmn

)

(2.69)

In the sixth and seven lines of the expression, note that the even permutation

from SS
A

part of rule 22 finally takes e↵ect.

Some terms in this expression are identical after relabeling of the con-

tracted labels. Also, the parts in square brackets correspond to the total equa-

tion for one of the secondary orbital cases. Lastly, many terms are equivalent

under permutations of pairs of external labels, so that by applying the to-

tal symmetrizer instead of S̃
C

, relabeling the contracted labels, and inserting

“lower” orbital cases without expansion, we get the much simpler expression,

1
8

`

1 ` P ai

bj

˘ `

1 ` P ck

dl

˘

∞

efmn

!

1
4Ǎ

m̌ňkl

ěf̌cd

B̌
|

efab

}mnij

` 4pǍB̌qabkl
cjid

´ p1 ` 2P a

b

q pǍB̌qabkl
jcid

´ 1
2pǍB̌qabkl

cdij

` 1
2 p1 ` 2P a

b

q pǍB̌qabkl
jicd

(

(2.70)

The orbital cases such as pǍB̌qabkl
jicd

are of course understood to be the dia-

gram(s) of Ǎ and B̌ which give the listed ordering by permutation from the
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primary orbital case, and not simply P i

j

applied to the above.

2.5 Summary

The previous sections show that, using the properties of simple pairwise

permutations, that the rules for interpreting coupled cluster diagrams in terms

of spin-orbital quantities can instead be transformed into rules for generating

compact, e�cient equations in terms of orbital quantities. While the new rules

are not as simple to understand or apply as the spin-orbital ones, they are still

vastly more expedient than a direct translation of the spin-orbital equations

into orbitals ones, or the derivation of the orbital equations by using Goldstone

diagrams (both of which require non-obvious factorizations of the result).

Luckily, most of the diagrams encountered in the coupled cluster am-

plitude equations (as well as the ⇤̂ and density equations, discussed in the

next chapter), do not trigger some of the trickier aspects of non-orthogonal

spin-adaptation. In fact, the rules given above can be simplified considerably

for this use, as long as certain (necessarily sub-optimal) factorizations are

avoided. However, the simplification of the rules only enhances their benefit,

as the translation from spin-orbital or factorization of Goldstone equations is

still quite complex for CCSDT and CCSDTQ. Additionally, it is hoped that

by deriving the rules in the most general case, that perhaps the theory of non-

orthogonal spin-adaptation can be applied in new areas of chemical physics.
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Chapter 3

Application of Non-orthogonal
Spin-adaptation to CCSDTQ and CCSDT(Q)

In this chapter, the theory of non-orthogonal spin-adaptation, as de-

veloped and discussed in the previous chapter, is applied to the specific case

of coupled cluster with single, double, triple, and quadruple excitations (CCS-

DTQ). Some simplifications of the diagrammatic rules and spin-summed am-

plitudes (as generated by the SS
A

or ÄSS
B

operators) are given, since the

coupled cluster amplitude equations avoid some of the complications which

arose in the previous chapter. The equations in terms of spin-summed orbital

amplitudes and Hamiltonian elements are surprisingly compact and simple.

Additionally, an approximate method, CCSDT(Q), which treats the

e↵ect of quadruple excitations using perturbation theory is presented and dis-

cussed. The results of the previous chapter apply equally well in this case, as

the diagrams which are necessary for CCSDT(Q) are either already necessary

for CCSDTQ or are quite similar.

Lastly, the calculation of the “⇤̂” equations and density matrix for

CCSDTQ, which are important for calculating the gradient of the energy and

other molecular properties are presented and discussed. Again, since these
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equations can be represented diagrammatically, the non-orthogonally spin-

adapted rules can be used to generate compact and e�cient equations.

3.1 Spin-summation

The spin-summed amplitudes are formed by relatively simple linear

combinations of the orbital (or for successive spin-summations, the previously

spin-summed) amplitudes. Additionally, due to the column symmetry of the

amplitudes, the permutations may be performed entirely on either the top or

bottom indices. Some examples are,

ťǎb
ǐj

“ 2ťab
ij

´ ťab
ji

“ 2ťab
ij

´ ťba
ij

(3.1)

ťǎbcd
ǐjkl

“ 2ťabcd
ijkl

´ ťabcd
jikl

´ ťabcd
kjil

´ ťabcd
ljki

“ 2ťabcd
ijkl

´ ťbacd
ijkl

´ ťcbad
ijkl

´ ťdbca
ijkl

(3.2)

ťǎb̌cd
ǐǰkl

“ 2ťǎbcd
ǐjkl

´ ťǎbcd
ǐkjl

´ ťǎbcd
ǐlkj

“ 2ťǎbcd
ǐjkl

´ ťǎcbd
ǐjkl

´ ťǎdcb
ǐjkl

“ 2ťab̌cd
iǰkl

´ ťab̌cd
kǰil

´ ťab̌cd
lǰki

“ 2ťab̌cd
iǰkl

´ ťcb̌ad
iǰkl

´ ťdb̌ca
iǰkl

(3.3)

Other types of spin-summation, as required by the rules of the previous chap-

ter, all reduce to this kind of “simple” spin-summation for the case of the

coupled cluster amplitude equations. For example,
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ť
|

abc

q

ijk

“ ťabč
ijǩ

(3.4)

ť
}

abcd

|

ijkl

“ ťabcď
ijkľ

(3.5)

Also, the equations can be factorized and the resulting diagrams interpreted

with Ǎ and B̌ (in the notation of the previous chapter) chosen so that spin-

summations such as ťǎbĉ
ǐjk̂

and ť
|

abcd

q

ijkl

are not required. Thus, only the spin-

summations ťǎb
ǐj

, ťǎbc
ǐjk

, ťǎb̌c
ǐǰk

, ťǎbcd
ǐjkl

, ťǎb̌cd
ǐǰkl

, and ťǎb̌čd
ǐǰǩl

(only for CCSDT(Q)) are re-

quired.

Several properties of spin-summation are evident from the above exam-

ples and from the symmetry of the orbital quantities: first, the order of suc-

cessive spin-summations is arbitrary, second, spin-summed quantities retain

column symmetry separately among the spin-summed and non-spin-summed

indices, and third, additional spin-summations permute the new spin-summed

index with only non-spin-summed indices. A consequence of the last property

is that the final spin-summation step is always just a multiplication by 2, since

no non-spin-summed indices remain. Combining this with the second property

shows that both the fully spin-summed and “almost” spin-summed (i.e. only

one column of non-spin-summed indices) quantities have the full symmetry of

the starting orbital quantity.

During the computation, it is sometimes necessary to spin-sum an or-

bital quantity (for example, the amplitudes) in place, and then later return it

to its non-spin-summed form. For one- and two-body quantities (T̂2 and V ),
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this “de-spin-summation” is simple and well-determined, for example,

ťab
ij

“ 2

3
ťǎb
ǐj

` 1

3
ťǎb
ǰi

(3.6)

However, for three- and higher-body quantities this transformation is not

unique. Mathematically this is due to the fact that the transformation can

be represented in terms of a singular matrix. Physically, this represents the

fact that the orbital quantities are incompletely defined relative to the spin-

integrated ones (for example, the value of the sum ťabc
ijk

`ťabc
jik

`ťabc
kji

`ťabc
ikj

`ťabc
jki

`ťabc
kij

is arbitrary), while the spin-summed quantities are well-defined. It is still pos-

sible to regenerate the orbital quantities from the spin-summed ones, though,

since each definite choice of equivalent orbital coe�cients has a definite trans-

formation from the spin-summed quantity. These transformations can be gen-

erated by taking the Moore-Penrose pseudo-inverse of the spin-summation

transformation matrix, and then shifting all entries by a constant. Judicious

choice of the constant to maximize the sparsity of the resulting transformation

matrix minimizes the number of terms in the de-spin-summation relation. Pos-

sible de-spin-summation relations for all three- and four-body spin-summation

cases are given by (using the amplitudes as an example),

ťabc
ijk

“ 5

8
ťǎbc
ǐjk

` 1

4
ťǎbc
ǰik

` 1

4
ťǎbc
ǩji

´ 1

8
ťǎbc
ǐkj

“ 1

4
ťǎb̌c
ǐǰk

´ 1

12
ťǎb̌c
ǰǩi

´ 1

12
ťǎb̌c
ǩǐj

(3.7)

ťabcd
ijkl

“ 101

360
ťǎbcd
ǐjkl

´ 1

16

!

ťǎbcd
ǰikl

` ťǎbcd
ǩjil

` ťǎbcd
ľjki

)

´ 19

144

!

ťǎbcd
ǐkjl

` ťǎbcd
ǐlkj

` ťǎbcd
ǐjlk

)

´ 19

160

!

ťǎbcd
ǩijl

` ťǎbcd
ľikj

` ťǎbcd
ǰkil

` ťǎbcd
ľjik

` ťǎbcd
ǰlki

` ťǎbcd
ǩjli

)
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´ 1

40

!

ťǎbcd
ǰilk

` ťǎbcd
ǩlij

` ťǎbcd
ľkji

)

` 89

1440

!

ťǎbcd
ǐklj

` ťǎbcd
ǐljk

)

(3.8)

“ 67

480
ťǎb̌cd
ǐǰkl

´ 1

32
ťǎb̌cd
ǰǐkl

´ 7

96
ťǎb̌cd
ǐǰlk

` 9

160
ťǎb̌cd
ǰǐlk

` 17

480

!

ťǎb̌cd
ǩľij

` ťǎb̌cd
ľǩji

)

´ 13

480

!

ťǎb̌cd
ǩǐjl

` ťǎb̌cd
ǰǩil

` ťǎb̌cd
ľ̌ikj

` ťǎb̌cd
ǰľki

)

` 1

96

!

ťǎb̌cd
ǩľji

` ťǎb̌cd
ľǩij

)

´ 1

160

!

ťǎb̌cd
ľǰik

` ťǎb̌cd
ǐľjk

` ťǎb̌cd
ǩǰli

` ťǎb̌cd
ǐǩlj

)

` 1

24

!

ťǎb̌cd
ľ̌ijk

` ťǎb̌cd
ǰľik

` ťǎb̌cd
ǩǐlj

` ťǎb̌cd
ǰǩli

)

(3.9)

“ 7

96
ťǎb̌čd
ǐǰǩl

` 1

480

!

ťǎb̌čd
ǰǐǩl

` ťǎb̌čd
ǩǰǐl

` ťǎb̌čd
ľǰǩi

` ťǎb̌čd
ǐǩǰl

` ťǎb̌čd
ǐľǩj

` ťǎb̌čd
ǐǰľk

)

` 11

480

!

ťǎb̌čd
ǩǐľj

` ťǎb̌čd
ľ̌iǰk

` ťǎb̌čd
ǰľ̌ik

` ťǎb̌čd
ľǩǐj

` ťǎb̌čd
ǰǩľi

` ťǎb̌čd
ǩľǰi

)

` 1

32

!

ťǎb̌čd
ǰǐľk

` ťǎb̌čd
ǩľ̌ij

` ťǎb̌čd
ľǩǰi

)

(3.10)

3.2 CCSDTQ

As discussed previously, the parameter N , which represents the max-

imum number of simultaneous electron excitations in the T̂ operator, is the

principal factor that controls the accuracy of the coupled cluster method (for

a given molecular basis set). To describe the e↵ects of quadruple excitations,

which are necessary for very high accuracy, the coupled cluster equations must

be derived for N “ 4. In this case, the cluster operator is,

T̂ “ T̂1 ` T̂2 ` T̂3 ` T̂4 (3.11)

Inserting this into the schematic equation for the coupled cluster amplitude

and energy equations (equation (1.19) and equation (1.20)) we get,
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Z1 “ F ` pF ´ DqT1 ` FT2 ` VT1 ` VT2 ` VT3 ` 1

2
FT2

1

`1

2
VT2

1 ` VT1T2 ` 1

6
VT3

1 (3.12)

Z2 “ V ` pF ´ DqT2 ` FT3 ` VT1 ` VT2 ` VT3 ` VT4

`FT1T2 ` 1

2
VT2

1 ` VT1T2 ` VT1T3 ` 1

2
VT2

2 ` 1

6
VT3

1

`1

2
VT2

1T2 ` 1

24
VT4

1 (3.13)

Z3 “ pF ´ DqT3 ` FT4 ` VT2 ` VT3 ` VT4 ` FT1T3 ` 1

2
FT2

2

`VT1T2 ` VT1T3 ` VT1T4 ` 1

2
VT2

2 ` VT2T3 ` 1

2
VT2

1T2

`1

2
VT2

1T3 ` 1

2
VT1T

2
2 ` 1

6
VT3

1T2 (3.14)

Z4 “ pF ´ DqT4 ` VT3 ` VT4 ` FT1T4 ` FT2T3 ` VT1T3

`1

2
VT2

2 ` VT1T4 ` VT2T3 ` VT2T4 ` 1

2
VT2

3 ` 1

2
VT2

1T3

`1

2
VT1T

2
2 ` 1

2
VT2

1T4 ` VT1T2T3 ` 1

6
VT3

2 ` 1

6
VT3

1T3

`1

4
VT2

1T
2
2 (3.15)

E
CC

“ FT1 ` VT2 ` VT2
1 (3.16)

The coupled cluster energy does not depend directly on the T̂3 and T̂4 am-

plitudes. Rather, the solution of the equations in a larger space alters the

converged values of the T̂1 and T̂2 amplitudes and hence the energy.

The individual terms in this equation can be represented diagrammat-

ically as previously discussed, and using the diagrammatic interpretation of

the previous chapter, explicit non-orthogonally spin-adapted equations can be

derived for the case of a closed-shell molecule. One additional step must be in-

serted, however, in that the equations must be factorized. Since the equations
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are non-linear, many T̂ operators may be involved simultaneously. When the

working equations are derived directly from this form, the computational e↵ort

needed to evaluate the individual terms may be much greater than the cost

of an e�cient implementation. For example, in the equations above, the term

VT3
2 produces, among other contributions, this part (the spin-orbital equation

is given here, but the cost is asymptotically the same in the non-orthogonally

spin-adapted form),

zabcd
ijkl

– ´
ÿ

efmn

vmn

ef

tab
im

tec
jk

tfd
nl

(3.17)

This term involves summation over four contracted labels for each of the el-

ements of zabcd
ijkl

, which itself has eight more labels. If the number of orbitals

spanned by each label is on the order of n, then this is a Opn12qcost. But, it

was claimed that CCSDTQ has only an Opn10q cost! The resolution to this

is to break the equation into a series of steps, where at each step only two

tensors are combined to form an intermediate. The intermediate from the first

step is then used in the second step and so on until at the final step the result

is obtained. The equation above can be factored as, for example,

zabcd
ijkl

–
ÿ

e

tec
jk

Iabd
iel

(3.18)

Iabd
iel

“ ´
ÿ

m

tab
im

Imd

el

(3.19)

Imd

el

“
ÿ

fn

vmn

ef

tfd
nl

(3.20)

These individual steps now scale as Opn9q, Opn7q, and Opn6q, respectively.
The factorization given is not unique, however (see for example the

alternate factorization of Kucharski and Bartlett).66 In general, for a term
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with m tensors, there are m!pm´1q!
2m ways to do the factorization. Also, the

factorization must be done for each term in the amplitude equations. The

factorizations used should then satisfy certain “sanity checks”. First, each

factorized term should scale as Opn10q or less. Second, intermediates which

are as large or larger (in terms of storage space) than the cluster amplitudes

should be avoided. Additionally, to maximize the e�ciency of the resulting

equations, intermediates of the same size and shape should be combined be-

tween as many terms as possible so that many terms can be computed as a

linear combination. The scaling and the storage size of intermediates should

also be minimized as much as possible beyond the limits above (especially the

number of terms with the maximal scaling of Opn10q should be minimized).

Luckily, a fairly simple heuristic which produces very e�cient factorizations

has been developed, which is to use intermediates which “look like” elements

of the coupled cluster transformed Hamiltonian, H̄, which has tensor elements

of the same type as Ĥ, but relabeled as f Ñ F and v Ñ W . By this, it is

meant that an intermediate, say Iab
ie

, should contain only contributions which

are part of the transformed Hamiltonian element of the same type, namely

W ab

ic

. Additionally, intermediates are built starting with the smallest ones

first, i.e. first the one-particle intermediates are built with terms from F a

i

, F i

j

,

F a

b

, and F i

a

, then intermediates with terms from W ij

kl

, then W ij

ak

and W ia

jk

, then

W ai

bj

, etc. (since there are generally many fewer occupied orbitals than virtual

ones). Since these intermediates are “H̄-like”, they are labeled by W̃ (or ˜̃W

when two intermediates of the same type are needed), and when all terms from
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the corresponding H̄ element have been included, then the actual elements W

may simply be used.

This method of factorization has been applied to the CCSDTQ equa-

tions, and the result in terms of binary tensor operations has been evaluated

diagrammatically using the non-orthogonally spin-adapted rules. The energy

equation is the same as previously given

E
CC

“ 2
ÿ

em

f̌m

e

ťe
m

`
ÿ

efmn

v̌m̌n

ěf

⌧̌ ef
mn

(3.21)

The amplitude equations are

ža
i

“ f̌a

i

`
ÿ

e

p1 ´ �
ae

qf̌a

e

ťe
i

´
ÿ

m

F̌m

i

ťa
m

`
ÿ

em

v̌m̌a

ěi

ťe
m

`
ÿ

em

F̌m

e

ťěa
m̌i

`
ÿ

efm

v̌ma

ef

⌧̌ ěf
m̌i

´
ÿ

emn

W̌ m̌n

ěi

ťea
mn

` 1

2

ÿ

efmn

v̌mn

ef

ťěf̌a
m̌ňi

(3.22)

žab
ij

“ `

1 ` P ai

bj

˘

#

1

2
v̌ab
ij

`
ÿ

e

v̌ab
ie

ťe
j

´
ÿ

m

˜̌W am

ij

ťb
m

`
ÿ

e

F̌ a

e

ťeb
ij

´
ÿ

m

F̌m

i

ťab
mj

` 1

2

ÿ

em

˜̌W m̌a

ěi

ťěb
m̌j

´
ˆ

1

2
` P a

b

˙

ÿ

em

˜̌Wma

ie

ťeb
jm

`1

2

ÿ

mn

W̌mn

ij

⌧̌ab
mn

` 1

2

ÿ

ef

v̌ab
ef

⌧̌ ef
ij

` 1

2

ÿ

efmn

F̌m

e

ťěab
m̌ij

`
ÿ

efm

W̌ am

ef

ťf̌eb
m̌ij

´
ÿ

emn

W̌mn

ej

ťěab
m̌in

` 1

4

ÿ

efmn

v̌mn

ef

ťěf̌ab
m̌ňij

+

(3.23)

žabc
ijk

“
´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘

#

ÿ

e

˜̌W ab

ej

ťec
ik

´
ÿ

m

W̌ am

ij

ťbc
mk

`1

2

ÿ

e

F̌ a

e

ťebc
ijk

´ 1

2

ÿ

m

F̌m

i

ťabc
mjk

` 1

4

ÿ

em

W̌ m̌a

ěi

ťěbc
m̌jk

´
ˆ

1

2
` P a

b

˙

ÿ

em

W̌ma

ie

ťebc
jmk

` 1

2

ÿ

mn

W̌mn

ij

ťabc
mnk

` 1

2

ÿ

ef

W̌ ab

ef

ťefc
ijk
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`1

6

ÿ

em

F̌m

e

ťěabc
m̌ijk

` 1

2

ÿ

efm

W̌ am

ef

ťf̌ebc
m̌ijk

´ 1

2

ÿ

emn

W̌mn

ej

ťěabc
m̌ink

+

(3.24)

žabcd
ijkl

“
´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘ ˆ
#

1

2

ÿ

e

W̌ ab

ej

ťecd
ikl

´ 1

2

ÿ

m

W̌ am

ij

ťbcd
mkl

` 1

6

ÿ

e

F̌ a

e

ťebcd
ijkl

´1

6

ÿ

m

F̌m

i

ťabcd
mjkl

` 1

12

ÿ

ef

W̌ m̌a

ěi

ťěbcd
m̌jkl

´ 1

2

ˆ

1

2
` P a

b

˙

ÿ

em

W̌ma

ie

ťebcd
jmkl

`1

4

ÿ

mn

W̌mn

ij

ťabcd
mnkl

` 1

4

ÿ

ef

W̌ ab

ef

ťefcd
ijkl

` 1

8

ÿ

em

˜̌W m̌ab

ěij

ťěcd
m̌kl

´
ˆ

1

2
` P a

c

˙

ÿ

em

˜̌Wmab

iej

ťecd
kml

` 1

2

ÿ

mn

˜̌W amn

ijk

ťbcd
mnl

´1

2

ÿ

m

˜̌W abm

ijk

ťcd
ml

` 1

2

ÿ

e

˜̌W abc

ejk

ťed
il

+

(3.25)

The intermediates used in the above equations are given by

⌧̌ab
ij

“ ťab
ij

` ťa
i

ťb
j

(3.26)

F̌m

i

“ p1 ´ �
mi

q f̌m

i

`
ÿ

e

F̌m

e

ťe
i

`
ÿ

efn

v̌ňm
f̌e

ťfe
ni

`
ÿ

en

v̌ňm
f̌i

ťf
n

(3.27)

F̌ a

e

“ p1 ´ �
ae

q f̌a

e

´
ÿ

m

F̌m

e

ťa
m

´
ÿ

fmn

v̌ňm
f̌e

ťfa
nm

`
ÿ

fm

v̌m̌a

f̌e

ťf
m

(3.28)

F̌m

e

“ f̌m

e

`
ÿ

fn

v̌ňm
f̌e

ťf
n

(3.29)

W̌mn

ej

“ v̌mn

ej

`
ÿ

f

v̌mn

ef

ťf
j

(3.30)

W̌ am

ef

“ v̌am
ef

´
ÿ

n

v̌nm
ef

ťa
n

(3.31)

˜̌W am

ij

“ v̌am
ij

`
ÿ

e

v̌am
ej

ťe
i

`
ÿ

e

v̌am
ie

ťe
j

`
ÿ

ef

v̌am
ef

⌧̌ ef
ij

(3.32)

W̌ am

ij

“ ˜̌W am

ij

` 1

2

ÿ

en

v̌ňm
ěj

ťěa
ňi

´
ˆ

1

2
` P i

j

˙

ÿ

en

v̌nm
je

ťea
in

72



´
ÿ

n

W̌ nm

ij

ťa
n

`
ÿ

e

F̌m

e

ťae
ij

`
ÿ

efn

v̌mn

ef

ťf̌ae
ňij

(3.33)

˜̌W ab

ej

“ v̌ab
ej

´
ÿ

m

˜̌̃
W am

ej

ťb
m

´
ÿ

m

˜̌̃
Wmb

ej

ťa
m

`
ÿ

mn

W̌mn

ej

⌧̌ab
mn

`
ÿ

f

v̌ab
ef

ťf
j

` 1

2

ÿ

fm

v̌m̌a

f̌e

´

ťf̌ b
m̌j

´ ťf
j

ťb
m

¯

´
ˆ

1

2
` P a

b

˙

ÿ

fm

v̌ma

ef

⌧̌ fb
jm

´
ÿ

fmn

v̌mn

ef

ťf̌ab
ňim

(3.34)

W̌ ab

ej

“ ˜̌W ab

ej

´
ÿ

m

F̌m

e

ťab
mj

(3.35)

˜̌Wma

ei

“ v̌ma

ei

´
ÿ

n

W̌mn

ei

ťa
n

`
ÿ

f

v̌ma

ef

ťf
i

` 1

4

ÿ

fn

v̌ňm
f̌e

ťf̌a
ňi

´1

4

ÿ

fn

v̌nm
ef

ťfa
in

(3.36)

˜̌Wma

ie

“ v̌ma

ie

´
ÿ

n

W̌mn

ie

ťa
n

`
ÿ

f

v̌ma

fe

ťf
i

´ 1

2

ÿ

fn

v̌nm
ef

ťfa
in

(3.37)

˜̌̃
Wma

ei

“ v̌ma

ei

` 1

2

ÿ

fn

v̌ňm
f̌e

ťf̌a
ňi

´ 1

2

ÿ

fn

v̌nm
ef

ťfa
in

(3.38)

˜̌̃
Wma

ie

“ v̌ma

ie

´
ÿ

fn

v̌nm
ef

ťfa
in

(3.39)

W̌ma

ei

“ ˜̌Wma

ei

` 1

2

˜̌̃
Wma

ei

´ 1

2
v̌ma

ei

(3.40)

W̌ma

ie

“ ˜̌Wma

ie

` 1

2

˜̌̃
Wma

ie

´ 1

2
v̌ma

ie

(3.41)

W̌mn

ij

“ `

1 ` Pmi

nj

˘

#

1

2
v̌mn

ij

`
ÿ

e

v̌mn

ie

ťe
j

` 1

2

ÿ

ef

v̌mn

ef

⌧̌ ef
ij

+

(3.42)

W̌ ab

ef

“ `

1 ` P ea

fb

˘

#

1

2
v̌ab
ef

`
ÿ

m

v̌am
ef

ťb
m

` 1

2

ÿ

mn

v̌mn

ef

⌧̌ab
mn

+

(3.43)

˜̌Wmab

eij

“ `

1 ` P ai

bj

˘

#

ÿ

f

W̌ma

ef

ťbf
ji

´
ÿ

n

W̌mn

ei

ťab
nj

` 1

8

ÿ

fn

v̌ňm
f̌e

ťf̌ab
ňij
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´1

4

ÿ

fn

v̌nm
ef

ťfab
inj

+

(3.44)

˜̌Wmab

iej

“
ÿ

f

W̌ma

fe

ťbf
ji

´
ÿ

n

W̌mn

ie

ťab
nj

´ 1

2

ÿ

fn

v̌nm
ef

ťfab
inj

(3.45)

˜̌W amn

ijk

“ `

1 ` Pmj

nk

˘

#

ÿ

e

W̌mn

ek

ťae
ij

` 1

2

ÿ

ef

v̌mn

ef

ťaef
ijk

+

(3.46)

˜̌W abm

ijk

“ `

1 ` P ai

bj

˘

#

ÿ

ef

W̌ am

ef

ťebf
ijk

`
ÿ

e

W̌ma

ei

ťbe
jk

`
ÿ

e

W̌ma

ke

ťbe
ji

´1

2

ÿ

n

W̌mn

ki

ťab
nj

` 1

2

ÿ

efn

v̌mn

ef

ťf̌abe
ňijk

+

(3.47)

˜̌W abc

ejk

“
´

1 ` P bj

ck

¯

#

1

2

ÿ

f

W̌ ab

ef

ťfc
jk

´ 1

2

ÿ

fmn

v̌mn

ef

ťf̌abc
ňmjk

+

(3.48)

3.3 CCSDT(Q)

The full CCSDTQ method, while it is generally extremely accurate,

is also quite costly. The amplitudes are also quite large, scaling in size as

Opn8q. Since it is an iterative method, the amplitudes must be stored and

fully read through memory each iteration, possibly many times if there is not

enough main memory to compute the T4 Ñ Z4 terms in one pass. However,

the situation is similar to that in CCSDT when its computational cost and

storage requirements are compared to CCSD. In that case, it is well-known

that only an approximate treatment of the e↵ect of T̂3 is required to gain a

level of accuracy generally quite close to that of full CCSDT. By far the most

commonly-used and successful approximation in this vein is the CCSD(T)
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approximation, which treats the e↵ect of triples with an Opn7q cost (compared

to Opn8q for full CCSDT), and is non-iterative such that the T̂3 amplitudes

need not be stored on disk and can instead be computed in blocks as main

memory permits.

The original derivation of non-iterative triples corrections to CCSD is

based on an analysis of the CCSDT energy in terms of perturbation theory,7,8

where the e↵ects of T̂3 are included through fourth order. In this form of

perturbation theory, the zeroth-order solution is taken as the self-consistent

field (SCF) single-particle wavefunction, and V̂ is used as the first-order per-

turbation. The Fock matrix F̂ is kept as zero-order since it gives the SCF

energy of the reference and excited single-particle states. The amplitudes T̂
k

are then of order k´1 except for T̂1 which is generally treated as second-order

since the SCF solution does not couple directly to single excitations. This

method was termed CCSD+T(CCSD) (also called CCSD[T]), and obtained

a reasonable level of accuracy compared to full CCSDT.7 However, it was

soon discovered that the addition of a particular fifth-order term improved

the accuracy of the method substantially, and this modified method came to

be known as CCSD(T).8 A later derivation of CCSD(T) used perturbation

theory based on the CCSD wavefunction as the starting point, rather than the

SCF wavefunction.67 From this approach, all of the terms in CCSD(T) arise

together naturally in third order. Later work using this same method of per-

turbation theory extended the same type of approximation to CCSDT(Q),57

CCSDTQ(P), and higher levels of coupled cluster.58
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In this second type of perturbation theory, generally called Löwdin

partitioning, the Hamiltonian and wavefunction are partitioned into “primary”

(P), and “secondary” (Q) pieces. Schematically, the Schrödinger equation then

becomes,
ˆ

Ĥ
PP

Ĥ
PQ

Ĥ
QP

Ĥ
QQ

˙ ˆ | 
P

y
| 

Q

y
˙

“ E

ˆ | 
P

y
| 

Q

y
˙

(3.49)

As in equation (1.8), the coupled cluster energy and wavefunction can be

represented as the solution of a non-Hermitian Schrödinger equation in a given

space of single-particle functions (for example, the space of single, double, and

triple excitations for CCSDT). However, the wavefunction in this case (which is

simply the reference function |�0y) in this picture is not an eigenfunction of H̄

in the un-truncated space of single-particle functions. Rather, we can expand

the exact eigenvector (of H̄, not Ĥ, although the exact energy is the same since

a similarity transform preserves the spectrum) as | 
P,Q

y “ R̂
P,Q

|�0y, where
the additional operator R̂ corrects for the solution of the cluster amplitudes in

the truncated space (and the truncation of the cluster operator itself). Since

the wavefunction in the truncated problem is the reference function, then for

the truncated space P we can write this as R̂
P

“ 1 ` �R̂
P

. Then, we can

obtain the partitioned equation (where E is the exact energy)

ˆ

H̄
PP

H̄
PQ

H̄
QP

H̄
QQ

˙ ˆ

R̂
P

|�0y
R̂

Q

|�0y
˙

“ E

ˆ

R̂
P

|�0y
R̂

Q

|�0y
˙

(3.50)

Since we wish to obtain an approximation to CCSDTQ, the CCSDT

wavefunction should be used as the starting point, so that P spans the reference

state plus all single, double, and triple excitations (i.e. P “ 0 ` S ` D ` T ),
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and so that Q contains all higher excitations. Multiplying through, we obtain,

H̄
PP

R̂
P

|�0y ` H̄
PQ

R̂
Q

|�0y “ ER̂
P

|�0y (3.51)

H̄
QP

R̂
P

|�0y ` H̄
QQ

R̂
Q

|�0y “ ER̂
Q

|�0y (3.52)

The second equation can be re-arranged to solve for R̂
Q

|�0y,

R̂
Q

|�0y “ pE ´ H̄
QQ

q´1H̄
QP

R̂
P

|�0y (3.53)

Substituting this back into the first equation gives a single (albeit recursively-

defined) equation for the energy,

“

H̄
PP

` H̄
PQ

pE ´ H̄
QQ

q´1H̄
QP

‰

R̂
P

|�0y “ ER̂
P

|�0y (3.54)

This can be multiplied on the left by a suitable exact left-hand wave-

function, projected onto the P space, x�0|L̂P

. The left- and right-hand wave-

functions are not the same, since the transformed Hamiltonian is not Her-

mitian. The left-hand wavefunction has a non-trivial structure even for the

original truncated coupled cluster problem. Thus, we have for the truncated

space P , L̂
P

“ 1` ⇤̂ ` �L̂
P

, where 1` ⇤̂ is the left-hand wavefunction of the

truncated problem. The ⇤̂ vector will be discussed in more detail in the next

section. After left-multiplication, the equation becomes

x�0|p1 ` ⇤̂ ` �L̂
P

q “

H̄
PP

` H̄
PQ

pE ´ H̄
QQ

q´1H̄
QP

‰ p1 ` �R̂
P

q|�0y
“ E (3.55)

Lastly, since H̄
PP

is already block-diagonal due to the solution of the coupled

cluster equations (with the coupled cluster energy as x�0|H̄PP

|�0y), then this
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rearranges slightly to,

x�0|p1 ` ⇤̂ ` �L̂
P

qH̄
PQ

pE ´ H̄
QQ

q´1H̄
QP

p1 ` �R̂
P

q|�0y
“ E ´ E

CCSDT

(3.56)

So far, the treatment has been formally exact, with the di�culty be-

ing that the energy appears on both sides of the equation (so that an itera-

tive approach would be needed to solve it directly), and that the inverse of

the transformed Hamiltonian H̄
QQ

is needed. Thus, we must solve this ap-

proximately, expanding the transformed Hamiltonian, energy, and left- and

right-hand wavefunctions in a perturbation series,

H̄ “ H̄ r0s ` H̄ r1s ` H̄ r2s ` . . . (3.57)

E “ Er0s ` Er1s ` Er2s ` . . . (3.58)

�L̂
P

“ �L̂
r2s
P

` �L̂
r3s
P

` . . . (3.59)

�R̂
P

“ �R̂
r4s
P

` �R̂
r5s
P

` . . . (3.60)

Since CCSDT is the starting point, we take ⇤̂ as zeroth-order and set Er0s “
E

CCSDT

. The order of a given element of the transformed Hamiltonian is

determined by adding up the order of each piece which contributes to it, with

the original Hamiltonian being first order and the order of the amplitudes as

defined above. The corrections to the wavefunctions do not start at first order

since several elements of ⇤̂, T̂ , and Ĥ must be combined to first reach the Q

space and then return to the P space. Inserting these into equation (3.56)
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gives a non-zero contribution first at third and fourth order

x�0|p1 ` ⇤̂qpH̄ r0s
PQ

` H̄
r1s
PQ

qpE
CCSDT

´ H̄
r0s
QQ

q´1H̄
r3s
QP

|�0y
“ E ´ E

CCSDT

(3.61)

H̄
r3s
QP

contains contributions of the type VT3 and 1
2VT2

2, while p1` ⇤̂qpH̄ r0s
PQ

`
H̄

r1s
PQ

q contains terms of the type L2V, L3F, and L3V, where L does not need

to be contracted with the Hamiltonian. The zero-order part of the transformed

Hamiltonian is simply the Fock matrix F̂ plus the coupled cluster energy on

the diagonal. However, if the Fock matrix is not diagonal, then it is again a

very di�cult proposition to invert H̄ r0s
QQ

. Thus, it is customary to enforce this

condition, which can always be obtained by diagonalizing the Fock matrix

(separately for occupied and virtual orbitals so that the SCF and coupled

cluster energy is unchanged), and then rotating the orbitals accordingly. Then,

pE
CCSDT

´ H̄
r0s
QQ

q´1 is equal to the same inverse energy denominators ´D´1

as used in the coupled cluster equations.

The solution of the ⇤̂ equations is approximately the same cost as solv-

ing the amplitude equations, meaning that the iterative cost would be doubled

to require these elements. Instead, as is done for CCSD(T), the transpose of

the cluster operator T̂ : can be used instead, as it and the ⇤̂ operator have the

same solution through the lowest non-zero order. The CCSDT(Q) correction

is then obtained in schematic form as,
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EpQq “ ´pT:
2V ` T:

3F ` T:
3VqD´1

4 pVT3 ` 1

2
VT2

2qc
“ ´Z4pdqD´1

4 Z4pcq
“ Z4pdqT4pcq (3.62)

E�cient non-orthogonally spin-adapted equations can be obtained us-

ing the same factorization philosophy and the new diagrammatic technique,

giving

EpQq “ 1

12

ÿ

abcdijkl

žabcd
ijkl

pdqťǎb̌čd
ǐǰǩl

pcq (3.63)

žabcd
ijkl

pdq “ žabcd
ijkl

peq `
´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

ˆ
`

1 ` P ai

bj

˘

"

1

4
v̌ab
ij

ťcd
kl

` 1

6
f̌a

i

ťbcd
jkl

*

(3.64)

žabcd
ijkl

pcq “ žabcd
ijkl

peq `
´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

ˆ
`

1 ` P ai

bj

˘

#

1

2

ÿ

e

˜̌̃
W abc

ije

ťed
kl

´ 1

2

ÿ

m

˜̌̃
W abm

ijk

ťcd
ml

+

(3.65)

žabcd
ijkl

peq “
´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘ ˆ
#

1

2

ÿ

e

v̌ab
ie

ťecd
jkl

´ 1

2

ÿ

m

v̌am
ij

ťbcd
mkl

+

(3.66)

using the intermediates

˜̌̃
W abc

ije

“
ÿ

f

v̌bc
fe

ťaf
ij

(3.67)

˜̌̃
W abm

ijk

“ ´
ÿ

n

v̌nm
jk

ťab
in

`
ÿ

e

v̌bm
je

ťae
ik

`
ÿ

e

v̌bm
ek

ťae
ij

(3.68)

The need for intermediates is a major di↵erence between CCSD(T) and

CCSDT(Q), especially as the necessity of the
˜̌̃
W abc

ije

intermediate which is larger
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even than the T̂3 amplitudes complicates the implementation of the method

when it does not fit in memory and when using distributed parallelism.

3.4 Beyond Single-point Energies

The equations given in the previous sections are su�cient to determine

the energy of the ground state of the system. However, it is often desirable

to determine additional properties of the system such as molecular geometry,

dipole moment, polarizability, magnetic properties, etc. Determination of the

equilibrium molecular geometry, that is the geometry at which the energy of

the system (in the Born-Oppenheimer approximation) is minimized, generally

requires knowledge of the energy gradient with respect to displacements of

the positions of the atoms (point-based methods such as simplex optimization

don’t necessarily require this, but are rarely used).68–70 Molecular properties,

such as the dipole moment, require the wavefunction for their computation˚.

But, since coupled cluster is a non-Hermitian theory, this in reality means both

the right- and left-hand wavefunctions.6,71 The determination of this left-hand

wavefunction is also closely related to the theory of coupled cluster gradients

and to the calculation of excited states. Therefore, derivation of equations for

the energy gradient represents a valuable theoretical goal.

The basic theory of coupled cluster gradients begins with a straightfor-

ward partial di↵erentiation of the coupled cluster energy expression as given

˚
The wavefunction is required for exact (analytic) calculation, although some properties

can be computed for example by finite di↵erences with respect to an applied perturbation.
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in equation (1.5). The derivative is taken with respect to some perturbation �,

which is often the x, y, or z coordinate of one the atoms. Additionally, partial

derivatives of some quantity A are written in this work using the shorthand

A� “ BA
B� . The di↵erentiated expression is then,

E�

CC

“ x�0|H̄|�0y�

“ x��

0 |H̄|�0y ´ x�0|T̂ �H̄|�0y ` x�0|H̄�|�0y ` x�0|H̄T̂ �|�0y
`x�0|H̄|��

0 y
“ x�0|H̄�|�0y ` x�0|H̄T̂ �|�0y (3.69)

where the definition H̄ “ e´T̂ ĤeT̂ is used along with the definition H̄� “
e´T̂ Ĥ�eT̂ . Additionally, the derivatives of the SCF wavefunction |��

0 y may be

neglected since this wavefunction is variationally determined,

x��

0 |H̄|�0y ` x�0|H̄|��

0 y “ E
CC

x��

0 |�0y ` E
CC

x�0|��

0 y
“ E

CC

x�0|�0y�

“ 0 (3.70)

The term x�0|T̂ �H̄|�0y is zero since the di↵erentiated T̂ operator must ex-

cite at least one electron, while it is multiplied on the left by the reference

function x�0| which has no electrons excited. The term x�0|H̄�|�0y gives the

contribution using the di↵erentiated Hamiltonian transformed by the usual

exponential coupled cluster operator.

The other non-zero term x�0|H̄T̂ �|�0y, when not neglected, ostensibly

requires the solution of the derivative of the cluster amplitudes. The equation
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determining these perturbed amplitudes is, not surprisingly, the derivative of

the usual coupled cluster amplitude equations,

0� “ x�a1...a
k

i1...i
k

|H̄|�0y�

“ x�a1...a
k

�

i1...i
k

|H̄|�0y ´ x�a1...a
k

i1...i
k

|T̂ �H̄|�0y ` x�a1...a
k

i1...i
k

|H̄�|�0y
`x�a1...a

k

i1...i
k

|H̄T̂ �|�0y ` x�a1...a
k

i1...i
k

|H̄|��

0 y
“ ´E

CC

x�a1...a
k

i1...i
k

|T̂ �|�0y ` x�a1...a
k

i1...i
k

|H̄�|�0y ` x�a1...a
k

i1...i
k

|H̄T̂ �|�0y (3.71)

where now the derivatives of the single-particle states disappear due to the

structure of H̄. The term arising from the di↵erentiation of e´T̂ is no longer

zero, but can be simplified using equation (1.8). Rearranging this into a solu-

tion for the derivative amplitudes gives,

x�a1...a
k

i1...i
k

|T̂ �|�0y “ x�a1...a
k

i1...i
k

|pE
CC

´ H̄q´1H̄�|�0y (3.72)

However, instead of obtaining the solution to this equation iteratively for each

perturbation �, we can insert this entire expression back into equation (3.69),

giving,

E�

CC

“ x�0|
“

1 ` H̄pE
CC

´ H̄q´1
‰

H̄�|�0y
“ x�0|p1 ` ⇤̂qH̄�|�0y (3.73)

In terms of second-quantized operators, ⇤̂ is defined very similarly to

T̂ ,

83



⇤̂ “
N

ÿ

k“1

⇤̂
k

(3.74)

⇤̂
k

“ 1

pk!q2
ÿ

a1...a
k

i1...i
k

�i1...i
k

a1...a
k

a:
i1
. . . a:

i

k

a
a

k

. . . a
a1 (3.75)

This new de-excitation operator can be obtained by iteratively solving the

equation,

x�0|⇤̂pH̄ ´ E
CC

q|�a1...a
k

i1...i
k

y ` x�0|H̄|�a1...a
k

i1...i
k

y “ 0 (3.76)

But, since this equation does not depend on the perturbation �, it must only

be done once, no matter how many perturbations are present. Also, applying

the Hellman-Feynman theorem in reverse shows that x�0|p1`⇤̂q can be viewed

as the left-hand wavefunction of H̄,

x�0|p1 ` ⇤̂qH̄ “ x�0|p1 ` ⇤̂qE
CC

(3.77)

Furthermore, separation of the exponential terms from H̄ shows that we can

also represent the left- and right-hand coupled cluster wavefunctions as degen-

erate wavefunctions (although not technically eigenfunctions) of Ĥ,

ĤeT̂ |�0y “ E
CC

eT̂ |�0y (3.78)

x�0|p1 ` ⇤̂qe´T̂ Ĥ “ x�0|p1 ` ⇤̂qe´T̂E
CC

(3.79)

This allows coupled cluster to be cast as an eigenvalue problem, and to cal-

culate arbitrary molecular properties as an expectation value, for example the

electronic dipole moment,
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pµe

CC

q2 “
ÿ

↵“xyz

ˇ

ˇ

ˇ

x�0|p1 ` ⇤̂qe´T̂µ
↵

eT̂ |�0y
ˇ

ˇ

ˇ

2

“
ÿ

↵“xyz

ˇ

ˇ

ˇ

x�0|p1 ` ⇤̂qµ̄
↵

|�0y
ˇ

ˇ

ˇ

2

(3.80)

To aid in the calculation of gradients and other molecular properties

using the above form, it is advantageous to rewrite the matrix element for the

expectation value as a contraction with a density matrix,

E�

CC

“
ÿ

pq

`

f p

q

˘

�

Dq

p

` 1

4

ÿ

pqrs

pvpq
rs

q� �rs

pq

(3.81)

⌘
CC

“
ÿ

pq

⌘p
q

Dq

p

` 1

4

ÿ

pqrs

⌘pq
rs

�rs

pq

(3.82)

where ⌘ is an arbitrary molecular property in normal-ordered form (this may

often have only a one-electron component). Since the labels here run over both

occupied and virtual orbitals, the density has several distinct pieces defined

by the occupation state of each index, just as the Hamiltonian does. These

density matrix elements can be determined diagrammatically by taking each

(closed) diagram in the representation of equation (3.73) and removing the

Hamiltonian vertex. The lines to which this vertex was connected now become

the external vertices corresponding to the labels of Dp

q

or �pq

rs

.

The ⇤̂ equations, after rearranging to schematic form very similar to

that of the amplitude equations,

Z “ ´DL “ F̄ ` W ` LpF̄ ´ Dq ` LW (3.83)

where H̄ “ F̄ ` W and there is no requirement that the terms be contracted,
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can also be evaluated diagrammatically. Non-orthogonally spin-adapted equa-

tions for ⇤̂, Dp

q

, and �pq

rs

arising from CCSDTQ are given in appendix B.

3.5 Summary

The results from the previous chapter have been applied here to the spe-

cific cases of CCSDTQ, CCSDT(Q), and the CCSDTQ ⇤̂ and density matrix

equations. For these cases, some simplifications of the full non-orthogonally

spin-adapted rules and spin-summation operators are possible, and the result-

ing equations are shown to be very compact but still relatively simple and

easy to understand. The CCSDT(Q) equations are considerably simpler than

the full CCSDTQ method, and due to the lower cost (Opn9q vs. Opn10q) and
non-iterative nature of CCSDT(Q), it promises to be a useful proxy for the

very high accuracy attainable by CCSDTQ.

The ⇤̂ and density equations presented in this chapter are useful for

calculating a range of molecular properties, and for computing the energy

gradient which is used for finding the minimum (or minima – or saddle points)

of the potential energy surface. E�cient implementations of these open up

CCSDTQ to a wider range of chemical applications.
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Chapter 4

E�cient Implementation of CCSDTQ

This chapter details the data structures, algorithms, and optimizations

necessary to turn the non-orthogonally spin-adapted equations of the previous

chapter into an e�cient computer program. The structure of the orbital am-

plitudes will be exploited to reduce the amount of data storage needed while

simultaneously allowing the use of optimized matrix-multiplication operations.

The amplitudes must sometimes be rearranged (permuted) so that this is pos-

sible, since restrictions on the ordering of the orbital labels are placed by

concerns of spatial symmetry and mapping to matrix multiplication. Never-

theless, a technique to minimize the number of permutation steps is presented

which removes much of the cost of this overhead.

The resulting algorithm for CCSDTQ, as implemented in the CFOUR

program suite,72 is then timed for calculations on a variety of systems, in com-

parison with the leading existing implementation. The CCSDT(Q) method as

described in the previous chapter has also been implemented using the same

optimizations as for CCSDTQ, and is timed on the same set of systems (with

a larger basis set for some systems, so that the cost of the calculation stays

relatively the same). The e�ciency of the implementations are assessed by
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comparison to existing implementations and by examining the time spent in

di↵erent areas of the program. Lastly, results for larger systems with the

CCSDT(Q) method are given, as well as a preliminary analysis of the multi-

threaded performance of the program.

4.1 The Utility of Non-orthogonal Spin-adaptation

While the use of non-orthogonal spin-adaptation produces a relatively

simple and compact set of equations, even for complicated ring-type diagrams,

the e�ciency of an actual implementation relies in no small part on the phys-

ical layout of the amplitudes and how they must be manipulated to perform

the necessary contractions.73 For the orbital amplitudes, the column symme-

try of the indices implies that only „ 1{2 of the amplitudes must be stored

for ťab
ij

, „ 1{6 for ťabc
ijk

, and „ 1{24 for ťabcd
ijkl

etc. Even though this is a sig-

nificant reduction from the full “dense” storage, it is still possible to derive

the coupled cluster equations with a smaller set of amplitudes. The orthog-

onal spin-adaptation technique for example achieves a lower bound, requir-

ing only „ 5{6 as many triple excitation amplitudes and „ 7{12 as many

quadruple excitation amplitudes.74 However, the amplitudes in this case have

complicated symmetries which makes e�cient implementations di�cult. The

numerical issues associated with overdetermination and linear dependency of

the amplitude equations (since some “redundant” amplitudes are kept in the

orbital case) are also conveniently controlled by the spin-summation and de-

spin-summation operations as detailed in the previous chapter, as the choice
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of a fixed de-spin-summation relation allows one to “re-canonicalize” the am-

plitudes by simply spin-summing and then de-spin-summing them.

To take advantage of the symmetry of the orbital amplitudes, one could

for example store elements of ťabc
ijk

for which compound column indices are

restricted as paiq § pbjq § pckq. In practice, however, and as was pointed out

by Kucharski and Bartlett,53 it is much more advantageous to store either the

virtual or occupied indices without restrictions, and then store only amplitudes

with i § j § k § . . . or a § b § c § . . . respectively. For the specific case of

the T̂3 and T̂4 amplitudes, this gives the storage format,

ťabc
ijk

Ñ ťabc
i§j§k

(4.1)

ťabcd
ijkl

Ñ ťabcd
i§j§k§l

(4.2)

Additionally, amplitudes with i “ j “ k, or any three indices equal for higher-

excitation amplitudes such as ťabcd
iii§j

, can be omitted as they cannot contribute

to the energy due to the Pauli exclusion principle. In terms of computer im-

plementation, this allows for the use of fast, vectorized matrix multiplication

routines, for example from the BLAS libraries,75–77 to perform the parts of

each contraction involving the unrestricted indices. This is especially bene-

ficial for the expensive particle-particle ladder term if the virtual indices are

unrestricted. If point group symmetry is considered as well, storing half of the

indices unrestricted also allows for e�cient symmetry packing, for example

using the DPD scheme78,79 to reduce both storage and computational cost. Of

course, this layout is not optimal in terms of sparsity, as redundant amplitudes
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are stored for i “ j or j “ k. However, the amount of overhead incurred scales

as only Opn5q for triples compared to Opn6q for the total amplitudes and so

on for higher orders.

This storage format is also especially advantageous because it allows

spin-summation and de-spin-summation operations the be performed “locally”

on a dense tensor. Since spin-summation involves permutations of only virtual

or only occupied indices, then by choosing virtual indices it is not a↵ected by

the compressed structure of the occupied labels. This also means that spin-

summation can be performed independently for each value of ijk . . ., which is

why it can be classified as a “local” operation unlike contraction which may

require many ijk . . . combinations to be operated on. As the following sections

will show, locality is an important quality in the context of minimizing I/O

operations.

4.2 The Basic Algorithm

With the T̂3 and T̂4 amplitudes stored as in equation (4.1) and equa-

tion (4.2), the operations on these elements become split into explicit tensor

contractions on “virtual blocks” ťabc
ijk

Ñ ťabc, žabcd
ijkl

Ñ žabcd etc., and implicit

operations on the occupied indices, which are now simply treated as labels

on the virtual blocks. Keeping the T̂1 and T̂2 amplitudes and Hamiltonian

elements stored with no index restrictions, an algorithm for solving the full

CCSDTQ equations (equation (3.22) though equation (3.25)) can then be de-

rived in terms of contractions over sets of virtual blocks. Such an algorithm for
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CCSDT will first be presented and used to illustrate important optimizations,

before moving to the full CCSDTQ algorithm.

One e↵ect of storing only the unique portions of the tensors, however,

is that each single contraction may need to be computed in several steps. For

example, when summing over an occupied index such as
∞

m

F̌m

i

ťabc
mjk

, the form

of T̂3 needed may actually be ťabc
mjk

, ťbac
jmk

, or ťbca
jkm

depending on the relative val-

ues of m, j, and k. Similarly, occupied indices involved in a contraction which

originate on di↵erent vertices may not obey the ordering restrictions, necessi-

tating a permutation of the result. Even without these cases, the symmetriza-

tion operator, instead of being an explicit operation on a fully dense result,

is implicitly applied by splitting each contraction into several pieces. Ideally

one would simply be able to operate on the data in-place with the necessary

indices transposed in the specification of the particular tensor contraction and

permutations. However, the (current) necessity of casting tensor contractions

as matrix multiplication places restrictions on the contraction types possible,

and requires physical transposition of the tensor data. So, in order to compute

all of the necessary pieces of each contraction, it is in general necessary to per-

form all possible permutations (although not every permutation is required in

each contraction) of both the input quantities and the results. Including these

permutation steps explicitly, and keeping the one- and two-body quantities as

dense tensors (only the v̌ab
cd

integrals give significant savings from using column

symmetry, and treating the cd indices as external c § d labels may reduce the

operation from matrix multiplication to less-e�cient matrix-vector or vector-
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vector operations), the basic structure of, for example, a non-orthogonally

spin-adapted CCSDT program is given in figure 4.1.

Note that this structure is not unique. For example, the loops over

permutations of žabc and blocks of T̂3 are independent and can be interchanged.

Similarly, the loops over blocks of T̂3 and loops over T̂3 Ñ Ẑ3 contractions

can be interchanged. Some loop orderings may be more advantageous – for

example if T̂3 must be read from disk, then the loop over its virtual blocks

should be put outside the loop over contractions to reduce the number of disk

accesses. Some loop orderings may at first seem disadvantageous – for example

putting the loop over blocks of T̂3 outside the loop over permutations of žabc,

as it multiplies the number of permutation operations by the number of blocks

– until further optimizations are made.

4.3 Improving Performance with a Data Hierarchy

Perhaps the most important optimization at this point is to break the

loops over blocks into two loops: one over “hunks” of many blocks each, and

the second over the individual blocks in each hunk. This way, only part of each

loop can be reordered with the inner loops so that all operations (permutation,

disk access, spin-summation) are minimized. Furthermore, each hunk can be

further subdivided (and a third loop added) into several “chunks” when the

molecule possesses point group symmetry. In this case, all of the blocks in a

given chunk are restricted so that each value of i corresponds to an orbital

which transforms as a fixed irreducible representation (irrep) �
i

, each j as �
j

,

92



1 perform all CCSD contractions

2

3 loop over virtual blocks in žabcijk for i § j § k

4 loop over permutations of žabc

5 perform T2 Ñ Z3 contractions

6 loop over contractions involving T3

7 loop over virtual blocks in

ˇta
1b1c1

i1j1k1 for i1 § j1 § k1

8 loop over permutations of ta
1b1c1

9 spin -sum

ˇta
1b1c1

if necessary

10 if ijk and i1j1k1
are conformable

11 perform tensor contraction over virtual indices

12 end if

13 de -spin -sum

ˇta
1b1c1

if necessary

14 end loop

15 end loop

16 end loop

17 end loop

18 denominator weight žabc and compute residual

19 end loop

20 loop over virtual blocks in

ˇtabcijk for i § j § k

21 loop over permutations of

ˇtabc

22 spin -sum to

ˇtǎbc

23 perform T3 Ñ Z2 contractions

24 spin -sum to

ˇtǎb̌c

25 perform T3 Ñ Z1 contractions

26 de-spin -sum to

ˇtabc

27 end loop

28 end loop

Figure 4.1: Basic structure of the program using virtual blocks.
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Entire quantity
laid out on disk

Hunk: sized to
fit in memory

Chunk: fixed
irreducible
representations 

Virtual block: fixed
values of ijkl

Figure 4.2: Data hierarchy for three- and four-body orbital quantities.

etc. Since the individual irreps must conform with the labeling of a given

contraction, this extra layer of sorting allows many non-conformable blocks to

be skipped easily. The relationship between the complete quantity and the

component hunks, chunks, and blocks is illustrated in figure 4.2.

With the addition of this data hierarchy, the loops can be split and

rearranged as in figure 4.3. The changes from figure 4.1 are highlighted, show-

ing how the loops over blocks have been rearranged. The interchange of the

loop over hunks of T̂3 with the loop over permutations of žabc
ijk

does increase

the number of permutations as before, but now the ratio is only the number of

hunks and not the number of individual blocks. Since hunks are sized as large

as possible to fit into main memory, this number is usually very small. This
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loop interchange also reduces the number of disk accesses on T̂3 by a factor

of n

block

n

perm

n

hunk

since the whole T̂3 does not need to be read through for each

permutation (6 for CCSDT, but possibly more in general) of each Ẑ3 block.

Adding distributed parallelism is also straightforward with this structure as

hunks can be distributed over the nodes, and the outside loops over hunks may

be restricted to only the local hunk(s). The inner loop over T3 hunks must

still run over all hunks and so requires inter-node communication.

4.4 Reducing the Cost of Tensor Permutation: the
Magic Cycle

Two issues still need to be addressed to ensure a highly e�cient imple-

mentation. Both issues involve permutations – the use of dense virtual blocks

allows the use of e�cient matrix multiplication routines and no redundant

computation is done, leaving memory operations such as permutation as the

main source of overhead.

First, the nested loops of permutations of žabc
ijk

and ťabc
ijk

requires 42

permutation steps (6 for the outer loop, 6ˆ6 “ 36 for the inner loop). However,

not every combination of T̂3 and Ẑ3 permutations is necessary to compute all

of the necessary contraction pieces. For example, the contraction,

´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘ 1

2

ÿ

e

F̌ a

e

ťebc
ijk

(4.3)

expands in the case of restricted occupied indices into three partial contrac-
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1 perform all CCSD contractions

2

3 loop over hunks in ž

abc

ijk

4 loop over hunks in ť

a

1
b

1
c

1
i

1
j

1
k

1

5 loop over permutations of ž

abc

ijk

6 loop over chunks in ž

abc

ijk

7 loop over blocks in ž

abc

ijk

8 perform T2 Ñ Z3 contractions

9 end loop

10 end loop

11 loop over permutations of t

a

1
b

1
c

1
i

1
j

1
k

1

12 loop over contractions involving T3

13 spin -sum ť

a

1
b

1
c

1
i

1
j

1
k

1 if necessary

14 loop over chunks in ť

a

1
b

1
c

1
i

1
j

1
k

1

15 if �

i

�

j

�

k

are conformable

16 loop over blocks in ť

a

1
b

1
c

1
i

1
j

1
k

1

17 if ijk and i

1
j

1
k

1
are conformable

18 perform tensor contraction over virtual indices

19 end if

20 end loop

21 end if

22 end loop

23 de -spin -sum ť

a

1
b

1
c

1
i

1
j

1
k

1 if necessary

24 end loop

25 end loop

26 end loop

27 end loop

28 denominator weight ž

abc

ijk

and compute residual

29 end loop

30 loop over hunks in ť

abc

ijk

31 loop over permutations of ť

abc

32 loop over chunks in ť

abc

ijk

33 loop over blocks in ť

abc

ijk

34 spin -sum to ť

ǎbc

35 perform T3 Ñ Z2 contractions

36 spin -sum to ť

ǎb̌c

37 perform T3 Ñ Z1 contractions

38 de -spin -sum to ť

abc

39 end loop

40 end loop

41 end loop

42 end loop

Figure 4.3: Program structure using hunk-chunk-block hierarchy. Changes
from figure 4.1 are highlighted. 96



tions,
ÿ

e

F̌ a

e

ťebc
i§j§k

`
ÿ

e

F̌ b

e

ťaec
i§j§k

`
ÿ

e

F̌ c

e

ťabe
i§j§k

(4.4)

Supposing that the contraction can only be performed as a matrix multipli-

cation when the e index is in the third position, the first term must have ťebc
ijk

transposed to ťbce
jki

(a BCA permutation) or ťcbe
kji

(a CBA permutation) as well

as the result tensor žabc
ijk

transposed to žbca
jki

(BCAq or žcba
kji

(CBA) respectively.

Similarly the second term requires T̂3 and Ẑ3 transposed as ACB or BCA and

the third term as ABC or BAC. Therefore, to fully compute this term we

must visit three locations in the 6ˆ 6 “permutation space”, with two possible

choices for each location.

The restrictions on which contractions can be done as which permuta-

tion are governed by the types of tensor contractions which can be done e�-

ciently using the DPD storage scheme. “E�ciently” in this context is taken

to mean requiring g2 or fewer individual matrix multiplications, where g is the

number of irreducible representations. Contractions which, to be calculated

using matrix multiplication primitives, require explicit iteration over virtual

orbital indices are always considered ine�cient. Considering the structure of

DPD packing, a total of 18 “e�cient” operations are possible with operands

of 1-4 indices. These operations are summarized in figure 4.4.

Doing the analysis of possible e�cient permutations for each contrac-

tion, a list of unique permutation restrictions can be built up. Plotting these

restrictions (of which there are 12 for CCSDT) on the permutation space, a

path can be chosen which visits each restriction at least once and which is

97



 

a
b
c
·d
→
a
b
c
d

a
b
c
·a
b
→
c

a
b
c
·[
c
d
,d
c
]→
a
b
d

a
b
c
·a
b
d
→
c
d

a
b
c
·d
e
c
→
a
b
d
e

a
b
c
d
·d
→
a
b
c

[a
b
c
d
,c
d
a
b
]·
c
d
→
a
b

a
b
c
d
·[
d
e
,e
d
]→
a
b
c
e

a
b
c
d
·a
b
c
→
d

[a
b
c
d
,c
d
a
b
]·
c
d
e
→
a
b
e

a
b
c
d
·a
b
c
e
→
d
e

[a
b
c
d
,c
d
a
b
]·
[c
d
e
f,
e
fc
d
]→
a
b
e
f

x
→

x
→

x
→

,

x x

→ →
,

,
x

→
x

,
,

,
→

x
,

→
,

,
x

→
,

,
x

→

,
x

→
,

,
x

,
→

,
x

,
→

,

x
,

→

x
,

→
,

x
,

,
→

x
,

,
→

,

x
,

,
→

a
·b
→
a
b

[a
b
,b
a
]·
b
→
a

a
b
·c
→
a
b
c

[a
b
,b
a
]·
[b
c
,c
b
]→
a
c

a
b
·c
d
→
a
b
c
d

a
b
c
·c
→
a
b

F
ig
u
re

4.
4:

E
�
ci
en
t
te
n
so
r
co
nt
ra
ct
io
n
ty
p
es

p
os
si
b
le

w
it
h
D
P
D

p
ac
ki
n
g
an

d
m
at
ri
x
m
u
lt
ip
li
ca
ti
on

.

98



1 2 3 10 12

6 4 5 10 12 11

9 8 7 12 11

12

12 11

12 11

1 2 3

6 4 5

9 8 7

ABC ACB BCA BAC CAB CBA

ABC

ACB

BCA

BAC

CAB
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Figure 4.5: The 12 unique permutation restrictions of CCSDT and an example
“magic cycle”, with the permutations of T̂3 on the horizontal and those of Ẑ3

on the vertical.

of minimum length (the length being related to the number of permutations

needed to traverse the path). Moving to a di↵erent location within the same

column or row (i.e. which doesn’t change either the T̂3 or Ẑ3 permutation)

incurs one permutation, while moving “diagonally” incurs two permutations.

Since there are 12 unique restrictions, the minimum length is 12 permuta-

tions. A path with length equal to this lower bound and which visits each

restriction, row, and column (T̂3 and Ẑ3 permutation) at least once is called

a “magic cycle”, and prescribes a minimal sequence of permutations which

allows all T̂3 and Ẑ3 contractions to be fully computed. The 12 unique per-

mutation restrictions and such a magic cycle for CCSDT are illustrated in

figure 4.5.

Using this path, we can replace the double sum over permutations of T̂3

and Ẑ3 by iteration over the magic cycle, reducing the number of permutations
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from 42 to 12 and also reducing the number of spin-summation steps since they

must be done inside the loop over permutations (the partially spin-summed

amplitudes do not have the full symmetry of the orbital quantity).

The second issue with permutations is the fact that, when memory

limitations or considerations of distributed parallelism require the amplitudes

to be split into more than one hunk, permutations of the hunk in the inner

loop (T̂3 in figure 4.3) will be repeated for each hunk in the outer loop. In

the distributed case especially this represents a possibility for a large amount

of overhead. However, another consequence of having multiple hunks is that

the number of blocks that are conformable for a given contraction per hunk

is reduced, since some blocks which would match are now in a di↵erent hunk.

Thus, if care is taken to only permute blocks from the inner hunk which will

be needed for contraction with the blocks in the current outer loop hunk, the

total number of permutations needed can be kept within a constant factor

(constant for a given molecular system) of the one-hunk case. The approach

taken here is to make all permutations “lazy”, in that the permutation opera-

tions in figure 4.3 only signal that a permutation is desired and do not actually

touch the data. Then, whenever a block is accessed for a contraction, its actual

permutational ordering is checked against what is desired, and it is transposed

if necessary. The same approach can also be applied to spin-summation op-

erations and even to allocation of individual blocks (so that a block which is

never touched for a given outer loop hunk is never even allocated).

A final issue which must be addressed is corner cases where occupied
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indices become equal. When this happens, some partial contractions may

become equivalent or related by a permutation of virtual indices. For example,

the first two partial contractions of,

ÿ

m

F̌m

i

ťabc
m§j§k

`
ÿ

m

F̌m

i

ťbac
j§m§k

`
ÿ

m

F̌m

i

ťbca
j§k§m

(4.5)

are identical when m “ j. In this case only one should be included since

the purpose of the multiple partial contractions is to enumerate all unique

values of m. Another way in which equal occupied orbitals can a↵ect the

implementation is exemplified by the first two partial contractions of the above

example,
ÿ

e

F̌ a

e

ťebc
i§j§k

`
ÿ

e

F̌ b

e

ťaec
i§j§k

`
ÿ

e

F̌ c

e

ťabe
i§j§k

(4.6)

when i “ j. Since the multiple partial contractions here are produced by the

symmetrization operator, the case of i “ j reduces the desired symmetry from

ai Ø bj to simply a Ø b. Then, it is possible to produce the desired sym-

metry by explicitly symmetrizing the result after the contractions have been

completed. Thus, only one of the two partial contractions need be computed,

albeit with an additional factor of 2. Both of these issues can be handled by

constructing an “equality mask”, where di↵erent pre-factors are stored for the

general case (i ‰ j ‰ k), the case of i “ j, the case of j “ k, and (because the

occupied indices may be permuted) the case of i “ k. Then, each block may

be checked during the contraction to determine which pre-factor to apply (and

skip the block contraction if it is zero). Setting the pre-factors is dependent

on the contraction and on the current permutations of T̂3 and Ẑ3.
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1 perform all CCSD contractions

2 loop over hunks in ž

abc

ijk

3 loop over hunks in ť

a

1
b

1
c

1
i

1
j

1
k

1
4 lazily loop over the CCSDT magic cycle

5 perform T2 Ñ Z3 contractions over all blocks *

6 perform non -spin -summed T3 Ñ Z3 contractions over all blocks *

7 lazily spin -sum to ť

ǎ

1
b

1
c

1
ǐ

1
j

1
k

1

8 if first hunk of ž

abc

ijk

9 perform T3 Ñ Z2 contractions over all blocks *

10 perform T3 Ñ W contractions over all blocks *

11 end if

12 perform spin -summed T3 Ñ Z3 contractions over all blocks *

13 lazily spin -sum to ť

ǎ

1
b̌

1
c

1
ǐ

1
ǰ

1
k

1

14 if first hunk of ž

abc

ijk

15 perform T3 Ñ Z1 contractions over all blocks *

16 end if

17 lazily de-spin -sum to ť

a

1
b

1
c

1
i

1
j

1
k

1
18 end loop

19 end loop

20 symmetrize ž

abc

ijk

for i “ j and j “ k

21 denominator weight ž

abc

ijk

and compute residual

22 end loop

23
24 * perform contraction X over all blocks:

25

26 check permutations of ž

abc

ijk

and ť

a

1
b

1
c

1
i

1
j

1
k

1 , skipping unnecessary combinations

27 loop over chunks in ž

abc

ijk

and/or ť

a

1
b

1
c

1
i

1
j

1
k

1

28 set up equality masks for ž

abc

ijk

and/or ť

a

1
b

1
c

1
i

1
j

1
k

1
29 if �

i

�

j

�

k

, �

i

1�
j

1�
k

1 are conformable

30 loop over blocks in ž

abc

ijk

and/or ť

a

1
b

1
c

1
i

1
j

1
k

1
31 determine prefactor from equality masks

32 transpose and spin -sum blocks if necessary

33 perform contraction X on blocks

34 end loop

35 end if

36 end loop

Figure 4.6: Final program structure for CCSDT.
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The program structure taking all of these additional considerations into

account is given in figure 4.6. The use of the magic cycle and explicit checking

of the permutations of T̂3 and Ẑ3 (and for T̂3 Ñ T̂1, W , and T̂2, the hunk

of Ẑ3 to prevent over-counting) allows all of the contractions to be fit into

a unified loop structure. Each contraction now also has the same internal

structure, involving looping over chunks and blocks and handling details such

as occupied orbital equality and lazy transposition.

4.5 CCSDTQ and CCSDT(Q)

The application of this algorithm and the optimizations detailed in the

previous three sections to CCSDTQ and CCSDT(Q) is rather straightforward.

The main di↵erence is that, while in the CCSDT algorithm only T̂3 and Ẑ3

are stored using the hunk/chunk/block hierarchy, there are many quantities

stored this way in CCSDTQ (and to a somewhat lesser degree in CCSDT(Q)).

For example, in CCSDTQ, we must iterate over hunks for T̂3, Ẑ3, T̂4, Ẑ4, W̃ abc

ije

,

W̃ abm

ijk

, W̃ amn

ijk

, W̃ abm

ije

, and W̃ abm

iej

.

As with CCSDT, the relative permutations of T̂4 and Ẑ4 can be op-

timized by using a magic cycle, although now it is necessary to satisfy 41

constraints in a 12 ˆ 12 permutation space (the full 24 ˆ 24 space is actually

redundant). An illustration of the constraints and a CCSDTQ magic cycle

is given in figure 4.7. The CCSDTQ magic cycle o↵ers a drastic reduction

in the number of necessary permutations. Looping over all permutations for

both T̂4 and Ẑ4 would require 24 ` 24 ˆ 24 “ 576 permutations, while the
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Figure 4.7: The 41 unique permutation restrictions of CCSDTQ and an ex-
ample “magic cycle”, with the permutations of T̂4 on the horizontal and those
of T̂3 on the vertical. Since some restrictions are partially overlapping, the
length of cycle is actually only 39.
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magic cycle requires only 39. However, as significant as this reduction is, the

necessity to perform contractions in certain relative permutations can increase

the amount of transposition and spin-summation operations when combined

with the need to split the amplitudes into multiple hunks. The development of

new DPD-aware tensor contraction kernels (discussed in a later section) could

relax some of the permutation restrictions and further reduce the overhead of

tensor transposition.

The final algorithm for CCSDTQ, including all relevant optimizations

from the previous sections is given in figure 4.8 and figure 4.9. The algorithm

is somewhat lengthier than for CCSDT due to the need to handle the hierar-

chical structure of many di↵erent tensors, but the basic structure is identical.

Furthermore, the optimizations which allow I/O and tensor transposition to

be minimized for the T̂3 Ñ Ẑ3 contractions in CCSDT extend seamlessly to

the “three-level” contractions T̂3 ˆ W̃3 Ñ Ẑ4.

CCSDT(Q) requires a subset of the contractions in CCSDTQ, and the

addition of the disconnected terms T̂2 ˆ W Ñ Ẑ4 and T̂3 ˆ F Ñ Ẑ4. Some

additional rearrangement is also required for the shared terms since the con-

tributions must go to Ẑ4pcq only, Ẑ4pdq only, or both. Finally, while both con-

nected pcq and disconnected pdq parts must be symmetrized, only one should

be denominator-weighted. The (Q) correction is then computed by a sum of

the dot product of these parts over all of the hunks. The W̃ abc

ije

and W̃ abm

ijk

inter-

mediates are still computed all at once before the loop over hunks in Ẑ4, just as

in CCSDTQ. This is now a complication, however, since if these intermediates
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1 loop over hunks in

˜̌
W

abc

ije

,

˜̌
W

abm

ijk

,

˜̌
W

amn

ijk

,

˜̌
W

abe

ijm

, and

˜̌
W

abe

imj

2 lazily loop over permutations of

˜̌
W

abc

ije

,

˜̌
W

abm

ijk

,

˜̌
W

amn

ijk

, and

˜̌
W

abe

ijm

3 perform T2 Ñ ˜̌
W

abc

ije

contractions over all blocks

4 perform T2 Ñ ˜̌
W

abm

ijk

contractions over all blocks

5 perform T2 Ñ ˜̌
W

amn

ijk

contractions over all blocks

6 perform T2 Ñ ˜̌
W

abm

ije

contractions over all blocks

7 end loop

8 perform T2 Ñ ˜̌
W

abe

imj

contractions over all blocks

9 loop over hunks in ť

a

1
b

1
c

1
i

1
j

1
k

1

10 lazily loop over permutations of ť

a

1
b

1
c

1
i

1
j

1
k

1

11 perform T3 Ñ ˜̌
W

abe

imj

contractions over all blocks

12 perform T3 Ñ ˜̌
W

abm

ijk

contractions over all blocks

13 perform T3 Ñ ˜̌
W

amn

ijk

contractions over all blocks

14 lazily spin -sum to ť

ǎ

1
b

1
c

1
ǐ

1
j

1
k

1

15 perform T3 Ñ ˜̌
W

abe

ijm

contractions over all blocks

16 lazily de-spin -sum to ť

a

1
b

1
c

1
i

1
j

1
k

1
17 end loop

18 end loop

19 loop over hunks in ť

a

1
b

1
c

1
d

1
i

1
j

1
k

1
l

1

20 lazily loop over permutations of ť

a

1
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1
c

1
d

1
i

1
j

1
k

1
l

1

21 lazily spin -sum to ť

ǎ

1
b

1
c

1
d

1
ǐ

1
j

1
k

1
l

1

22 perform T4 Ñ ˜̌
W

abc

ije

contractions over all blocks

23 perform T4 Ñ ˜̌
W

abm

ijk

contractions over all blocks

24 lazily de-spin -sum to ť

a

1
b

1
c

1
d

1
i

1
j

1
k

1
l

1
25 end loop

26 end loop

27 end loop

Figure 4.8: Algorithm for forming three-body intermediates in CCSDTQ.
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1 perform all CCSDT contractions and form three -body intermediates

2

3 loop over hunks in ž

abc

ijk

and ž

abcd

ijkl

4 loop over hunks in ť

a

1
b

1
c

1
i

1
j

1
k

1 ,
˜̌
W
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1
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1
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1
i

1
j

1
e

1 , and

˜̌
W

a

1
b

1
m

1
i

1
j

1
k

1

5 lazily loop over permutations of ž

abcd

ijkl

6 lazily loop over permutations of ť

a

1
b

1
c

1
i

1
j

1
k

1
7 perform T3 Ñ Z4 contractions over all blocks

8 end loop

9 lazily loop over permutations of

˜̌
W

abc

ije

,

˜̌
W

abm

ijk

,

˜̌
W

amn

ijk

, and

˜̌
W

abe

ijm

10 perform

˜̌
W

abc

ije

Ñ Z4 contractions over all blocks

11 perform

˜̌
W

abm

ijk

Ñ Z4 contractions over all blocks

12 end loop

13 end loop

14 loop over hunks in
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W

a

1
m

1
n

1
i

1
j

1
k

1 ,
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W
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1
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1
e

1
i

1
j

1
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1 , and

˜̌
W
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1
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1
e

1
i

1
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1
j

1

15 lazily loop over permutations of ť

a

1
b

1
c

1
i

1
j

1
k

1

16 lazily loop over permutations of

˜̌
W

amn

ijk

and

˜̌
W

abe

ijm

17 perform

˜̌
W

amn

ijk

ˆ T3 Ñ Z4 contractions over all blocks

18 lazily spin -sum to ť

ǎ

1
b

1
c

1
ǐ

1
j

1
k

1

19 perform

˜̌
W

abm

ije

ˆ T3 Ñ Z4 contractions over all blocks

20 lazily de-spin -sum to ť

a

1
b

1
c

1
i

1
j

1
k

1
21 end loop

22 perform

˜̌
W

abm

iej

ˆ T3 Ñ Z4 contractions over all blocks

23 end loop

24 end loop

25 end loop

26 loop over hunks in ť

a

1
b

1
c

1
d

1
i

1
j

1
k

1
l

1
27 lazily loop over the CCSDTQ magic cycle

28 perform non -spin -summed T4 Ñ Z4 contractions over all blocks

29 lazily spin -sum to ť

ǎ

1
b

1
c

1
d

1
ǐ

1
j

1
k

1
l

1

30 lazily loop over permutations of ž

abc

ijk

31 perform T4 Ñ Z3 contractions over all blocks

32 end loop

33 perform spin -summed T4 Ñ Z4 contractions over all blocks

34 lazily spin -sum to ť

ǎ

1
b̌

1
c

1
d

1
ǐ

1
ǰ

1
k

1
l

1

35 if first hunk of ž

abcd

ijkl

36 perform T4 Ñ Z2 contractions over all blocks

37 end if

38 lazily de-spin -sum to ť

a

1
b

1
c

1
d

1
i

1
j

1
k

1
l

1
39 end loop

40 end loop

41 symmetrize ž

abcd

ijkl

for i “ j, j “ k, and k “ l

42 denominator weight ž

abcd

ijkl

and compute residual

43 end loop

Figure 4.9: Final program structure for CCSDTQ.
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must be split into multiple hunks, they have to be computed, written out to

disk, and then read in fully for each Ẑ4 hunk. This I/O cost is relatively much

more expensive for CCSDT(Q) than for CCSDTQ. Redundantly computing

the intermediates on the fly is not much of an improvement even though this

is only an Opn7q cost compared to Opn9q for the contraction into Ẑ4, since the

cost of computing the intermediate is similar to the cost of reading it from disk

(although this depends on the amount of I/O bandwidth available). A selected

computation of only those blocks which are needed for the current Ẑ4 hunk

could reduce the cost of redundant computation (and more importantly limit

the amount of redundancy to a constant factor), and such an optimization is

planned for future work.

4.6 Numerical Results

The e�ciency of the new CCSDT, CCSDT(Q), and CCSDTQ imple-

mentations in the CFOUR program suite have been tested on a variety of

molecular systems. The results listed in table 4.1 and table 4.2 give per-

iteration (for CCSDT and CCSDTQ) and per-correction (for the (Q) correc-

tion in CCSDT(Q)) timings on five molecular systems, as obtained by running

on a single core of an Intel Xeon E5620 processor. These systems were chosen

to span a wide range of molecular symmetries (C1, Cs

, C2v, and D2h) and ratio

of number of virtual orbitals (n
v

) to number of occupied orbitals pn
o

). This

ensures that a full profile of the performance characteristics are captured, as

these variables greatly a↵ect the size and number distributions of elementary
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matrix multiplication operations required for a similar total computational

cost. The running time of the current implementations are compared to the

MRCC program by Kállay,80,81 which is currently used for the vast majority

of production CCSDT(Q) and CCSDTQ calculations.

As can be seen from these results, it is already feasible to perform full

CCSDTQ calculations of four heavy atoms with a double-⇣ quality basis set

(and even on a single core). Additionally, while the CCSDTQ calculations

on O3 and FO´
3 were performed using an out-of-core algorithm (i.e. the T̂4

amplitudes were split into multiple hunks and only one hunk read from disk

at a time), these runs obtained the same high level of e�ciency as the in-core

cases (for example, in going from butatriene to ozone the CCSDTQ timing

only increases by a factor of 2.8 which is in-line with the increase in the in-

core CCSDT timings). Of course, it should be noted that these tests we

also performed on a system with six hard disks in a RAID0 configuration,

providing very high sequential I/O throughput. On systems with less capable

I/O configurations, a larger increase in time is expected. Nevertheless, the

results show that the algorithm is capable of putting the given computational

resources to full use.

The CCSDT(Q) results (with an increase in basis set size for the first

three systems) again show a high level of e�ciency. For example, the (Q)

correction for water with a quadruple-⇣ basis set (° 100 orbitals) can be

computed in a matter of minutes. The most expensive calculation in this

table (HSOH with a triple-⇣ basis, no molecular symmetry) requires less than
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Molecule/
Basis Set

n
o

/n
v

CCSDT Iteration (s) CCSDTQ Iteration (s)
Current MRCC r Current MRCC r

HSOH/
cc-pVDZ

7/29 3.73 28.5 7.6 559a 3467a 6.2

H2O/
aug-cc-pVTZ

4/87 7.3 48.2 6.6 1179a 5144a 4.4

H2CCCCH2/
DZ

10/34 8.65 68.1 7.9 2105a 11028b 5.2

O3/
aug-cc-pVDZ

9/57 14.5 132 9.1 5973b 36994b 6.2

FO´
3 /

cc-pVDZ
13/39 32.2 170 5.3 14476b 71030b 4.9

Table 4.1: Average per-iteration timings for CCSDT and CCSDTQ calcula-
tions on a variety of molecular systems. The improvement of the new imple-
mentation is given by r “ tpcurrentq{tpMRCCq. All calculations use frozen
core orbitals.
a) In-core
b) Out-of-core, 12GB memory limit

two hours for 86 correlated orbitals. In fact, the limit on the size of the

calculations performed in this table is the time to run the MRCC comparison.

Overall, the CCSDT and CCSDTQ timings for the current implementations

are „ 5 times faster than previously possible, and the (Q) correction can

be obtained 20-100 times faster. The di↵erence between the CCSDTQ and

CCSDT(Q) improvements highlights the e↵ect of tensor transposition and

other data movement on the computation e�ciency, as these operations are

relatively more important for CCSDT(Q) (which has only an Opn9q floating-

point cost compared to an Opn8q data cost vs. Opn10q to Opn8q for CCSDTQ).

More expensive CCSDT(Q) calculations have also been carried out, at a
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Molecule/
Basis Set

n
o

/n
v

CCSDT Iteration (s) (Q) correction (s)
Current MRCC r Current MRCC r

HSOH/
cc-pVTZ

7/79 222 1791 8.1 5131 169889 33.1

H2O/
cc-pVQZ

4/110 18.1 123 6.8 351 36002 102.6

H2CCCCH2/
cc-pVDZ

10/62 75.2 694 9.2 2632 47912 18.2

O3/
aug-cc-pVDZ

9/57 14.5 132 9.1 447 12840 28.7

FO´
3 /

cc-pVDZ
13/39 32.2 170 5.3 739 12720 17.2

Table 4.2: Average per-iteration CCSDT and (Q) correction timings on a
variety of molecular systems. The improvement of the new implementation is
given by r “ tpcurrentq{tpMRCCq. All calculation use frozen core orbitals
and are out-of-core with a memory limit of 22GB.

scale for which it is not feasible to compare to existing codes. Several example

results are given in table 4.3. The benzene dimer calculations were performed

using all 12 cores of a dual Xeon X5670 system with five disks in a RAID0

configuration. The other calculations were performed using 4 cores on a Xeon

E5-1620 system with only a single hard drive. The latter calculations, owing to

the less-performant I/O system, spent more than 50% of the calculation time

performing I/O operations. However, even with the modest computational

resources allocated, a CCSDT(Q) calculation on a system with more than 150

orbitals can be completed in only a few days.

All of the methods implemented are multithreaded explicitly using the

OpenMP interface, and implicitly through the ability to use a multithreaded

BLAS library for elementary matrix operations. The choice of explicit or
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Molecule/Basis Set n
o

/n
v

CCSDT Iteration (s) (Q) correction (s)

Bz2 (C1)/6-31G 14/90 523 55111
Bz2 (C

s

)/6-31G 14/90 147 23032
(C2H4)2 (D2d)/
aug-cc-pVDZ

12/148 518 246666

C2H4¨ ¨ ¨HCCH (C2v)/
aug-cc-pVDZ

11/131 108 94034

Table 4.3: Timings for one iteration of CCSDT and for the (Q) correction for
several large molecular systems. See text for a description of the computational
details.

implicit threading for a given tensor contraction is determined dynamically

by the available parallelism at each level. An example of the parallel speedup

obtained through multithreading on a dual Xeon E5620 system is given in

figure 4.10. The speedup obtained using all 8 cores is about 4x, giving a parallel

e�ciency of „ 50%. While this is not perfect, it is encouraging given the fact

that the code makes no attempt to address issues such as NUMA memory

accesses, thread locality, cache sharing, etc. Also, scheduling of work units

(individual matrix multiplications in the explicit threading case) is determined

statically, leaving the possibility for increased performance through dynamic

scheduling. The parallel e�ciency on one processor only (up to 4 cores),

remains at least 75%.

A more in-depth analysis of the performance of the CCSDT(Q) and

CCSDTQ implementations can be obtained by examining the breakdown of

the running time into several categories. Example performance breakdowns are

given in table 4.4 for the CCSDTQ calculation on HSOH and in table 4.5 for
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Figure 4.10: Parallel speedup obtained through explicit (OpenMP) and im-
plicit multithreading.

the CCSDT(Q) calculation on the same system ((Q) correction only). These

performance breakdowns are created by measuring the time spent in di↵erent

classes of operations (various BLAS operations, disk I/O, etc.) at a low level

and aggregating the timings, and also by measuring the time spent on a high

level in di↵erent classes of coupled cluster diagrams.

For the CCSDTQ calculation, the low-level timings show that a ma-

jority (61.4%) of time is spent in level 3 BLAS (matrix multiplication). This

is desirable since the matrix multiplication operations are generally very ef-

ficient, although the percentage time given does not give an indication as to

how e�cient each individual matrix operations was. Due to various factors,

matrix multiplication on small matrices is less e�cient than for large matrices.

So, a handful of matrix multiplications which together take 10 seconds is much
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Breakdown by Kernel Breakdown by Diagram

Level 1 BLAS 12.2% All CCSD † 0.1%
Level 2 BLAS 0.4% All CCSDT 0.8%
Level 3 BLAS 61.4% W̃3 intermediates 3.7%

Disk I/O 1.1% T̂2 and T̂3 � Ẑ4 31.6%

Spin-summation 10.4% T̂4 ˆ F � Ẑ4 2.8%

Transpose 14.3% T̂4 ˆ W ab

ef

� Ẑ4 15.7%

Other 0.2% T̂4 ˆ W am

ie

� Ẑ4 26.0%

T̂4 ˆ Wmn

ij

� Ẑ4 7.9%

T̂4 � Ẑ2 and Ẑ3 8.7%

Table 4.4: Example performance breakdown of CCSDTQ timings.

Breakdown by Kernel Breakdown by Diagram

Level 1 BLAS 2.4% T̂2 ˆ W � W̃ abc

ije

6.8%

Level 2 BLAS 2.0% T̂2 ˆ W � W̃ abm

ijk

0.1%

Level 3 BLAS 47.9% T̂2 ˆ W̃ abc

ije

� Ẑ4 29.3%

Disk I/O † 0.1% T̂2 ˆ W̃ abc

ije

� Ẑ4 12.9%

Spin-summation 3.7% T̂2 ˆ vab
ij

� Ẑ4 6.8%

Transpose 41.1% T̂3 ˆ W ab

ie

� Ẑ4 17.0%

Other 2.8% T̂3 ˆ W am

ij

� Ẑ4 14.8%
Weighting and Spin-summation 5.1%

Energy 4.5%

Table 4.5: Example performance breakdown of (Q) correction timings.
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better than 10,000 matrix multiplications taking the same amount of time (the

second case will be doing less useful work in the same time). Additional pro-

filing of the CCSDTQ and CCSDT(Q) code shows that there are often 10-100

million matrix multiplication calls in a single calculation, which shows that

there is room for improvement in the kinds of matrix multiplications done.

Splitting the amplitudes into virtual blocks is responsible for some of this sub-

division, as is the DPD packing scheme. Some possible methods to recombine

these smaller operations are outlined in the next section. The spin-summation

and transposition operations, while they take a non-trivial amount of time,

are kept to a manageable level by the data hierarchy of the amplitudes.

The high-level breakdown of the CCSDTQ timings shows that the most

expensive diagrams are T̂3 ˆ W̃ abe

ijm

and T̂4 ˆW am

ie

contributions to Ẑ4, followed

by T̂4 ˆ W ab

ef

. The first two contributions are the “ring” diagrams, which

for CCSDTQ now have both a T̂4 and T̂3 part which are both Opn10q scal-

ing. These are especially expensive because, unlike the ladder terms, multiple

contractions and a tensor transposition are necessary in the non-orthogonally

spin-adapted equations for each spin-orbital diagram. The particle-particle

ladder term T̂4 ˆ W ab

ef

, although it scales with a larger number of virtual or-

bitals (and hence is more expensive for most basis sets), is fairly simple to cast

as very large and e�cient matrix multiplication operations. The relative e�-

ciency of the diagrams is also very evident in the hole-hole ladder (T̂4 ˆWmn

ij

)

timings, which should “in theory” be insignificant compared to the other terms.

But, profiling shows that this term takes half as long as the particle-particle
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ladder term. This is primarily because the matrix multiplication involves sum-

ming over only occupied indices which spreads the operation over many virtual

blocks. The actual BLAS kernel which can be used is only the level 1 DAXPY

operation (this is the cause of the 12.2% for level 1 BLAS in the table), which

cannot take advantage of data reuse in the cache hierarchy. Also, taking data

from possibly very distant (in memory location) virtual blocks causes a large

number of page faults which are a serious performance penalty.

The CCSDT(Q) breakdown shows a large shift in time from level 3

BLAS to tensor transposition. This is because the size of the amplitudes

(and hence the cost of transposition) remains the same but the number of

floating point operations decreases from Opn10q to Opn9q. This highlights the
importance of reducing the number and cost of data movement operations.

The breakdown by diagram shows that now the most expensive operation

by far is the T̂2 ˆ W̃ abc

ije

contraction. This is expected to be an expensive

operation, but one factor that contributes to its large cost is the fact that

the summation index e is treated as a label on the W̃ abc virtual blocks along

with the occupied indices. This reduces the type of BLAS kernel from level 3

(matrix multiplication) to level 2 (outer product). The level 2 operations are

inherently less e�cient that the level 3 ones, leading to an inflated cost for

this term. In this example, the W̃ abc

ije

intermediate was stored in memory for

the entire computation, so that there was only an insignificant amount of disk

access († 0.1%). When this is not possible however, such as for the calculation

on (C2H4)2/aug-cc-pVDZ, the disk usage increases dramatically, reaching as
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much as 50% on a computer system with only one disk drive. Recomputation

of the intermediate is also expensive as computing it only once is already 6.8%

of the total time.

4.7 Summary

The special structure of the orbital amplitudes was shown to lead to

an e�cient storage scheme which allows the use of optimized matrix multipli-

cation functions, while also retaining the sparsity due to column symmetry.

Splitting up the resulting virtual blocks in a hierarchical manner leads to a

reduction in the cost of disk I/O, permutations, and spin-summations, while

grouping blocks by their labels’ irreducible representations allows nonconfor-

mant contributions to be easily skipped.

The restrictions of the DPD packing scheme for point group symmetry

and the need to use matrix multiplication for high e�ciency requires permuta-

tions of the tensors. However, it was shown that careful analysis of the required

relative permutations of input (T3, T4) and output (Z3, Z4) tensors reveals

that only 12 permutations for CCSDT and 39 permutations for CCSDTQ are

required to fulfill all of the permutation requirements. Additionally, the use

of lazy evaluation of permutation and spin-summation operations reduces the

overhead when the tensor are split into multiple hunks, since blocks which

have no contribution from the current hunk need not be manipulated.

The e�ciency of the resulting algorithms as implemented in CFOUR

was compared to the current leading implementation, MRCC. CFOUR shows
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a ˜5x improvement over MRCC for CCSDTQ and a 20-100x improvement

for CCSDT(Q). Additionally, looking at the breakdown of the timings into

time spent in various operations (matrix multiplication, permutation, spin-

summation, etc.), shows that 50-60% of time is spent in matrix multiplication

(100% is optimal, but not achievable due to permutations), while only ˜15%

is spent in permutation for CCSDTQ. Up to 40-50% of time is spent doing

permutations for CCSDT(Q), but the improvement of the existing implemen-

tation shows that this is already a vast improvement. Lastly, the speedup of

the program from using multiple threads shows that a ˜50% parallel e�ciency

is possible at 8 cores, without taking into consideration NUMA memory access

and data or thread locality, and ˜75% e�ciency is possible up to 4 cores (i.e.

using a single physical processor chip).
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The main contributions of this work are 1) a new diagrammatic inter-

pretation for coupled cluster diagrams, and those from related methods, which

yields compact, factorized equations for closed shell systems using the orbital

(non-orthogonally spin-adapted) representation of the Hamiltonian and wave-

function parameters (T̂ for coupled cluster), and 2) an e�cient implementation

of the CCSDTQ and CCSDT(Q) methods in terms of these equations.

The new diagrammatic interpretation using the orbital representation

is derived directly from the usual spin-orbital interpretation of the Brandow di-

agrams. Using an algebraic representation of the Brandow rules, permutation

operators can be manipulated to reveal an algebraic equation for the orbital

case. Furthermore, the remaining permutation operators can be conveniently

factorized, and the result summarized again as a set of diagrammatic interpre-

tation rules. The main advantages of this approach are that the tedious and

error-prone methods of either converting the spin-orbital equations into the

orbital ones, or obtaining them directly using Goldstone diagrams is avoided.

In the case of using the spin-orbital equations, the di�culties of dealing with
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removal of antisymmetry and symmetrization operations is avoided, which can

multiply the number of terms which must be manipulated by as much as a

factor of 96 for CCSDTQ. Compared to the Goldstone approach, the need to

enumerate all unique Goldstone diagrams is removed, and the extension of the

Goldstone diagrams to higher-order coupled cluster (which is not clearly laid

out) is avoided. Lastly, the equations are produced in already-factored form,

since factorization occurs at the level of the algebraic permutation operators.

The resulting factorized operators, called spin-summation operators, can also

be conveniently indicated in the final equations using a simple shorthand.

Using this diagrammatic interpretation, equations for the CCSDTQ

amplitude equations, as well as the CCSDT(Q) energy, the CCSDTQ ⇤̂ equa-

tions, and the CCSDTQ density equations were derived. The equations ob-

tained are clear and concise, and are immediately suitable for implementation

in a computer program.

The column-symmetry of the orbital quantities was shown to lead to an

e�cient way to store the elements in a way which enables the use of optimized

matrix multiplication routines while also preserving the sparsity induced by

this symmetry. The resulting data format was also used to construct a hi-

erarchical data structure for storing the T3 and T4 tensor elements. The

hierarchical nature of the structure allows for reduction in the cost of disk

I/O and of operations like permutation and spin-summation which must be

repeated as data is moved in and out of main memory. It was shown that

permutations, which are necessary due to the restrictions of casting the op-
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erations as matrix multiplication and to the structure of the DPD symmetry

packing, can be minimized by analyzing the necessary relative permutations

for each of the terms in the equations. By plotting a minimum-length path

(in the space of relative permutations) through each of these restrictions, the

number of permutations is reduced to 12 for CCSDT and 39 for CCSDTQ.

By putting all of these results together, an e�cient implementation of

CCSDTQ and CCSDT(Q) was written in the CFOUR program suite. Com-

parison of these implementations to the leading existing implementation shows

a ˜5x improvement for CCSDTQ and a 20-100x improvement for CCSDT(Q).

Analysis of the timings shows a relatively low degree of overhead due to opera-

tions like permutation, although some improvement may be possible especially

for CCSDT(Q). The performance of the program using multiple threads shows

a ˜50% e�ciency at 8 cores and ˜75% e�ciency at 4 cores, without consider-

ation of issues such as NUMA memory access, data and thread locality, and

improved work scheduling.

In total, this work shows that the non-othogonally spin-adapted rep-

resentation of coupled cluster for closed shell molecules leads to e�cient cal-

culations, even for expensive and complicated methods such as CCSDTQ and

CCSDT(Q).

5.2 Future Work

While the e�ciency of the CCSDTQ and CCSDT(Q) implementations,

both through comparison to existing codes and from the analysis of the timing
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breakdowns is good, there is still a lot of room for improvement. A major factor

in the loss of e�ciency in the current implementation in that the data hierarchy

of the amplitudes causes large matrix multiplications to be split into many

smaller (and less e�cient) ones, and sometimes to be reduced into inherently

less e�cient matrix-vector or vector-vector operations. The structure of the

DPD packing also creates restrictions on which permutations of the amplitudes

are required to compute certain terms, which necessitates additional tensor

transpositions.

A solution to this is to go beyond matrix multiplication as the primitive

kernel of the program and create new, tensor- and DPD-aware kernels which

can obtain a higher level of e�ciency and reduce the amount of overhead in the

program as a whole. To do this in the general case is a di�cult proposition,

as there are exponentially more types of tensor operations than matrix ones

(which only need to deal with transposition of the input matrices). Requiring

DPD packing further complicates the algorithms, and since this structure is

essentially unique to quantum chemistry, is unlikely to be implemented in-

dependently by other scientific communities. A better solution, then, is to

take existing e�cient matrix multiplication kernels and modify them to take

advantage of (a possibly limited set of) tensor and DPD structure.

For many operations needed in CCSDTQ, a full 8-dimensional tensor

kernel is not really required to regain much of the lost e�ciency. Often, just

extending matrix multiplication (2 ˆ 2 � 2) by one dimension to a 3 ˆ 2 � 3

or 3 ˆ 3 � 2 tensor operation would su�ce. Additionally, keeping within the
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realm of matrix multiplication but loosening the storage structure of the ma-

trices would help greatly, for example in the hole-hole ladder term where the

entire contraction could be written as a matrix multiplication if the memory

locations of rows of the matrices could be specified independently. Current

high-performance matrix multiplication implementations such as OpenBLAS,

ATLAS, and Intel MKL are either closed source, largely written in assem-

bly language, or highly specialized to the task of matrix multiplication (un-

derstandably). However, the new BLIS framework being developed at UT

Austin82–84 has a very flexible and modular structure with specialized, high-

performance code isolated to a single “micro-kernel”, while maintaining very

high e�ciency. In particular, matrices are “packed” into local storage during

the operation in a standard way. The packing step gives the opportunity to

simply replace the matrix�matrix function with a somewhat more compli-

cated tensor�matrix function so that the rest of the framework can use the

data seamlessly and with the same high e�ciency. Work on implementing

such “hybrid” tensor-matrix operations in collaboration with the van de Geijn

group is planned.

Additionally, implementations of the CCSDTQ ⇤̂ and density equations

in CFOUR are underway, using the equations derived in B. These imple-

mentations will allow for the gradient of the CCSDTQ energy and CCSDTQ

properties to be computed analytically (which means better numerical pre-

cision and lower cost) than by energy-only methods. The program has been

structured into several “layers”, so that as much code as possible can be reused
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for example from the CCSDTQ amplitudes to the ⇤̂ equations, which should

make the implementation much easier. Furthermore, the calculation of excited

states using equation-of-motion coupled cluster (EOM-CCSDTQ) will be im-

plemented in CFOUR, again reusing much of the existing code, which will

speed the implementation and prevent errors.

Lastly, distributed parallelism is being explored for all of the imple-

mented methods. The hierarchical data structure for the amplitudes facili-

tates distributed operation as processors can be assigned ownership of indi-

vidual “hunks” of amplitudes and these can then be communicated through

the network to the other processors in a synchronized fashion to ensure that

all contributions are calculated. Initial results for CCSDT are promising.
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Appendix A

Proofs

Lemma. Elements of P̃ k

are unique.

Proof. The proof is trivial for k “ 0 and k “ 1. For k “ 2, note that there are

three distinct types of products: P pabqP pcdq, P pabqP pbcq, and P pacqP pbcq.
The permutations in the first case, since they share no common labels, com-

mute, and so the product is equivalent only to itself and hence unique. The

second type is equivalent by inspection to P pbcqP pacq and P pacqP pabq. How-
ever, since a † b neither of these is a permissible element of P̃ 2 and so products

of this type are unique. Similarly for the third type, P pacqP pbcq is equivalent

to P pbcqP pabq and P pabqP pacq and so these too are unique. For k ° 2 we

can proceed inductively, assuming that elements of P̃ k´1 are unique. From

the relations for P̃ 2, it can be seen that when going to any di↵erent related

permutation, the set of “from” labels can never contain any labels which are

not “from” labels in the original P̃ k element (although one can exchange a

larger “from” label for two of a smaller one). So, to relate this permutation

to one in P̃ k where the “from” labels must be strictly ordered, the last and

largest “from” element must always be the same. Additionally, it can be seen

from the analysis of P̃ 2 that the “to” label associated with the larger “from”
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label always remains in the correct position such that when eventually the per-

mutation is related to one with the maximal “from” label in the last position,

the “to” label will also be the same as in the original permutation. Thus, any

P̃ k element related to the original is built from a P̃ k´1 element in conjunction

with the same final simple permutation. However, since elements of P̃ k´1 are

unique, any related P̃ k element is in fact the original one and so it is also

unique. Starting the induction with P̃ 2 completes the proof.

Lemma. P̃ k X P̃ l “ H @ k ‰ l.

Proof. Assume for simplicity that k † l and that the converse is true. For

P̃ k and P̃ l to share any elements, some elements from P̃ l would need to be

removed due to the product of two permutations being the identity. Since two

permutations only produce the identity when they are equal, then P̃ l, possibly

in some equivalent form, would need to have two identical permutations next

to each other. Taking this hypothetical permutation as P pabq, we can use the

observations from the proof of lemma A to see that another P pabq would have

to be produced from P pacqP pcbq or P pacqP pbcq for some c. Since this would

require two permutations with the same “from” index and violate the ordering

restriction for P̃ l, then these permutations would in turn have to be produced

from yet more permutations. However, the label a remains as the “from” label

in some permutation for any decomposition of the permutations, and so it is

never possible to create the necessary pair of P pabq permutations from a valid

element of P̃ l. So, each permutation in P̃ l cannot be equivalent to one with

fewer individual permutations, in particular k of them.
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Lemma. P̃ k

contains all k-fold permutations which are not reducible.

Proof. For each successive pair of permutations in each k-fold permutation,

the labels will be either 1) in an ordering consistent with P̃ k, 2) disjoint, such

that the permutations commute, or 3) in one of three non-consistent orderings:

P pbcqP pacq, P pbcqP pabq, or P pabqP pacq, where a † b in all cases (P pabqP pabq
is not permissible since the total permutation is not reducible). However,

the first is equivalent to P pabqP pbcq and the second and third to P pacqP pbcq.
Therefore, going from left to right, successive pairs or permutations can be

placed into the proper order by 1) doing nothing, 2) interchanging the permu-

tations if they are in the wrong order since they commute, or 3) switching to

an equivalent pair of permutations which have the proper ordering restriction.

In this way, any k-fold permutation can be related to an element of P̃ k.

Theorem 1. A
P

“ tP̃ kun´1
k“0 contains all possible permutations of n labels

exactly once.

Proof. From the lemmas, we see that the elements of each P̃ k are unique,

and that the sets are also unique amongst each other. Since also each P̃ k

contains all unique products of k individual permutations, and P̃ n and higher

products are empty (since there are not enough labels to satisfy the ordering

restriction), then the collection of all P̃ k, for which 0 § k † n are non-empty,

gives all possible unique permutations of the n labels, denoted as A
P

.

Theorem 2. Given a set of n labels and their two-index permutations P ,

define on any disjoint partitioning (into partitions of size m and n ´ m) of
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the labels the sets of permutations P1, P2, and P
x

which permute labels within

in the first partition, within the second partition, and between the partitions,

respectively. Define antisymmetrizers A
P1 and A

P2 for the sets of permuta-

tions P1 and P2 and the partial antisymmetrizer Ã
x

“ t ˜̃P k

x

umintm,n´mu
k“0 . Then,

the total antisymmetrizer A
P

“ A
P1AP2Ãx

“ Ã
x

A
P1AP2 (and by extension

A
P2AP1Ãx

and Ã
x

A
P2AP1 since A

P1 and A
P2 commute).

Proof. From theorem 1 we know that A
P1 and A

P2 have m! and pn ´ mq!
unique permutations respectively. For Ã

x

, the number of elements can be

easily enumerated as the “from” and “to” labels come from distinct sets. The

number of elements in ˜̃P 0
x

is of course 1, the number in ˜̃P 1
x

is mpn´mq, and in

general the number in ˜̃P k

x

is pm
k

q `

n´m

k

˘

where pa
b

q are the binomial coe�cients,

since you must choose k unique labels from each set. Using a special case of

Vandermonde’s identity, the total number in Ã
x

is then,

NpÃ
x

q “
mintm,n´mu

ÿ

k“0

ˆ

m
k

˙ ˆ

n ´ m
k

˙

“
ˆ

n
m

˙

“ n!

m!pn ´ mq! (A.1)

The products A
P1AP2Ãx

and Ã
x

A
P1AP2 then have at most (since some ele-

ments may be equivalent) m!pn ´ mq!NpÃ
x

q “ n! elements each.

By construction, one can also show that any total permutation can

be represented as an element of both A
P1AP2Ãx

and Ã
x

A
P1AP2 . In both

cases, consider the positions of the labels from the two disjoint sets. After
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any permutation, some set of labels from set 1, which we will call set 11 of

size k, have moved to positions formerly occupied by set 2, and a set of the

same size from set 2, called set 21, are now in set 1 spots. For the first case

(A
P1AP2Ãx

), the construction is as follows: 1) exchange the labels at the

positions occupied in the final permutation by sets 11 and 21, which is an

element of Ã
x

(specifically ˜̃P k

x

), 2) permute the labels of set 2 to the locations

and order of the final permutation. Since the permutation from Ã
x

puts some

labels from set 2 (but not necessarily set 21) in the proper set 1 spots, this is

accomplished by permuting only set 2 labels which is an element of A
P2 . 3)

Similarly permute the set 1 labels, which is an element of A
P1 . For the second

case, the construction is similar: 1) permute the labels of set 2, which is of

course an element of A
P2 , so that set 21 occupies the positions which will be

taken by set 11 in the final permutation, with the set 21 labels in the order

(based on magnitude) of the desired final set 11 labels. This is necessary since

we wish to later apply an element of Ã
x

, which has ordering restrictions on both

“from” and “to” labels. 2) Similarly permute the labels of set 1, an element

of A
P1 , and 3) exchange the labels in sets 11 and 21 in order of magnitude,

an element of Ã
x

. Thus, any total permutation of n labels from A
P

can be

written in either of these ways. Since there are n! unique permutations in A
P

and at most n! permutations in each of A
P1AP2Ãx

and Ã
x

A
P1AP2 , there must

be n! unique elements in each set and they must then be equal to A
P

.

Theorem 3. Given a set of n labels partitioned into three disjoint sets a, b,
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and c, the following relationship holds,

A
bc

Ã
ab´c

“ A
bc

mintn
a

,n

c

u
ÿ

k“0

˜̃P k

a´c

pn
b

` n
c

q!k!
pn

b

` kq!n
c

!
(A.2)

where A
bc

is the antisymmetrizer for bYc, Ã
ab´c

is the special antisym-

metrizer connecting aY b and c, and finally

˜̃P k

a´c

are the k-fold doubly-ordered

permutations connecting a and c.

Proof. Using the definition of the special antisymmetrizers, we can write,

A
bc

Ã
ab´c

“ A
bc

mintn
a

`n

b

,n

c

u
ÿ

l“0

˜̃P l

ab´c

(A.3)

For each element of ˜̃P l

ab´c

, we can classify it by the number m of “from” labels

which belong to the set b. This also gives the number of two-index permuta-

tions which belong to P
b´c

, so that each element of ˜̃P l

ab´c

can be written as a

product of elements from ˜̃Pm

b´c

and ˜̃P l´m

a´c

. Since A
bc

already contains all an-

tisymmetrizers from ˜̃Pm

b´c

, these elements reduce to unity. Additionally, since

A
bc

contains A
c

, an element of ˜̃P l

ab´c

with one set of “to” labels in c may be

related to any other set of “to” labels (although the specific “from” labels must

be the same). Specifically, we may “redistribute” elements of ˜̃P l´m

a´c

(which may

all be related this way) such that each one receives an equal numerical factor.

The number of elements in ˜̃P l

ab´c

for a fixed set of a “from” labels is pnc

l

qpnb

m

q
since some l indices from c must be selected as “to” labels and m from b as

“from” labels. After redistribution, we are dividing the result amongst pnc

l´m

q
elements of ˜̃P l´m

a´c

for the same fixed a labels, so that each one receives the same
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factor and the total set ˜̃P l

ab´c

can be written (with the implicit understanding

that A
bc

is to be applied later),

˜̃P l

ab´c

“
mintl,n

b

u
ÿ

m“maxt0,l´n

a

u

˜̃P l´m

a´c

ˆ

n
c

l

˙ ˆ

n
b

m

˙ ˆ

n
c

l ´ m

˙´1

(A.4)

The original equation of interest can then be written and refactored as,

A
bc

Ã
ab´c

“ A
bc

mintn
a

`n

b

,n

c

u
ÿ

l“0

mintl,n
b

u
ÿ

m“maxt0,l´n

a

u

˜̃P l´m

a´c

ˆ
ˆ

n
c

l

˙ ˆ

n
b

m

˙ ˆ

n
c

l ´ m

˙´1

“ A
bc

mintn
a

,n

c

u
ÿ

k“0

˜̃P k

a´c

mintn
b

,n

c

´ku
ÿ

m“0

ˆ
ˆ

n
c

k ` m

˙ ˆ

n
b

m

˙ ˆ

n
c

k

˙´1

“ A
bc

mintn
a

,n

c

u
ÿ

k“0

˜̃P k

a´c

mintn
b

,n

c

´ku
ÿ

m“0

ˆ
ˆ

n
c

pn
c

´ kq ´ m

˙ ˆ

n
b

m

˙ ˆ

n
c

k

˙´1

“ A
bc

mintn
a

,n

c

u
ÿ

k“0

˜̃P k

a´c

ˆ

n
b

` n
c

n
c

´ k

˙ ˆ

n
c

k

˙´1

“ A
bc

mintn
a

,n

c

u
ÿ

k“0

˜̃P k

a´c

pn
b

` n
c

q!k!
pn

b

` kq!n
c

!
(A.5)

where k “ l ´ m and the fourth equality is obtained using Vandermonde’s

identity.

Theorem 4. Given a set of n out-labels partitioned into two sets a and j

of size n
a

and n
j

, and n in-labels partitioned into two sets b and i of size
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n
b

and n
i

, and a bijective mapping ˚ : a Y j fiÑ b Y i (where the mapping

is altered by permutations of the labels), assume that the symmetry P ppqq “
P pp˚q˚q @ p, q P a Y j exists. For a certain mapping ˚, define n

s

“ n
a;s ` n

j;s

where n
a;s “ |a˚ X i| and n

j;s “ |j˚ X b|. Then, define A
a

and A
j

as the total

antisymmetrizers of the a and j labels, and Ã
ai´ji

and Ã
jb´ab

as,

Ã
ai´ji

“ t ˜̃P k

ai´ji

uminpn
j

´n

j;x,na;xq
k“0 (A.6)

P
ai´ji

“ tP pa
k

j
l

q | a˚
k

, j˚
l

P iuna

,n

j

k,l“0 (A.7)

Ã
jb´ab

“ t ˜̃P k

jb´ab

uminpn
a

´n

a;x,n
j;xq

k“0 (A.8)

P
jb´ab

“ tP pj
k

a
l

q | j˚
k

, a˚
l

P bunj

,n

a

k,l“0 (A.9)

Lastly, define a set of permutations P
s

“ tP pa
k

j
l

q | a˚
k

P b ^ j˚
l

P
iuna

,n

j

k,l“0 . Then, the antisymmetrizer of all in or by symmetry of all out labels,

A , relative to some permutation with a mapping ˚ with n
s

“ |n
a

´n
b

| is equal
to tA

a

A
i

Ã
ai´ji

Ã
jb´ab

p ˜̃P k

s

q0upn´|n
a

´n

i

|´|n
a

´n

b

|q{2
k“0 , where e.g. pSq0 is an arbitrary

element from the set S.

Proof. All possible permutations of the in or out labels can be classified

by their value of n
s

. The minimum possible value is |n
a

´ n
b

|, as at most

mintn
a

, n
b

u labels may be paired as a Ø b and mintn
i

, n
j

u labels as j Ø i,

leaving |n
a

´n

b

|`|n
i

´n

j

|
2 “ |n

a

´n
b

| pairs as a Ø i or j Ø b. The maximum possi-

ble value is n´ |n
a

´n
i

|, as similarly at most mintn
a

, n
i

u labels may be paired

as a Ø i and mintn
j

, n
b

u labels as j Ø b, leaving |n
a

´n

i

|`|n
b

´n

j

|
2 “ |n

a

´n
i

| out
of n pairs of labels as a Ø b or j Ø i. Also, the value of n

s

must vary between
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these values in steps of two since for example a permutation which results in

aj Ø bi Ñ aj Ø ib (i.e. an element of P
s

) changes two pairs of labels at a time.

Thus, n
s

may have n´|n
a

´n

i

|´|n
a

´n

b

|
2 ` 1 distinct values which are generated by

applying successive distinct elements of P
s

, namely the elements p ˜̃P k

s

q0. For

each value of n
s

, the number of permutations in A
a

A
i

Ã
ai´ji

Ã
jb´ab

is equal to

n
a

!n
i

!
´

n

i

n

a;s

¯ ´

n

b

n

j;s

¯

from previous analysis. Defining n
a;s and n

j;s in terms of

a more convenient variable k “ n

s

´|n
a

´n

b

|
2 as n

a;s “ maxtn
a

´ n
b

, 0u ` k and

n
j;s “ maxtn

j

´ n
i

, 0u ` k, we can write the total number of permutations as,

N
total

“ n
a

!n
j

!
pn´|n

a

´n

i

|´|n
a

´n

b

|q{2
ÿ

k“0

ˆ

n
i

maxtn
a

´ n
b

, 0u ` k

˙

ˆ
ˆ

n
b

maxtn
j

´ n
i

, 0u ` k

˙

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

n
a

!n
j

!
∞pn´|n

a

´n

i

|´|n
a

´n

b

|q{2
k“0

˜

n
i

n
j

´ k

¸ ˜

n
b

k

¸

if n
a

° n
b

and n
i

° n
j

n
a

!n
j

!
∞pn´|n

a

´n

i

|´|n
a

´n

b

|q{2
k“0

˜

n
i

k

¸ ˜

n
b

n
a

´ k

¸

if n
b

° n
a

and n
j

° n
i

(A.10)

Using Vandermonde’s identity again, these two cases are equal to

n
a

!n
j

!
´

n

n

j

¯

and n
a

!n
j

!
`

n

n

a

˘

respectively which are both equal to n! upon expan-

sion of the binomial coe�cient. To show that these permutations are unique

and hence equal to A , we can show that all possible permutations which con-

serve n
s

are related to elements of A
a

A
i

Ã
ai´ji

Ã
jb´ab

. The permutations which

conserve n
s

can be written non-uniquely as

A
�n

s

“0 “ A
a

A
j

A
b

A
i

(A.11)
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since these are all permutations which involve either “in” out “out” labels of

the same type. However, as shown in theorem 2, we can re-write this as,

A
�n

s

“0 “ Ã
ai´ab

Ã
jb´ji

A
ab

A
ji

A
ai

A
jb

A
ab

A
ji

A
ai

A
jb

Ã
ai´ji

Ã
jb´ab

(A.12)

where A
pq

is the antisymmetrizer for labels p which map as p Ø q etc., and

Ã
ai´ab

and Ã
jb´ji

are defined with similar notation to Ã
ai´ji

and Ã
jb´ab

. Since

A 2
pq

“ KA
pq

for some integer constant K and di↵erent A
pq

commute, we can

remove some antisymmetrizers, recombine the pieces of A
a

and A
j

, and arrive

at,

A
�n

s

“0 “ KA
a

A
j

Ã
ai´ji

Ã
jb´a

(A.13)

for some K. Thus, any permutation for a fixed n
s

is relatable to

A
a

A
j

Ã
ai´ji

Ã
jb´a

. The elements are unique since the set of all unique A
�n

s

“0

for all n
s

is the same size as the set of all A
a

A
j

Ã
ai´ji

Ã
jb´a

, and so we have n!

unique permutations which must be equal to the total antisymmetrizer A .
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Appendix B

Non-orthogonally Spin-adapted ⇤̂ and Density
Matrix Equations

The non-orthogonally spin-adapted equations for the CCSDTQ ⇤̂ equa-

tions have been derived using the diagrammatic techniques previously pre-

sented. The equations are,

ži
a

“ F̌ i

a

`
ÿ

e

F̌ e

a

�̌i

e

´
ÿ

m

F̌ i

m

�̌m

a

`
ÿ

em

W̌ ěi

m̌a

�̌m

e

´
ÿ

emn

W̌ ei

mn

�̌m̌n

ěa

`
ÿ

efm

W̌ ef

ma

�̌m̌i

ěf

`
ÿ

em

W̌ m̌i

ěa

˜̌De

m

`
ÿ

efm

W̌ ěi

m̌f

˜̌�mf

ea

´
ÿ

emn

W̌ ěn

m̌a

˜̌�mi

en

`
ÿ

mno

W̌ oi

mn

˜̌�m̌n

ǒa

´
ÿ

efg

W̌ ef

ga

˜̌�ǧi

ěf

`
ÿ

e

F̌ i

e

˜̌̃
De

a

´
ÿ

m

F̌m

a

˜̌̃
Di

m

´
ÿ

mn

W̌ ňi

m̌a

˜̌̃
Dm

n

´
ÿ

ef

W̌ f̌ i

ěa

˜̌̃
De

f

´
ÿ

efg

W̌ g̃i

ẽf

˜̌�ef

ga

`
ÿ

mno

W̌ m̌n

ǒa

˜̌�oi

mn

´
ÿ

emn

W̌mi

en

˜̌̃
�ěn

m̌a

`
ÿ

efm

W̌mf

ea

˜̌̃
�ěi

m̌f

`
ÿ

efm

W̌ m̌i

ěf

˜̌�ef

ma

´
ÿ

emn

W̌ m̌n

ěa

˜̌�ei

mn

(B.1)

žij
ab

“ `

1 ` P ai

bj

˘

#

1

2
W̌mn

ef

` F̌ �̌j

b

´
ÿ

m

W̌ ij

mb

�̌m

a

`
ÿ

e

W̌ ej

ab

�̌i

e

´
ÿ

m

F̌ i

m

�̌mj

ab

`
ÿ

e

F̌ e

a

�̌ij

eb

` 1

2

ÿ

em

W̌ ěj

m̌b

�̌m̌i

ěa

´
ˆ

1

2
` P i

j

˙

ÿ

em

W̌ ej

bm

�̌mi

ae

` 1

2

ÿ

mn

W̌ ij

mn

�̌mn

ab
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`1

2

ÿ

ef

W̌ ef

ab

�̌ij

ef

`
ÿ

e

W̌ ij

eb

˜̌De

a

´
ÿ

m

W̌mj

ab

˜̌Di

m

´
ÿ

emn

W̌ ei

mn

�̌m̌nj

ěab

`
ÿ

e

W̌ ef

ma

�̌m̌ij

ěfb

´ 1

2

ÿ

mn

W̌ ňi

m̌a

˜̌�mj

nb

`
ˆ

1

2
` P i

j

˙

ÿ

mn

W̌ ni

am

˜̌�mj

bn

` 1

2

ÿ

ef

W̌ ěi

f̌a

˜̌�f̌ j

ěb

´
ˆ

1

2
` P i

j

˙

ÿ

ef

W̌ ei

af

˜̌�fj

be

` 1

2

ÿ

em

W̌ m̌i

ěa

˜̌�ěj

m̌b

´
ˆ

1

2
` P i

j

˙

ÿ

em

W̌mi

ae

˜̌�ej

bm

´
ÿ

em

W̌me

ab

˜̌�ij

me

´
ÿ

em

W̌ ij

em

˜̌�em

ab

`1

2

ÿ

mn

W̌mn

ab

˜̌�ij

mn

` 1

2

ÿ

ef

W̌ ef

ij

˜̌�ab

ef

´ 1

2

ÿ

efmno

W̌ efi

mno

�̌m̌ňoj

ěf̌ab

`1

2

ÿ

efgmn

W̌ efg

mna

�̌m̌ňij

ěf̌gb

+

(B.2)

žijk
abc

“
´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘

"

1

2
W̌ ij

ab

�̌k

c

` 1

2
F̌ i

a

�̌jk

bc

´
ÿ

m

W̌ jk

mc

�̌im

ab

`
ÿ

e

W̌ ek

bc

�̌ij

ae

´ 1

2

ÿ

m

F̌ i

m

�̌mjk

abc

`1

2

ÿ

e

F̌ e

a

�̌ijk

ebc

` 1

4

ÿ

em

W̌ ěa

m̌i

�̌m̌jk

ěbc

´
ˆ

1

2
` P i

j

˙

ÿ

em

W̌ ea

im

�̌mjk

bec

` 1

2

ÿ

mn

W̌ ij

mn

�̌mnk

abc

`1

2

ÿ

ef

W̌ ef

ab

�̌ijk

efc

´ 1

2

ÿ

emn

W̌ ei

mn

�̌m̌njk

ěabc

` 1

2

ÿ

efm

W̌ ef

ma

�̌m̌ijk

ěfbc

`
ÿ

e

W̌ ij

ae

˜̌�ek

bc

´
ÿ

m

W̌ im

ab

˜̌�jk

mc

` 1

8

ÿ

efmn

W̌ ǐef

ǎmn

�̌m̌ňjk

ěf̌bc

´
ˆ

1

2
` P i

j

˙

ÿ

mnef

W̌ ief

nma

�̌m̌njk

ěbfc

+

(B.3)

žijkl
abcd

“
´

1 ` P ai

dl

` P bj

dl

` P ck

dl

¯ ´

1 ` P ai

ck

` P bj

ck

¯

`

1 ` P ai

bj

˘ ˆ
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#

1

4
W̌ ij

ab

�̌kl

cd

` 1

6
F̌ i

a

�̌jkl

bcd

´ 1

2

ÿ

m

W̌ ij

am

�̌mkl

bcd

`1

2

ÿ

e

W̌ ie

ab

�̌jkl

ecd

´ 1

6

ÿ

m

F̌ i

m

�̌mjkl

abcd

` 1

6

ÿ

e

F̌ e

a

�̌ijkl

ebcd

` 1

12

ÿ

em

W̌ ěi

m̌a

�̌m̌jkl

ěbcd

´ 1

2

ˆ

1

2
` P i

j

˙

ÿ

em

W̌ ei

am

�̌mjkl

becd

`1

4

ÿ

mn

W̌ ij

mn

�̌mnkl

abcd

` 1

4

ÿ

ef

W̌ ef

ab

�̌ijkl

efcd

`1

2

ÿ

e

W̌ ij

ae

˜̌�ekl

bcd

´ 1

2

ÿ

m

W̌ im

ab

˜̌�jkl

mcd

+

(B.4)

One major di↵erence between these equations and the CCSDTQ amplitude

equations is in the factorization. Where the amplitude equations rely as much

as possible on intermediates which mirror elements of the transformed Hamil-

tonian H̄, the terms in the ⇤̂ equations which call for an intermediate which

contains a ⇤̂ element are more e�ciently represented using intermediates which

instead look like elements of the one- or two-particle density matrices, Dp

q

and

�pq

rs

. These intermediates, composed of contractions between ⇤̂ and T̂ , are

then contracted with the transformed Hamiltonian to give a contribution to

the new ⇤̂.

The density matrix contains all terms from the complete coupled cluster

energy functional,

E
CC

“ x�0|p1 ` ⇤̂qH̄|�0y (B.5)

which, viewed diagrammatically, have the Hamiltonian vertices removed. The

non-orthogonally spin-adapted equations for these quantities, along with the

partial expressions used as intermediates in the ⇤̂ equations are,
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Ďi

a

“ �̌i

a

(B.6)

˜̌̃
Da

b

“ ´1

2

ÿ

efmno

�̌m̌ňo

ěf̌b

ťefa
mno

´ 1

6

ÿ

efgmnop

�̌m̌ňǒp

ěf̌ ǧb

ťefga
mnop

(B.7)

˜̌Da

b

“ ˜̌̃
Da

b

´
ÿ

emn

�̌m̌n

ěb

ťea
mn

(B.8)

Ďa

b

“ ˜̌Da

b

´
ÿ

m

�̌m

b

ťa
m

(B.9)

˜̌̃
Di

j

“ 1

2

ÿ

efgmn

�̌m̌ňi

ěf̌g

ťefg
mnj

` 1

6

ÿ

efghmno

�̌m̌ňǒi

ěf̌ ǧh

ťefgh
mnoj

(B.10)

˜̌Di

j

“ ˜̌̃
Di

j

`
ÿ

efm

�̌m̌i

ěf

ťef
mj

(B.11)

Ďi

j

“ ˜̌Di

j

`
ÿ

e

�̌i

e

ťe
j

(B.12)

˜̌Da

i

“ 1

2

ÿ

efmn

�̌mn

ef

ťěf̌a
m̌ňi

` 1

6

ÿ

efgmno

�̌mno

efg

ťěf̌ ǧa
m̌ňǒi

´
ÿ

emn

˜̌̃
�mn

ei

ťěa
m̌n

(B.13)

Ďa

i

“ ˜̌Da

i

` ťa
i

`
ÿ

em

�̌m

e

`

ťěa
m̌i

´ ťe
i

ťa
m

˘ `
ÿ

e

˜̌Da

e

ťe
i

´
ÿ

m

˜̌Dm

i

ťa
m

`2
ÿ

emn

˜̌̃
�mn

ei

ťěa
m̌n

´
ÿ

emn

˜̌�mn

ei

ťěa
m̌n

`
ÿ

efm
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ěfa
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ěf l
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ťefab
mnop

´
ÿ

emn

˜̌�m̌nb
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ťe
i

`
ÿ

mn

�̌mn

ci
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ťab
mj

`1

2

ÿ

em

˜̌̃
�m̌a

ěi
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With these equations and the proper integrals, the gradient of the cou-

pled cluster energy and any first-order molecular properties can be evaluated.
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[1] Č́ıžek, J. J. Chem. Phys. 1966, 45, 4256–4266.
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