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Abstract

DxTer (pronounced “dexter”) is a tool for generating high-performance
program implementations of an input dataflow graph. Given a specifica-
tion S of a program in some domain D, DxTer uses its knowledge base
for D to explore a space of implementations of S and outputs an optimal
implementation with respect to the cost model in D. While DxTer search
spaces can be massive (e.g., 10'%), this paper describes new techniques
that allow DxTer to search such spaces and generate optimal code in sec-
onds. In a case study, we apply DxTer to the domain of tensor contractions
and show that DxTer generates programs that are competitive with (and
sometimes superior to) a state-of-the-art tensor contraction tool.

1 Introduction

Scientific computing applications (SCAs) constitute an important class of soft-
ware for modeling and simulating physical phenomena. Examples include com-
putations in quantum chemistry, astrophysics, fluid mechanics, stress analysis,
neutron transport, and the quantum scattering of charged particles. A charac-
teristic of SCAs is that they are compute bound and run on distributed-memory
supercomputers, for which one pays per minute of runtime on each core. Thus,
it is very important to reduce SCA runtimes.

Unfortunately, the state-of-the-art in developing SCAs leaves much to be
desired. In particular, while optimizing compilers have become very good at
performing low-level optimizations such as strength reduction and loop invari-
ant code motion, they offer no help in exploiting higher-level, domain-specific
equivalences that can offer orders of magnitude in performance speed-ups. Con-
sider the matrix multiplication expression A-A~!. While this expression can
clearly be replaced by the identity matrix, optimizing compilers do not take ad-
vantage of such equivalences. Therefore, scientists who implement SCAs must
manually apply these domain-specific optimizations until they achieve accept-
able performance. Since this process is laborious, error-prone, and expensive,



code generation has become a popular alternative for alleviating the burden of
developing high-performance SCAs [2] @], 8] 29, (4T, [43] [44].
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Figure 1: DxTer’s input and output.

This paper presents the program generation engine underlying DzxTer, a
tool for generating high-performance, domain-specific programs such as SCAs.
As shown in Figure[I] DxTer allows experts to rigorously encode their domain-
specific expertise in the form of a knowledge base comprised of component types,
rewrite rules, and a cost model. Component types define domain-specific com-
putations, and rewrite rules define equivalences between dataflow graphs of these
components. In addition, a cost model estimates the runtime of components as
a function of their input.

Once an expert creates a knowledge base Bp for a domain D, non-experts can
use DxTer to generate high-performance programs in domain D. Specifically, a
user only needs to provide a high-level specification S of the desired program in
the form of a dataflow graph, a directed acyclic multigraph (DAG) whose nodes
are components and whose edges represent input-output relations [34]. Given
a specification S, DxTer explores the space of possible implementations of S
and outputs an optimal implementation of S with respect to its knowledge base
Bp. Thus, Bp is reusable across user specifications. Further, since DxTer’s
search algorithm is domain-agnostic, DxTer can be used to generate programs
in different domains by providing an appropriate knowledge base.

The key challenge underlying DxTer is to efficiently search the space of all
possible implementations for a given specification. In practice, since the space
of all implementations of a program is huge (e.g., 10°), a naive code gener-
ation algorithm that explicitly enumerates all implementation options simply
does not scale. To avoid this, DxTer implicitly represents the space of possible
implementations using partitioned dataflow graphs (PDGs) and identifies inde-
pendent subgraphs to decompose the search. Our novel PDG-based algorithm
dramatically reduces the search space without sacrificing optimality and allows
DxTer to generate high-performance code in a matter of seconds.

To demonstrate the usefulness and practicality of DxTer, we use it to gen-
erate high-performance SCAs that are based on tensor contractions. Tensor
contractions, which are generalizations of matrix multiplication, have numerous
applications in scientific computing, including in quantum chemistry [26], high-
energy physics [28], and fluid mechanics [24]. We show that programs generated
by DxTer are competitive with (and sometimes superior to) a state-of-the-art



tool for tensor contractions.
Our paper makes the following contributions:

e We give a high-level overview of DxTer and show how to encode domain-
specific knowledge;

e We present DxTer’s domain-agnostic search algorithm, including opti-
mizations that enable it to explore massive search spaces with 10*° im-
plementations in seconds; and

e We apply DxTer to the domain of tensor contractions and present strong
experimental evidence that DxTer is capable of generating code that is
competitive with — and sometimes superior to — domain-specific tools.

2 Overview of DxTer

At a high-level, there are two ways in which one can view DxTer. From the
viewpoint of a compiler writer, DxTer is an extensible framework for imple-
menting optimizing compilers for domain-specific languages (DSLs) or applica-
tion programming interfaces (APIs), targeting dataflow domains [34]. From the
viewpoint of a programmer, DxTer is a generator of optimal dataflow programs
from high-level specifications. This section gives an overview of DxTer from
both perspectives and introduces key concepts that are used throughout the
paper.

2.1 DxTer from a Compiler Writer’s Perspective

From the perspective of a domain expert (e.g., compiler writer for a DSL),
instantiating DxTer for a specific domain D requires specifying a knowledge
base Bp = (K, R,C) containing the following elements:

e Components : A component represents a computation. In DxTer,
there are two kinds of components: interfaces, whose implementations are
to be generated by DxTer, and primitives, the building blocks from which
implementations are constructed. The expert needs to specify (i) the types
of interface and primitive components of D, and (ii) how primitives are
implemented using existing code. For instance, a generic mathematical
operation such as matriz multiplication is an example of an interface. On
the other hand, a specific implementation of matrix multiplication, such as
a call to the Gemm routine in the BLAS [7] library, exemplifies a primitive.



e Rewrite rules R: Rewrite rules in DxTer specify semantic equivalences
between graphs of components. Some rewrites are refinements, which in-
dicate how a particular interface is implemented using primitives or lower-
level interfaces. Other rewrites, called optimizations, specify equivalences
between different graphsE

e Cost model C: An expert provides a cost model for each primitive. A
cost model for a primitive P is a function of the parameters of P and
yields an estimate of its execution cost. DxTer uses these estimates for
rank-ordering different implementations. While cost models can estimate
different kinds computational resources (e.g., memory), this paper focuses
on cost models that only predict runtime.

Fundamental to DxTer is the use of dataflow graphs. Each vertex v € v
of a dataflow graph G = (V,E) represents a stateless component X in DxTer’s
knowledge base, and each arc e € E represents a data dependence (i.e., an
input-output relation). For example, an edge from component A to component

B indicates that the output of A is an input of B.
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Figure 2: A graph rewrite rule where the interface to the left of the thick arrow
is replaced by the graph on the right.

DxTer uses dataflow graphs to represent both specifications and implemen-
tations of programs. Hence, rewrite rules R in DxTer’s knowledge base are
specified as transformations from one dataflow graph, called the left-hand side
(LHS) of the rewrite, to another one, called the right-hand-side (RHS). Fig-
ure |2 shows a rewrite rule (specifically, a refinement) describing a map-reduce
implementation for a sort component.

2.2 DxTer from a Programmer’s Perspective

From the perspective of a non-expert user, it is straightforward to use DxTer
to generate programs in D, assuming an expert has already created a knowl-
edge base Bp for D. The user only needs to provide a specification, which is
a dataflow graph where typically all nodes are interfaces. In contrast, an im-
plementation (or implementing graph) in DxTer is a dataflow graph where all
nodes are primitives.

IThe term optimization does not necessarily indicate that applying a given rewrite rule
is guaranteed to improve performance but, rather, that it may result in a speed-up when
combined with other optimizations or when used on some hardware architectures.



Internally, DxTer maps a specification to a large number of implementing
graphs, all of which implement the specification and are correct-by-construction [3}
11, 27, B5] with respect to DxTer’s knowledge base. DxTer then uses expert-
supplied cost functions to rank implementations. In particular, given cost func-
tion C, we define the cost of an implementing graph G = (V,E) as:

c(G) =) _C(v).

vEV

DxTer ranks implementing graphs and translates the lowest-cost implementa-
tion to code.

3 Search

We present DxTer’s basic search algorithm and then describe optimality-preserving
improvements to make it practical.

3.1 Basic Search

1: procedure EXPAND(S,R)
2 S.HasExpanded < false
3 Q«+ {s}
4 while 3G. G € Q A -G.HasExpanded do
5: for all G € Q2 A =G.HasExpanded do
6: for all € R do
7 if CanApply(7,G) then
8: ® « Apply(T,G)
9: Q+— QU
10: end if
11: end for
12: G.HasExpanded <« true
13: end for

14: end while
15: return
16: end procedure

1: procedure BASICSEARCH(S,R,C)
2: return MinCostImpl(EXPAND(S, R),C)
3: end procedure

Figure 3: BASICSEARCH algorithm

DxTer’s basic search algorithm is shown in Figure [3] It uses a procedure
called EXPAND that expands specification S by iteratively applying rewrite rules
R. That is, EXPAND generates a set Q of partial implementations, which are
dataflow graphs containing a combination of primitives and interfaces.

Each iteration of EXPAND finds a dataflow graph G € Q to which it has not
already applied rewrite rules. Then, for each rewrite 7 € R, it tests whether 7
applies to graph G using the CANAPPLY function. Here, CanApply(7, G) returns



true if and only if the left hand side of 7 is a subgraph of G. If 7 applies to G, it
calls the ApPLY procedure to obtain a new set of partial implementations ®. In
particular, APPLY applies rewrite 7 to G by replacing subgraphs of G that match
the LHS of 7 with 7’s RHS. Note that G may contain n subgraphs that match
7’s LHS; hence, the resulting set ® will have n graphs, one for each distinct
application of TEI

Next, we add the new partial implementations ® to set €2 and repeat this
process to a fixed point until all dataflow graphs in ) have been expanded.
Note that applying rewrites in different orders can produce the same graph;
only unique graphs of ® are added to €. As a result, EXPAND(S, R) yields the
reflexive transitive closure of S with respect to rewrite rules R.

Since BASICSEARCH explores the space of all possible implementations, it is
guaranteed to contain the optimal implementation of S with respect to DxTer’s
knowledge base. However, since the search space is at least exponential in the
number of rewrite rules, BASICSEARCH is not always practical. In what follows,
we describe meta-optimizations that significantly reduce the time and space to
conduct a search without omitting the optimal implementationEI

3.2 Meta-Optimizations Based on Graph Partitioning

Figure 4: A common graph pattern that leads to inefficiencies in the basic
search.

To understand the intuition underlying our meta-optimizations, consider the
graph in Figure [4 where clouds represent subgraphs, and comm and comp stand
for “communication” and “computation” respectively. Dataflow graphs such
as the one from Figure [ arise commonly in distributed-memory applications,
where data can be redistributed among processes in many ways and the combi-
nation of redistributions must be implemented and optimized in concert.

Assuming commg and comm; in Figure [d have n and m implementing graphs
respectively, BASICSEARCH generates at least n X m expansions of the dataflow
graph in Figure[4l As there are many ways to implement each interface; n and

2Each graph in ® will eventually have T applied to it, producing all 2" possible applications
of 7 on G.

3We do not discuss complexity or termination results from the search algorithm because
they are dependent on the knowledge base input to DxTer.



m can be quite large. Hence, exploring the Cartesian product of the implemen-
tations of commy and comm; is often infeasible in practice.

Fortunately, there are many situations in which we can explore the imple-
mentations of different subgraphs independently, thereby generating n+m rather
than n xm implementations. For example, in Figure assuming A # B (and that
the rewrite rules in the knowledge base satisfy a certain technical criterion), it is
safe to explore commg and comm; independently without losing our optimality
guarantee. Similarly, if no rewrite rule applies to a combination of communica-
tion and computation components, implementations of any comm; and comp;
can again be explored separately. We refer to the independent exploration of
two different parts of the same graph as partitioning.

3.2.1 Partitioned Dataflow Graphs

We henceforth represent programs as partitioned dataflow graphs (PDG). A
PDG (P,E) is a dataflow graph that contains vertices, denoted P, that are
partitioned sets (PSets) representing possible implementations of some specifi-
cation. One can think of a PSet as a collection of dataflow graphs all of which
implement the same functionality. Edges E in the PDG represent dataflow re-
lations between PSets.

Figure 5: An example PDG.

Figure [p| shows an example PDG where dotted rectangles represent PSets.
Inside a dotted rectangle is the specification graph of that PSet. Here, inter-
faces foo, bar, and baz belong to three different PSets. The “boxes” on the
boundary of PSets are referred to as tunnels and allow a PSet to act like a single
node by connecting the components outside the PSet to those within. Another
important point about PDGs is that they can be hierarchical. In other words,
just like procedures in code can call other procedures, a PSet in a PDG can
contain other PDGs nested inside it.

3.2.2 Sufficient Conditions for Partitioning

Given a PDG, we are interested in the conditions under which two PSets inside
this PDG can be explored independently. For this purpose, we first define weakly
connected dataflow graphs and then local dataflow dependence:



Definition 3.1. (Weakly connected dataflow graph) A dataflow graph G
is weakly connected if there is a path between each pair of nodes when every
directed edge in G is replaced by an undirected edge.

In other words, a dataflow graph G is weakly connected if the undirected graph
induced by G is connected.

Definition 3.2. (Local dataflow dependence) We say there is a local dataflow
dependence (LDD) between two PSets po and p; of graph G if (i) po and p;
share the same input or (ii) G contains an edge between po and p;.

Figure [5| shows both forms of LDDs between PSets. Specifically, foo and
bar have a LDD as they share the same input vV, and bar and baz have a LDD
because the output of bar is an input of baz. On the other hand, there is no
LDD between the interfaces commg and comm; in Figure [f] when A # B.

Key observation #1: Given a PDG (P,E) with no local dataflow
dependence between its nodes, we can explore each PSet independently
as long as the LHS of all rewrite rules are weakly connected.

Specifically, since no rewrite rule can apply to a combination of PSets in such
a PDG, it is safe to separately search for optimal implementations of each PSet
without losing global optimality. As we will see shortly, our optimized search
algorithm exploits this observation to significantly reduce the search space.

It turns out that we can further improve the above observation: Even if there
is a LDD between some pair of nodes p; and p; in the PDG, we may still be
able to explore them independently if p; and p; have a type-based independence
property. To explain this property, we first define the notion of derived types:

Definition 3.3. (Derived types) Let S be a specification in a domain D with
corresponding rewrite rules R. The derived types of S, written Derived Types(S),
is the set:

{T

In other words, DerivedTypes(S) is the set of all component types that arise
when we apply the reflexive transitive closure of the rewrite rules R to S.

G € EXPAND(S,R) A n € Nodes(G)
A T = Type(n)

Definition 3.4. (Type-based independence) Let p, p’ be two nodes in a
PDG implementing specifications Sg, S; such that DerivedTypes(Sy) = 6y and
DerivedTypes(S;) = 6;. We say that p and p’ satisfy the type-based indepen-
dence property if no rewrite rule contains a pair of components of type t; € 6
and t5 € 0, in its LHS.

To gain intuition about this property, recall commy and comp; from Figure[d]
Assuming there is no rewrite rule that contains both a communication and a
computation component on its LHS, then commg and comp; have the type-based
independence property.



Key observation #2: Given a PDG (P, E) where all nodes have the
type-based independence property, we can explore each PSet separately
and still guarantee optimality.

We suspect type-based independence to be common in many domains. For
instance, in our tensor knowledge base (see Section , no rewrite rule applies
to both communication components (those that move data) and computation
components; hence, implementations of such components can be searched inde-
pendently.

We now put these two observations together to state a key lemma about
separable PSets:

Definition 3.5. (Separable PSets) A pair of nodes py and p; in a PDG
are called separable if either (i) the LHS’s of all rewrites are weakly connected
and there is no LDD between py and p; or (ii) po and p; have type-based
independence.

Lemma 3.1. Let S be a PDG with nodes pg...p,, implementing specifications
So..-Sn, respectively, and suppose G; = BASICSEARCH(S;, R,C). Further, sup-
pose that the LHS of each rewrite rule in R is weakly connected. In this case,
G = BASICSEARCH(S, R, C) contains Gy...G, as subgraphs if every pair of nodes
p: and py are separable.

Proof. The proof of this lemma is by contradiction: Assume G does not contain
G; and instead contains G;. Let §; = DerivedTypes(S:). The lowest-cost
implementation of S; is not G;, but G;. If G\ was found in EXPAND(S;,R),
it would have been returned from BASICSEARCH(S;,R,C). Therefore, some
rewrite 7 lowers the cost of some implementation of S;. The LHS of 7 must
partially apply to a subgraph of an implementation of S; and a subgraph of an
implementation of Sy in another PSet; otherwise, it would have been applied in
EXPAND(S;, R).

By the lemma, there are two cases: 1) the LHS’s of all transformations are
weakly connected and there is no LDD between p; and py OR 2) there is an
LDD, but there exists no t; € 0; and t5 € 65 that are found together on the
LHS of some rewrite 7.

1) As the LHS’s of all transformations are weakly connected, no such 7 can
apply to an implementation in S; and Sy that are not connected by a LDD (a
contradiction).

2) As no 7 contains component types t; and tjy on its LHS, no trans-
formation applies partially to subgraphs of implementations of S; and Sy (a
contradiction). O

Lemma [3.I] immediately gives us a way to optimize BASICSEARCH using the
separability of search. In particular, given a PDG where all PSets are separable,
we do not need to explore all possible combinations of implementations of those
PSets explicitly. Instead, we can generate optimal implementations for each of
them by separately calling our algorithm with each component as the initial
specification and still guarantee optimality of the combination.



3.3 Search Algorithm with Partitioned Sets

We now present our PDG-based improved search algorithm that exploits sep-
arable PSets (recall Lemma . The IMPROVEDSEARCH algorithm shown in
Figure [6] takes a PDG S where each interface belongs to its own PSet and then
calls the EXPANDWITHPSETS procedure.

At a high level, the EXPANDWITHPSETS algorithm independently explores
implementations of different PSets but merges two PSets py and p; if they are
determined not to be separable. Conceptually, when we merge two PSets pg
and pq, we replace them with a single PSet po; that represents their combined
functionality. When there are no more PSets to merge (i.e., all remaining PSets
are separable), Lemmaimplies that we can find the optimal implementation
of specification S by composing the lowest-cost implementation of each PSet
within S.

1: procedure EXPANDWITHPSETS(S, R)
2 if = IsPDG(S) then

3 return EXPAND(S,R)

4 end if

5: keepGoing < true

6 while keepGoing do

7 keepGoing <« false

8 for all p € s do

9: for all G € p.impls A -G.HasExpanded do
10: G.HasExpanded < true
11: Q < ExPANDWITHPSETS(G, R)
12: if Q # {G} then
13: keepGoing < true
14: p.impls < p.impls U 2
15: end if
16: end for
17: end for
18: for all po,p1 € SApo # p1 do
19: if MUSTMERGE(po,p1,R) then
20: MERGE(S, po, P1)
21: keepGoing < true
22: end if
23: end for
24: end while
25: return {s}

26: end procedure

1: procedure IMPROVEDSEARCH(S,R,C)
2: return MinCostImpl(EXPANDWITHPSETS(S, R),C)
3: end procedure

Figure 6: Improved search algorithm using PDGs

Let us now consider the algorithm from Figure [f] in more detail. EXPAND-
WITHPSETS is a recursive procedure that expands dataflow graph S with re-
spect to rewrite rules R. The input graph S of EXPANDWITHPSETS can either
be a PDG or a regular dataflow graph without partitions. If S is not a PDG,
we simply call the basic EXPAND algorithm defined in Figure [3} hence, lines 2-3
of Figure [6] correspond to the base case of the overall algorithm.

10



On the other hand, if S does correspond to a PDG, the algorithm performs
a fixed point computation that expands and merges PSets within S as necessary
(lines 6-24). Inside the while loop, we first expand all PSets of S that have not
yet been processed (lines 8-17). In particular, for each PSet p of S, the algo-
rithm iterates through the dataflow graphs p.impls that implement p and that
have not yet been transformed (i.e., their HasExpanded flag is false). We then
recursively call EXPANDWITHPSETS on each G € p.impls to generate all pos-
sible implementations of G. Hence, when the for loop in lines 9-16 terminates,
p.impls contains all implementations of partition p.

Next, in lines 18-23, the algorithm tests whether we need to merge any
PSets within SE| Specifically, for every pair (po,p1) of PSets within S, we use
the auxiliary MUSTMERGE function to determine whether or not py and p; are
separable according to Definition In particular, MUSTMERGE returns true
if pg and p; have a local dataflow dependence within S or R contains a rewrite
rule whose LHS matches types from both pg.impls and p;.impls.

If po and p; are not separable (i.e., MUSTMERGE returns true), we call
the MERGE procedure at line 20 to merge these two partitions. The procedure
MERGE removes po and p; from S and creates a new PSet pphew in the revised
S called S’ such that:

® Duew-impls is obtained by taking the Cartesian product of py.impls and
p1.impls. In particular, let G be the subgraph of S that contains only
po and p; and the edges between them, and let G(p,p’) denote G with
nodes po, p1 replaced with p,p’. Then, for every p € pg.impls and p’ €
p1.impls, we have G(p,p’) € Pnew-impls, and G(p,p’).HasExpanded
is false.

e For every edge (s, po) and (po, t) in S where s, t # p1, we have (s, ppew) €
s” and (ppew,t) € S’, and

e For every edge (s,p;) and (p1,t)in S where s, t # py, we have (s, ppew) €
S’ and (ppew,t) € S'.

Here, observe that the new PSet pye may need to be merged with others in S';
hence, this merging operation is applied until a fixed point is reached.

To illustrate this merging process, consider the PDG in Figure a) and
suppose that we need to merge foo and bar. Figure b) shows the result of
calling MERGE, which now introduces a LDD between the new partition and
baz. Hence, we perform another merge operation, which results in the PDG
shown in Figure [7j(c).

4The reader may wonder why we merge PSets after generating their implementations. This
is because determining whether two PSets are separable requires knowing their individual

implementations (see Definitions 13.4]).
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Figure 7: Two iterations of merging PSets.

Theorem 3.2. (Soundness) The implementing graph returned by IMPROVED-
SEARCH is a correct implementation of S with respect to DxTer’s knowledge base.

Proof. All implementations are obtained by applying rewrite rules R to specifi-
cation S. Hence, if the rewrite rules R in the knowledge base are correct, then
so is every implementing graph produced by DxTer. O

Theorem 3.3. (Optimality) The implementing graph returned by IMPROVED-
SEARCH is an optimal implementation of S with respect to DxTer’s knowledge
base.

Proof. The fixed point computation in EXPANDWITHPSETS terminates when
keepGoing is set to false, which implies that all PSets are pairwise separable.
Hence, by Lemma the optimal implementation of S is composed of the
optimal implementations of each PSet. O

4 A Target Domain: Tensor Contractions

We now give some background on tensors and explain how we used DxTer to
generate code for SCAs that are composed of tensor contractions.

12



4.1 Background on Tensor Contractions

A tensor is a generalization of a matrix to n-modes (called dimensions in some
texts), where n is the order of the tensor [32]. Vectors and matrices are tensors
of order 1 and 2, respectively. For a tensor A of order n, the notation Rigiy iy
specifies a scalar element of the tensor by indexing into each of the n modes. If
A is a matrix (i.e., a tensor of order 2), A; is the element at row i and column
j. In addition to indexing a scalar from a tensor, we can also select a subtensor
in the same way we can index a subarray from an array. If S5 denotes a set of
indices and A is a tensor, then A[Sy, S1,..., S(,—1)] consists of the set of scalars
Rigiy iy such that 15 € s;.

A tensor contraction computes:

cTr(iomi(m—l)jo~~~j(n—1))
Ar(iodmonyko- K1) Br(ko K1) Jo- o)
koo kp—1) T L0 I (m—1) K0 K(p—1) T(Ko-+-X(p—1)J0-+-J(n—1)

where A, B, and C are tensors of order m+ p, p + n, and m+ n, respectively, and
7 is a permutation (shuffling of data). The familiar matrix multiplication is a
special case for order-2 tensors (i.e., m=n=p=1): C;5 = >, A;xBy;. Similar
to matrix multiplication, we might define a shorthand for tensor contractions
C = A x B, although unlike matrix multiplication this shorthand alone does
not fully specify the type of contraction. The dot (scalar) product is a tensor
contraction, for which m = n = 0 in the above notation. In this case, all modes
of the input tensors are folded (summed) over.

In general, input tensors of order r and s can have a t-fold contraction,
where 0 < t < r,s. The output tensor then has (r + s — 2t) modes. While
for matrix multiplication the “folded” modes are generally the rows of A and
the columns of B, any modes may be folded in a general tensor contraction. For
example, two 3-mode tensors can be folded into a matrix: Ciy = Zkl Agi1Bk15-
Additionally, in the case of t = 0, the contraction is an outer product including
as a special case the usual matrix outer product C;; = A;B;. In summary, both
the number and positions of the modes to be folded are required to fully specify
a tensor contraction.

As mentioned earlier, tensor contractions have many applications in scien-
tific computing. Scientists produce equations that are k-fold contractions of
order-n tensors for different values of k<n. From a programming perspective,
the number of possible implementations of such equations is huge because one
can express each contraction in many different ways due to algebraic laws of ten-
sors. Since some implementations result in much better performance than oth-
ers, scientists manually experiment with different implementation options and
compare them against each other. Consequently, scientists can spend significant
amounts of time manually optimizing distributed-memory implementations of
tensor contractions — a tedious and error-prone process.

13



4.2 DxTer Knowledge Base for Tensor Contractions

We now describe how to instantiate DxTer to generate parallel, high-performance
tensor contraction implementations on distributed-memory hardware using Re-
distribution Operations and Tensor Expression (ROTE) formalisms [32]. We
used ROTE as it conveniently captured the tensor abstractions that DxTer
needed.

Portions of each tensor are stored on each of the p processes. We use the
ROTE notation to express the way data is distributed [32]. In particular, each
process has its own predefined index sets (e.g., Do, D1, Dp1, and Djz3) that
specify where tensor data is stored and how it is distributed. For example,
A[D123,Dp) indexes a subtensor of A. As each process’s interpretation of Di;3
and Dy is different, the specific portion of A that is indexed can be different for
each process. We omit specific details of what these mean past saying each Dy
is a set of indices and, in general, Dy # Dy when X # Y. The set of all indices is
denoted by the symbol .

Components. Three types of components appear in the DxTer knowledge base
for tensors. They arise from ROTE notation and basic mathematical operations
on tensors:

1. Contraction. A contraction component is an interface whose implemen-
tation we want DxTer to generate. Contraction operations vary with
instance-specific details such as tensor order and modes over which the
contraction folds. This component subtype contracts two tensors and
adds it to another: C =A x B+ C.

2. Communication. A communication component redistributes data be-
tween processes. As with contractions, communication components have
different flavors based on the starting and ending distribution of data.
Communication components that map directly to an MPI call are prim-
itives implemented by a ROTE API call. The remaining are interfaces
whose implementations DxTer must generate. Even a redistribution prim-
itive can be implemented in alternate ways, which DxTer explores via
optimizations.

3. Local Contraction. A local contraction component is a primitive that
directly implements a specific kind of contraction by calling a ROTE API
function. It is called “local” because it is executed by each process on
locally stored data.

Rewrite Rules. There are 47 refinements and 15 optimizations in DxTer’s
current knowledge base for tensors [5]. Below, we show a few typical examples.
Other rewrites explore implementation options for communication components
in order to improve performance. For the complete set of rewrite rules, see [5].
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Figure 8: A particular instance of a sample refinement for a Contraction
component.
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Contraction %

Figure[§] shows a refinement of a Contraction interface that redistributes
input tensors to parallelize computation. Components labeled [X] — [Y] cor-
respond to data redistribution operations where data in distribution [X] are
communicated into distribution [Y]E|

Dyl = Dyl  —>Y Y
. / - X—>| (D] = [Dy] —>o<:z

Figure 9: Sample optimization to remove redundant communication. Dy and Dy
represent any distributions.

Figure [J] shows an optimization to replace a duplicate redistribution from
[Dy] to [Dy] with a single instance, resulting in improved performance.

Cost Model. The final piece that completes DxTer’s tensor knowledge base is
the cost modelﬂ In this domain, the key metric to optimize is execution runtime.
For each primitive, we specify a function that estimates its runtime in terms of
the size of its input parameters. For example, a LocalContraction primitive
performs 2 x £0""+2) floating point operations (FLOPS), where £ is the length
of all modes of the locally stored portions of tensors in a contraction using the
notation of Section (in general, mode lengths are not the same, but we show
the simplified case here). We model the cost of this primitive as v x 2 X (otn+p)
where 7 is a constant representing the number of CPU cycles taken to perform a
FLOP. We similarly specify cost estimates for communication primitives based
on commonly accepted models [0, 25]. Note that we do not require the cost

5The rule in Figure [8| has distribution parameters ([Do,D1,D2,D3]) that must be supplied
before the rule can be applied. These are parameters that are calculated using a non-trivial
algorithm, so a single rewrite can represent rules for many distributions.

SDxTer can also generate a space of implementations and use empirical timing to determine
the best performing code. For tensors, this is not feasible due to long runtimes, so it is standard
to use cost models to judge performance.
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model to predict true runtime since cost estimates are only used to rank one
implementation option over another. While these estimates are rough, they are
nonetheless sufficient for finding tensor contraction implementations competitive
with hand-written code (see Section [f)).

5 Experimental Results

5.1 Experimental Setup: CCSD Background

CCSD (coupled cluster single double) is a commonly used method in quantum
computational chemistry [21],[33] that strikes a balance between communication
cost and accuracy. It is a numerical, iterative method utilizing a set of equations
to give an accurate reproduction of experimental results on electron correlation
for molecules. Figure [10|lists the CCSD equations for closed-shell molecules as
a set of ten terms, which are recomputed in each iteration. These terms have
both computational and physical significance.

In our experiment, we use DxTer to generate an optimal implementation
for each of the ten terms given in Figure The result of each term is ref-
erenced in one or more later terms. To generate full CCSD code, we compose
implementations of each individual term.

5.2 CCSD Code Performance

To evaluate the quality of code produced by DxTer, we compare the performance
of code generated by DxTer against that of the Cyclops Tensor Framework
(CTF) [40], which is a state-of-the-art distributed library for tensor contractions
(see Section . We compare performance both for individual terms listed
in Figure [10] as well as the full CCSD.

We test performance on a BlueGene/Q architecture where each node con-
tains 16 shared-memory cores of IBM’s 64-bit Power A2 architecture running
at 1600 MHz. Each node has 16 GB of memory. We show results from 256 of
these nodes, for a total of 4,096 cores. We run one MPI task on each core, and
each of those runs with four shared-memory threads. Each node can attain a
peak performance of 204.8 GFLOPS (10 floating-point operations per second)
for a total of over 52.4 TFLOPS (10%? floating-point operations per second)
combined peak performance.

For any particular execution of CCSD [21] B3], tensor modes are either of
length n, or n,. These values depend on the molecule being studied; hence, we
refer to them as problem sizes. We set n, = 10 X n,, which is in the typical
range of production CCSD calculations. In our evaluation, we show results for
a range of n, problem sizes.
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Figure 10: Terms used inside the main loop of CCSD [21], B3]. Tensor modes are
labeled with “names” in the context of each computation to specify the modes of
tensors that match up. For matrices, we call the modes “rows” and “columns.”
For tensors, we use single-letter names that are specified in subscripts and su-
perscripts. For example r2® labels tensor r’s four modes b,m, £, and e, but
o labels those same modes £,n,b, and e, respectively. > denotes contrac-
tions. The symbol P represents a permutation of data where PJXZ5 = XP5.
Tensor variables t, T, and 7 hold the data CCSD is calculating and are updated
in each iteration. Other tensor variables (labeled with lower case letters) are
constants that hold data related to the molecule being studied. Thus, tensors
r,t,T,7,u,v,w,x,q, and y are inputs. z and Z are outputs.

17



Speedup of DxTer-Generated Code over CTF ) Speedup of DxTer-Generated Code over CTF
——No Speedup ——No Speedup

F|—+—H q Fl =W

-G~z

5—775 B 16f

Speedup Over CTF
£
Speedup Over CTF

N

L L L n L n n n
35 40 45 10 15 20 35 40 5

25 3_‘0
Problem size (no)

Figure 11: Speedup of DxTer-generated code over CTF on 4,096 for the ten
terms, separated into terms with (left) big differences and (right) similar per-
formance.

We generated DxTer code for a 4096 = 8 X 8 X 8 X 8 process grid, the config-
uration in which the code is run. For different process grids, DxTer would need
to be re-run to generate correct and specially-optimized codem We configure
CTF as recommended by its lead developer in personal communication [39].

5.2.1 Individual Terms

We now compare the performance of DxTer-generated and CTF code on the 10
terms listed in Figure[10|across a range of problem sizes (10 to 48 in increments
of 2). Figure shows the speedup of DxTer-generated code over CTF; note
that the graphs on the left and right sides of this figure use different ranges in
their vertical axes. Since DxTer-generated code works for larger problem sizes
than CTF is able to handle, we only show results here up to CTF’s largest size.
In Section we show DxTer’s performance on full CCSD for even larger
problem sizes.

The left side of Figure [L1] shows DxTer-generated code performs much bet-
ter than CTF on some terms, particularly terms H, z, and F. The peaks in
DxTer speedup over CTF performance for term U are caused by dips in CTF
performance that were reproduced when we re-ran this experiment, but we do
not have an explanation for this.

In contrast, the graph on the right side of Figure [11]| shows the performance
of CTF and DxTer-generated code are roughly comparable for most of the terms
except for term Q, on which DxTer performs worse compared to CTF. For Q,
CTF’s default tensor distribution happens to match up with the distribution
required for Q for one of the tensors, so it (luckily) avoids an expensive redis-
tribution for that tensor. For other terms that use that tensor, redistributions

"We generate code for problem size n, = 50 and run it for all problem sizes shown. DxTer
could regenerate code for the various problem sizes, which might improve the performance we
show.
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are required because the default distribution does not line up.

Each term from Figure [10] accounts for different portions of the total CCSD
computation (e.g., Q is less than 1% of runtime). For example, for a problem
size of 50, Z requires a huge number (6.72e14) of floating-point operations
while Q requires fewer (5.55e12). Thus, DxTer’s poorer performance on some
terms is overcome by better performance in others, especially z, as shown by
the full CCSD results next.

5.2.2 Full CCSD

Performance of Full CCSD

—+—DxTer-Generated
12000 |- i CTF B

10000 -

8000 -

6000 -

Performance (GFLOPS)

4000 |

2000 [

1 15 20 25 35 40 45 50 55 60

30
Problem size (no)

Figure 12: Performance of a single iteration of CCSD on 4,096 cores with one-
quarter of peak performance at the top.

Figure[l2|compares a single iteration of CCSD execution for CTF and DxTer-
generated code across a range of problem sizes. Here, the cutoff for the vertical
axis represents one-quarter of the theoretical peak performance on 4,096 cores.
As Figure shows, DxTer-generated code performs noticeably better than
CTF. Further, DxTer-generated code can handle larger problem sizes. Since
chemists typically use this code to run the largest problems on the smallest
number of processes in the fastest time possible, we believe DxTer-generated
code is particularly advantageous for the target users of this domain.

5.3 Code Generation Time

We now explore how long DxTer takes to generate code for each of the terms
from Figure Figure [13] shows the results for generating the ten CCSD terms
on problem size n, = 50 and an 8 x 8 x 8 x 8 process grid. Here, the column
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Search Lines of | With PSets Without PSets
Term || Space Size Code (10 Minute Limit)
W 3.69e07 577 0.827s Out of memory
X 5.39e05 414 0.331s Time limit
U 6.6e01 199 0.013s 0.057s
o] 4.90e03 333 0.053s 0.277s
P 1.31e09 489 0.547s Out of memory
H 8.82e02 209 0.050s 1.063s
F 2.59e03 382 0.035s 0.196s
G 5.10e03 409 0.059s 0.074s
z 1.33e07 657 0.069s 3.939s
Z 1.65el6 867 2.120s Out of memory

Figure 13: Results from generating CCSD terms for problem size of 50 and 500.

labeled “Search Space Size” shows the size of the search space (which we can
compute knowing the population sizes of separable PSets).

The second column labeled “Lines of Code” (LOC) shows the number of
lines of code generated for the optimal implementation. While LOC is not
necessarily a perfect proxy for code complexity, this statistic conveys that the
generated code is not trivial.

The third column labeled “With PSets” shows the time DxTer needs to
generate code using a single core of an Intel i7-930 processor (2.8 GHz). Fi-
nally, the last column, labeled “Without PSets,” indicates whether DxTer can
generate code within 10 minutes (where 10 was arbitrarily chosen) using the
BASICSEARCH algorithm from Section (i.e., no PSets or PDGs). If it can,
we provide the time to generate. If it cannot, we specify if it runs out of memory
or reaches the 10 minute cutoff.

As Figure shows, DxTer’s improved search algorithm from Section [3.3]
is able to generate the optimal implementation of each term in less than a
few seconds, and, in most cases, under one second. In contrast, for 40% of
terms BASICSEARCH is either unable to finish code generation in ten minutes
or exhausts 24GB of memory before the ten minute cutoff. Hence, these results
indicate that exploiting the separability of search is essential to DxTer’s ability
to explore huge search spaces quickly.

6 Related Work

There are several projects related to DxTer both in the scientific computing as
well as in the programming languages and software engineering communities.
Here, we only address work that is closely related to DxTer.

6.1 DxT and Model Driven Engineering

DxTer is based on the Design by Transformation (DzT) paradigm for soft-
ware development [T}, 25] [31]. Users express program transformations as graph
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rewrite rules, which are then used to explore the space of different implementa-
tion options. The DxT paradigm has its roots in rule-based query optimization
(RBQO) and model-driven engineering (MDE). In RBQO [23], a tool rewrites
an input relational algebra expression using algebraic identities to produce a
space of equivalent expressions and employs rough cost models to determine
which is best. DxTer generalizes RBQO to new domains using graph rewrites.

In MDE, interface-only graphs called Platform Independent Models (PIMs)
are transformed into architecture-specific (primitive-only) Platform Specific Mod-
els (PSMs) [10,18]. Optimizations like those we use are not prominent in MDE,
but are essential for DxTer to improve performance.

6.2 Dataflow Programming

DxTer uses dataflow programming to represent both program specifications and
implementations. Dataflow programs are directed graphs that emphasize the
movement of data between different components [I4] 17, 42]. While there are
numerous different ways to express dataflow computation, DxTer’s visualization
of dataflow programs follows LabVIEW, which is a general-purpose dataflow
programming language and environment [19].

6.3 Program Synthesis

DxTer bears similarities to work on program synthesis in that it automatically
generates implementations from high-level specifications. Recent work on pro-
gram synthesis falls into three different categories: Approaches based on program
sketching fill ‘holes’ in a program sketch with missing code fragments [37 [38].
Other synthesis systems generate programs from input-output examples specified
by the user [12, 15 20]. Finally, component-based program synthesizers generate
programs using library components [I3, [16]. DxTer differs from all of these syn-
thesis techniques in the following ways: First, DxTer uses dataflow graphs as its
specification rather than program sketches or input-output examples. Second,
due to the presence of the rewrite rules in DxTer’s knowledge base, generating
a correct (but non-optimal) program is trivial. The real challenge lies in finding
an optimal implementation of the specification (with respect to the user’s cost
model). Third, unlike most recent work on program synthesis [13] [16] 37 [38],
DxTer does not use SAT or SMT solvers, but instead performs explicit search
using partitioned dataflow graphs.

6.4 Code Generation for Tensor Contractions

In this paper, we applied DxTer to the domain of tensor contractions, for which
there are other distributed-memory code generation tools, such as CTF [40],
TCE [2], and RRR [30]. Unlike these projects which are tensor-specific, Dx-
Ter’s code generation algorithm is domain-agnostic and can be used in other
dataflow domains [I]. In addition to this key difference, we highlight some ad-
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ditional differences below.

6.4.1 CTF

Cyclops Tensor Framework (CTF) is a new and efficient distributed-memory
library for tensor contraction computing [40]. Unlike DxTer, CTF performs re-
distribution of the input tensors via the all-to-all collective [36], which works
for any kind of redistribution but can be inefficient in some cases. In contrast,
DxTer can combine different collectives to achieve higher performance. That
is, DxTer searches for an efficient redistribution of tensors but CTF does not.
Further, DxTer can optimize communication across a sequence of tensor con-
tractions while CTF treats each contraction independently.

As mentioned earlier, DxTer uses the ROTE library for generating code.
Unlike ROTE which currently only handles dense tensors, CTF can also deal
with sparse tensors and their contractionsﬁ

6.4.2 TCE

The Tensor Contraction Engine (TCE) [2] provides a domain-specific language
and compiler for tensor contractions. Similar to DxTer, TCE performs search
to generate high-performance code. However, TCE employs different phases of
code generation, where each phase uses different sets of rewrite rules. In each
phase, TCE selects the most promising representation and uses it in the next
phase. While this strategy reduces the search space, it does not guarantee global
optimality. Another important difference is that DxTer explores optimizations
to reduce communication overhead, while TCE does not. We believe this can
be a major performance advantage for DxTer over TCE.

We were not able to directly compare DxTer against TCE in our experi-
mental evaluation for several reasons: First, TCE does not fully support the
BlueGene/Q architecture on which we tested DxTer and CTF, it only provides
basic correctness guarantees but not high performance. Second, the ROTE li-
brary underlying DxTer has rudimentary support for the Cray architecture on
which TCE has been extensively evaluated. In particular, ROTE currently does
not support a special form of communication that enables better performance
on Cray machines

6.4.3 RRR

The Reduction, Recursive broadcast, and Rotate (RRR) [30] framework supports
dense, distributed-memory tensor contractions (with symmetry). Similar to
DxTer, RRR performs search to find good ways of parallelizing computation

8The tensor contractions used in our experimental evaluation do not have symmetry and
only use dense tensors.

9While we do not have a direct comparison between DxTer and TCE, developers of CTF
report that their system outperforms TCE [40] and in our preliminary tests on the Cray
architecture DxTer-generated code performed roughly the same as CTF.
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and optimizing data redistribution. However, a key difference is that, unlike
DxTer, RRR does not support combinations of different tensor contractions.
In our evaluation, we do not compare against RRR because the terms from
Figure [10| involve combinations of tensorsm

6.5 Code Generation for Other SCAs

There are several domain-specific, scientific computing software generation projects [4,
8, 221, 29, [4T], [43] 44] that apply rewrite rules to produce and then search a space

of implementations. Built-to-Order BLAS [4], LGen [41], ATLAS [44], and
AUGMEN [43] target the domain of dense linear algebra, SPIRAL [29] targets
digital signal processing (as well as some types of dense linear algebra code),

and FEniCS targets differential equations using finite element methods [22].

A key distinction between DxTer and these projects is that DxTer’s code
generation algorithm is domain-agnostic, while the afore-mentioned projects are
domain-specific (e.g., [9]). Further, many of these projects target domains for
which no cost model is sufficiently accurate because runtimes are very small and
influenced by intricate cache behavior. Therefore, unlike DxTer, these projects
use empirical evaluation rather than cost models to judge performance. Lastly,
these projects provide no optimality guarantee as they do not search the entire
space of implementations and instead use machine-learning-inspired techniques
to search subspaces [4], 29] 4T], [44].

7 Conclusions

We presented an extensible tool called DxTer for generating high-performance
programs in dataflow domains. Given a knowledge base Bp for domain D and a
high-level specification S of a program, DxTer generates an optimal implemen-
tation of S with respect to knowledge base Bp. DxTer employs a new search
algorithm based on partitioned dataflow graphs and is able to explore huge
search spaces in seconds.

In this paper, we applied DxTer to the domain of tensor contractions, which
have numerous applications in science and engineering. We evaluated the per-
formance of DxTer-generated code on tensor contraction problems that arise
in quantum chemistry and showed that DxTer-generated code can outperform
CTF, a state-of-the-art system specifically designed for tensor contractions.

There are many possibilities for future work. One is to extend our tensor rule
base to admit symmetric tensors. Another is to apply DxTer to other domains
of interest in scientific computing. We expect to consider knowledge bases where
the domain expert can specify the cost of multiple competing resources, such
as runtime and memory, and then to extend our search algorithm to generate
Pareto-optimal solutions for multi-objective optimization problems.

10We compared DxTer-generated code against RRR code for three of the five contractions
reported in [30], and DxTer-generated code was either roughly the same or better than RRR
code.
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