
Under consideration for publication in Formal Aspects of Computing

Deriving Dense Linear Algebra

Libraries
Paolo Bientinesi1, John Gunnels2, Margaret Myers3, Enrique Quintana-Ort́ı4,

Tyler Rhodes3, Robert van de Geijn3, and Field G. Van Zee3

1RWTH Aachen University, Aachen, Germany,

2IBM T.J. Watson Research Center, Yorktown Heights, NY,

3The University of Texas at Austin, Austin, TX,

4 Universidad Jaime I, Castellón, Spain

Abstract. Starting in the late 1960s computer scientists including Dijkstra and Hoare advocated goal-
oriented programming and the formal derivation of algorithms. The chief impediment to realizing this for
loop-based programs was that a priori determination of loop-invariants, a prerequisite for developing loops,
was a task too complex for any but the simplest of operations. Around 2000, these techniques were for the
first time successfully applied to the domain of high-performance dense linear algebra libraries. This has led
to a multitude of papers, mostly published in the ACM Transactions for Mathematical Software, a system
for the mechanical derivation of algorithms, and a high-performance linear algebra library, libflame, that
includes more than a thousand variants of algorithms for more than a hundred linear algebra operations.
To our knowledge, this success story has unfolded with limited awareness on the part the formal methods
community. This paper reports on ten years of experience and is meant to raise that awareness.

Keywords: Formal derivation; Linear algebra libraries; Scientific computing

1. Introduction

Linear algebra libraries reside at the bottom of the scientific computing food chain. While most practical
applications give rise to sparse linear algebra problems, a significant number of them spends most computa-
tional time solving dense matrix problems. Even sparse linear algebra problems often have dense subproblems
to be solved. As a result, LAPACK [ABB+99], a package for dense matrix operations, developed in the late
1980s and early 1990s, is undoubtedly the most commonly used library in this field.

Since 2000, the FLAME project at The University of Texas at Austin, Universidad Jaume I (Spain),
and RWTH Aachen University (Germany) has been pursuing a replacement of LAPACK, libflame [Zee09].
The domain poses a few interesting challenges: scientific computing tends to exploit the latest architectures,

Correspondence and offprint requests to: Robert van de Geijn, Department of Computer Science, The University of Texas at
Austin, 1 University Station, Austin, TX 78712, USA. e-mail: rvdg@cs.utexas.edu

2 P. Bientinesi et al.

demanding the highest possible performance. This requires the design of loop-based algorithms that cast most
computation in terms of high-performing matrix-matrix operations (like matrix-matrix multiplication). The
loop steps through matrices with block sizes chosen so as to optimize the reuse of data in caches. For a
specific operation, there are often multiple algorithmic variants, with one algorithmic variant matching a
given architecture better than the others, yielding higher performance. Thus, a library should incorporate
multiple loop-based algorithms for a given operation so that the best one can be chosen. The LAPACK library
does not include such a wide variety of algorithms. This brings up the question of how to systematically
find algorithmic variants for a given operation. The formal derivation of loop-based algorithms turns out to
be the answer [Bie06, BGM+05, BGdG, Gun01, GGHvdG01, GvdG01, QOvdG03, vdGQO08], as we will
illustrate.

This paper does not provide a scholarly treatment of the field of derivation of algorithms. All we have
ever needed to develop the described techniques is given in the text by Gries [Gri81], which itself is based
on the works of Dijkstra [Dij68, Dij76] and Hoare [Hoa69]. What the paper does provide is what we believe
to be an excellent practical example of the application of formal derivation of loops to the domain of dense
linear algebra.

2. Derivation of Linear Algebra Algorithms

In this section, we walk the reader through the derivation process. The procedure is completely routine for
us, as we have applied it to more than a hundred operations, yielding more than a thousand routines that
are part of the libflame library. We use the solution of the triangular Lyapunov equation as our motivating
example. A reader who is not well-versed in linear algebra should not worry: the methology is systematic to
the point where one does not need to be an expert in order to apply it. A more basic treatment that targets
novices and has been used at the undergraduate level can be found in [vdGQO08].

2.1. The FLAME methodology

A fundamental insight in our project was the realization that the Fundamental Invariance Theorem [Gri81],
used to prove the correctness of a loop in a program, can be formulated as a worksheet that is systematically
filled out, first with assertions (predicates) and then with commands (imperative statements) [BGM+05].
The worksheet, given in Figure 1, will be filled out with predicates that indicate prescribed states and
commands that achieve those states. It is filled out in the order indicated in the column marked by Step.
The predicates Ppre , Ppost , Pinv , and G represent the precondition, postcondition, loop-invarant, and loop-
guard, respectively. The loop-invariant has to be true in four different places: before and after the loop, and
at the top and bottom of the loop body. The other parts of the worksheet will become obvious as we fill it
out for our example.

2.2. Example: the solution of the triangular Lyapunov equation

We now show how the methodology is applied to a prototypical example: the solution of the triangular
Lyapunov equation given by UT X + XU + C = 0 (or, alternatively, UT X + XU = −C), where U is an
upper triangular matrix and C and X are symmetric matrices. Here the superscript “T ” indicates matrix
transposition. The solution X is to be computed. Because of symmetry, only the upper triangular part of C is
stored and is overwritten with the upper triangular part of X . This operation is preceded by a pre-processing
phase (not discussed in this paper) that transforms the general (non-triangular) time-continuous Lyapunov
equation (an operation encountered in control theory [Kha02]) to the given triangular Lyapunov form.

2.3. Filling out the worksheet

At this point, the reader should imagine the worksheet in Figure 2 as being empty and the steps detailed
below as filling out the worksheet in the indicated order.

Step 1: The precondition and postcondition.

Deriving Dense Linear Algebra Libraries 3

Step Annotated Algorithm: [D, E, F, . . .] := op(A, B, C, D, . . .)

1a {Ppre}

4 Partition

where

2 {Pinv}

3 while G do

2,3 {(Pinv) ∧ (G)}

5a Repartition

where

6 {Pbefore}

8 SU

5b Continue with

7 {Pafter}

2 {Pinv}

endwhile

2,3 {(Pinv) ∧ ¬ (G)}

1b {Ppost}

Fig. 1. Blank FLAME worksheet used to derive algorithms.

The precondition is given by C = Ĉ while the postcondition is C = X ∧ UT X + XU = −Ĉ. Here
theˆ is needed to be able to reason about the current contents (state) of variable C relative to the initial

contents, Ĉ. For brevity, properties of the matrices (like triangular structure and sizes) are not expressed in
the precondition nor in other predicates.

Step 2: Deriving the loop-invariants. A fundamental insight is that many algorithms sweep through
matrices (arrays) in a systematic and predictable fashion. In this example, all matrices are either triangular
or symmetric and are partitioned into quadrants since this exposes regions of the matrices that are either
(implicitly of explicitly) zero, for the triangular matrix, or not stored, for the symmetric matrices:

U =

(

UTL UTR

0 UBR

)

, X =

(

XTL XTR

⋆ XBR

)

, C =

(

CTL CTR

⋆ CBR

)

, and Ĉ =

(

ĈTL ĈTR

⋆ ĈBR

)

, (1)

where UTL, XTL, CTL, and ĈTL are all conformal (of the same size) and square. Here TL, TR, BL, and
BR stand for “top-left”, “top-right”, “bottom-left”, and “bottom-right”, respectively. The 0 and ⋆ indicate
submatrices that are entirely zero or not stored, respectively. As the algorithm progresses, the top-left (TL)
quadrants will grow from empty (0× 0) to encompassing the entire matrix.

Substituting the partitioned matrices in (1) into the postcondition yields the expression in Figure 3,
which we call the Partitioned Matrix Expression [Bie06, vdGQO08] (PME). It is a recursive definition of the
operation in terms of the exposed submatrices.

The PME expresses the computation to be performed (which must make the postcondition true) in terms
of the quadrants. Observe that as long as the loop has not finished, only part of the computation expressed
by the PME is satisfied: to come up with potential loop-invariants, one deletes some of the subexpressions
in the PME, as illustrated in Figure 4. As long as the expression that is left is a valid expression that has
the correct size, it is a candidate. Some potential loop-invariants are such that subsequent steps cannot be
performed, which means that they do not yield an (admissible) algorithm. For example, if only the original
contents of the matrix are left after deleting subexpressions from the PME, the loop can clearly not complete

4 P. Bientinesi et al.

Step Annotated Algorithm: C := lyap unb(U, C)

1a
n

C = Ĉ
o

4 Partition U →

UTL UTR

0 UBR

!

, X →

XTL XTR

⋆ XBR

!

, C →

CTL CTR

⋆ CBR

!

where UTL is 0× 0, XTL is 0× 0, CTL is 0× 0, ĈTL is 0× 0

2

8

>

<

>

:

CTL CTR

⋆ CBR

!

=

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

9

>

=

>

;

3 while m(UTL) < m(U) do

2,3

8

>

>

>

<

>

>

>

:

0

B

@

CTL CTR

⋆ CBR

!

=

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

1

C

A

∧ (m(UTL) < m(U))

9

>

>

>

=

>

>

>

;

5a Repartition

UTL UTR

0 UBR

!

→

0

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

A
,

XTL XTR

⋆ XBR

!

→

0

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

A
, · · ·

where υ11, χ11, γ11 are scalars

6

8

>

>

>

<

>

>

>

:

0

B

@

C00 c01 C02

⋆ γ11 cT

12

⋆ ⋆ C22

1

C

A
=

0

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

A
∧

8

>

>

>

<

>

>

>

:

UT

00
X00 + X00U00 = −Ĉ00

UT

00
x01 + X00u01 + x01υ11 = −ĉ01

UT

00X02 + X00U02 + x01uT

12 + X02U22 = −Ĉ02

χ11 = γ̂11 ∧ xT

12 = ĉT

12 ∧X22 = Ĉ22

9

>

>

>

=

>

>

>

;

8

γ11 := (−γ11 − 2uT

01
c01)/(2υ11)

cT

12
:= −cT

12
− uT

01
C02 − cT

01
U02 − γ11uT

12

Solve υ11xT

12 + xT

12U22 = cT

12 overwriting cT

12 with xT

12

5b Continue with

UTL UTR

0 UBR

!

←

0

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

A
,

XTL XTR

⋆ XBR

!

←

0

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

A
, · · ·

7

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0

B

@

C00 c01 C02

⋆ γ11 cT

12

⋆ ⋆ C22

1

C

A
=

0

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

A

∧

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

UT

00X00 + X00U00 = −Ĉ00

UT

00
x01 + X00u01 + x01υ11 = −ĉ01

UT

00
X02 + X00U02 + x01uT

12
+ X02U22 = −Ĉ02

2uT

01x01 + 2υ11χ11 = −γ̂11

uT

01
X02 + υ11xT

12
+ xT

01
U02 + χ11uT

12
+ xT

12
U22 = −ĉT

12

X22 = Ĉ22

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

2

8

>

<

>

:

CTL CTR

⋆ CBR

!

=

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

9

>

=

>

;

endwhile

2,3

8

>

>

>

<

>

>

>

:

0

B

@

CTL CTR

⋆ CBR

!

=

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

1

C

A

∧¬ (m(UTL) < m(U))

9

>

>

>

=

>

>

>

;

1b
˘

UT X + XU = −C
¯

Fig. 2. Worksheet for deriving the unblocked algorithm for solving the triangular Lyapunov equation corresponding to Loop-
invariant 3.

Deriving Dense Linear Algebra Libraries 5

Substituting the partitioned operands in (1) into UT X + XU = −Ĉ (the postcondition), yields
(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

(

UT

TL
0

UT

TR
UT

BR

)(

XTL XTR

⋆ XBR

)

+

(

XTL XTR

⋆ XBR

)(

UTL UTR

0 UBR

)

=

(

−ĈTL −ĈTR

⋆ −ĈBR

)

which (by linear algebra manipulation) is equivalent to

(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR + XBRUBR = −ĈBR − (UT

TR
XTR + XT

TR
UTR)

Fig. 3. The Partitioned Matrix Expression (PME) (recursive definition of the operation) for overwriting C with the solution
of the triangular Lyapunov equation.

Loop-invariant 1:
(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR+XTRUBR = + ĈTR−XTLUTR

UT

BR
XBR+XBRUBR = + ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant 2:
(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR+XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = + ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant 3:
(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = + ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant 4:
(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = −ĈBR − (UT

TR
XTR + XT

TR
UTR)

Fig. 4. Loop-invariants for the triangular Lyapunov equation.

in a state where the postcondition holds; this exhibits itself when no loop-guard can be found in Step 3.
Invariants are thus systematically derived from the PME.

We will now focus on one loop-invariant (Loop-invariant 3) as we fill out the remainder of the worksheet
in Figure 2. The methodology yields algorithms corresponding to the other loop-invariants in an analogous
fashion.

Step 3: Loop guard G. We know that after the loop completes, {Pinv ∧¬G} is true. No commands exists
between this and the postcondition {Ppost}. Thus, G must be chosen so that

((

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

∧ ¬G

implies UT X + XU = −C. This yields the (nonunique) choice for the loop-guard: G = (m(UTL) < m(U)),

6 P. Bientinesi et al.

where m(·) returns the row dimension of the argument. (An implicit assumption here is that matrices UTL,

XTL, CTL, and ĈTL are always kept conformal, i.e., of the same size and square.)

Step 4: Initialization. The initialization is an indexing step: the matrices are partitioned as in (1). The
fact that this must place the variables in a state where Pinv holds dictates the choice wherein the top-left
quadrants are 0× 0 (empty). There could be other choices for the initialization, but those would invariably
involve performing computation with the matrices, altering their contents.

Step 5: Moving through the matrices. In Steps 5a and 5b, submatrices are exposed so that we make
progress through the matrices. Here, thick lines have semantic meaning: a new row and column are exposed.
Updates will happen in the loop body, and then that row and column are moved across the thick line to
capture the traversal through the matrices.

In exposing submatrices, we use notational conventions that allow special properties of the submatrices
to be easily recognized: lower case Greek letters denote scalars, lower case Roman letters denote column
vectors, and upper case Roman letter denote matrices. Submatrices like uT

12 can be easily recognized as
being part of a row and hence a row vector (transposed column vector).

The fact that the top-left quadrant is initially empty (0×0) and must eventually envelop the entire matrix
dictates how the algorithm traverses through the matrices. The traversal through the matrix, together with
the finite size of the operands, means that there is a natural, monotonically decreasing loop-bound function,
t = n−m(UTL), that is bounded below. This ensures that the loop terminates.

Step 6: State before the update. The commands in Step 5a are merely indexing operations. Since no
computation occurs between the top of the loop and Step 6 in the worksheet, the state of the submatrices that
are exposed by Step 5a can be determined by textual substitution and linear algebra manipulation, as illus-
trated in Figure 5. This yields the state described by Step 6. The invariant together with the repartitioning
in Step 5a dictates the predicate in Step 6.

Step 7: State after the update. Similarly, the commands in Step 5b are merely indexing operations. Since
the invariant must again hold, the state in Step 7 can be systematically derived by textual substitution of
the submatrices in Step 5b into the loop-invariant and linear algebra manipulation, as illustrated in Figure 6.
The loop-invariant together with the redefinition of the quadrants in Step 5b dictate the predicate in Step 7.

Step 8: Update. The update in Step 8 is now dictated by the state that the variables are in at Step 6 and
the state that they must be in at Step 7:

• C00 already contains X00, the solution to UT
00X00 + X00U00 = −Ĉ00, and hence is not updated.

• c01 already contains x01, the solution to UT
00x01 + X00u01 + x01υ11 = −ĉ01, and hence is not updated.

• C02 already contains X02, the solution to UT
00X02 + X00U02 + x01u

T
12 + X02U22 = −Ĉ02, and hence is not

updated.

• γ11 contains χ11 = γ̂11 and needs to be overwritten by the solution, χ11, of 2uT
01x01 + 2υ11χ11 = −γ̂11.

Recognizing that at this point c01 contains x01 and γ11 contains γ̂11, this can be accomplished by updating
γ11 with γ11 := (−γ11 − 2uT

01c01)/(2υ11), where := is used for assignment.

• cT
12 holds xT

12 = ĉT
12 and needs to be overwritten with the solution, xT

12, of uT
01X02 + υ11x

T
12 + xT

01U02 +
χ11u

T
12 + xT

12U22 = −ĉT
12. Recognizing that X02 has overwritten C02, etc., this can be accomplished by

updating it with the solution, xT
12, of υ11x

T
12 + xT

12U22 = −cT
12 − uT

01C02 − cT
01U02 − γ11u

T
12:

– First, we update cT
12 := −cT

12 − uT
01C02 − cT

01U02 − γ11u
T
12.

– Next, we compute cT
12 := cT

12 (υ11I + U22)
−1

. This requires the solution of a triangular system of

equations, since it is equivalent to computing the solution to (υ11I + U22)
T

x12 = c12 and overwriting
cT
12 with xT

12.

We reiterate that the state in Step 6 and the desired state in Step 7 dictate how the variables (submatrices
of C) must be updated.

Resulting algorithm. The resulting algorithm, stripped of the annotations that were used to derive it, is
given in Figure 7 (left), executing only the commands indicated under Variant 3.

Deriving Dense Linear Algebra Libraries 7

Step 5a, given by

(

UTL UTR

0 UBR

)

→

U00 u01 U02

0 υ11 uT
12

0 0 U22

,

(

XTL XTR

⋆ XBR

)

→

X00 x01 X02

⋆ χ11 xT
12

⋆ ⋆ X22

,

(

CTL CTR

⋆ CBR

)

→

C00 c01 C02

⋆ γ11 cT
12

⋆ ⋆ C22

,

(

ĈTL ĈTR

⋆ ĈBR

)

→

Ĉ00 ĉ01 Ĉ02

⋆ γ̂11 ĉT
12

⋆ ⋆ Ĉ22

,

expresses

UTL → U00 UTR →
(

u01 U02

)

0 UBR →

(

υ11 uT
12

0 U22

)

,

XTL → X00 XTR →
(

x01 X02

)

⋆ XBR →

(

χ11 xT
12

⋆ X22

)

,

CTL → C00 CTR →
(

c01 C02

)

⋆ CBR →

(

γ11 cT
12

⋆ C22

)

,

ĈTL → Ĉ00 ĈTR →
(

ĉ01 Ĉ02

)

⋆ ĈBR →

(

γ̂11 ĉT
12

⋆ Ĉ22

)

.

Substituting these into the state of the variables at the top of the loop (the invariant) given by

(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

yields the state of the exposed submatrices:

C00

(

c01 C02

)

(

⋆

⋆

) (

γ11 cT
12

⋆ C22

)

=

X00

(

x01 X02

)

(

⋆

⋆

) (

χ11 xT
12

⋆ X22

)

∧

UT
00X00 + X00U00 = −Ĉ00

UT
00

(

x01 X02

)

+
(

x01 X02

)

(

υ11 uT
12

0 U22

)

= −
(

ĉ01 Ĉ02

)

−X00

(

u01 U02

)

(

χ11 xT
12

⋆ X22

)

=

(

γ̂11 ĉT
12

⋆ Ĉ22

)

.

Algebraic manipulation of the above expression yields Step 6 in the worksheet.

Fig. 5. Systematic derivation of the state of the variables at Step 6 in Figure 2.

2.4. Other algorithms

Other algorithms are derived from the other loop-invariants. In addition, blocked algorithms, which cast
most computation in terms of matrix-matrix operations and hence can attain higher performance, can be
derived by moving through the matrix several rows and columns at a time. Resulting algorithms are given
in Figure 7. In the blocked algorithms, the operation

Solve UT

II
XIJ + XIJUJJ = CIJ

requires the solution of the Sylvester equation. Algorithms for that operation were derived in [QOvdG03].

8 P. Bientinesi et al.

Substituting the redefinition of quadrants in Step 5b

(

UTL UTR

0 UBR

)

←

U00 u01 U02

0 υ11 uT
12

0 0 U22

,

(

XTL XTR

⋆ XBR

)

←

X00 x01 X02

⋆ χ11 xT
12

⋆ ⋆ X22

,

(

CTL CTR

⋆ CBR

)

←

C00 c01 C02

⋆ γ11 cT
12

⋆ ⋆ C22

,

(

ĈTL ĈTR

⋆ ĈBR

)

←

Ĉ00 ĉ01 Ĉ02

⋆ γ̂11 ĉT
12

⋆ ⋆ Ĉ22

into the desired state of the variables at the bottom of the loop (the invariant)

(

CTL CTR

⋆ CBR

)

=

(

XTL XTR

⋆ XBR

)

∧

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

results in

C00 c01 C02

⋆ γ11 cT
12

⋆ ⋆ C22

=

X00 x01 X02

⋆ χ11 xT
12

⋆ ⋆ X22

∧

(

U00 u01

0 υ11

)T (

X00 x01

⋆ χ11

)

+

(

X00 x01

⋆ χ11

)(

U00 u01

0 υ11

)

= −

(

Ĉ00 ĉ01

⋆ γ̂11

)

(

U00 u01

0 υ11

)T (

X02

xT
12

)

+

(

X02

xT
12

)

U22 = −

(

Ĉ02

ĉT
12

)

−

(

X00 x01

⋆ χ11

)(

U02

uT
12

)

X22 = Ĉ22.

Algebraic manipulation yields the expression in Step 7.

Fig. 6. Systematic derivation of the state of the variables at Step 7 in Figure 2.

2.5. Discussion

It is the notation we use that facilitates the derivation process: by presenting submatrices rather than
index ranges, the derived algorithm avoids much of the indexing clutter (both in the presentation of the
algorithm and the details of the proof of correctness) that is typically found in conventional loop-based
algorithms. Indeed, the algorithm exposes only one loop even though it requires approximately n3 floating
point operations. The other loops are hidden inside of the linear algebra operations that form the body of
the loop. Algorithms for these operations themselves can be, and have been, formally derived, using the same
techniques as described in this paper.

2.6. From algorithm to code

Using a correct algorithm as the basis for your implementation does not guarantee that the resulting code
will be correct. To preserve the correctness of the algorithm as we translate it to code, we defined APIs for
different languages such that the code closely resembles the algorithm [BQOvdG05, vdGQO08, VZCvdG+09].
An example of this is given in Figure 8. In that figure, unblocked Variant 3 is coded in M-script, the scripting
language of Matlab [MLB87].

We created a handful of routines that partition and repartition the matrices. White-space is used to make
the code resemble the algorithm as closely as possible. The code in Figure 8 gave the correct answer the
first time it was run. We have developed APIs for the C programming language [BQOvdG05, vdGQO08,

Deriving Dense Linear Algebra Libraries 9

Algorithm: C := lyap unb(U, C)

Partition U →

UTL UTR

0 UBR

!

, X → · · ·

where UTL is 0×0, XTL is 0×0,
CTL is 0× 0

while m(UTL) < m(U) do

Repartition

UTL UTR

0 UBR

!

→

0

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

A
, · · ·

where υ11, χ11, γ11 are scalars

Variant 1

c01 := −c01 − C00u01

Solve UT

00c01 + c01υ11 = c01
γ11 := −γ11 − uT

01
c01 − cT

01
u01

γ11 := γ11/(2υ11)

Variant 2

Solve UT

00
c01 + c01υ11 = c01

γ11 := −γ11 − uT

01
c01 − cT

01
u01

γ11 := γ11/(2υ11)

C02 := C02 − c01uT

12

cT

12
:= −cT

12
− γ11uT

12
− cT

01
U02

Variant 3

γ11 := −γ11 − 2uT

01
c01

γ11 := γ11/(2υ11)

cT

12 := −cT

12 − uT

01C02 − cT

01U02 − γ11uT

12

Solve υ11cT

12
+ cT

12
U22 = cT

12

Variant 4

γ11 := γ11/(2υ11)

cT

12
:= cT

12
− γ11uT

12

Solve υ11cT

12
+ cT

12
U22 = cT

12

C22 := C22 − u12cT

12 − c12uT

12

Continue with

UTL UTR

0 UBR

!

←

0

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

A
, · · ·

endwhile

Algorithm: C := lyap blk(U, C)

Partition U →

UTL UTR

0 UBR

!

, X → · · ·

where UTL is 0×0, XTL is 0×0,
CTL is 0× 0

while m(UTL) < m(U) do

Determine block size b
Repartition

UTL UTR

0 UBR

!

→

0

B

@

U00 U01 U02

0 U11 U12

0 0 U22

1

C

A
, · · ·

where U11, X11, C11 are b× b

Variant 1

C01 := −C01 − C00U01

Solve UT

00X01 + X01U11 = C01

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11
X11 + X11U11 = C11

Variant 2

Solve UT

00
X01 + X01U11 = C01

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11X11 + X11U11 = C11

C02 := C02 − C01U12

C12 := −C12 − C11U12 − CT

01
U02

Variant 3

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11
X11 + X11U11 = C11

C12 := −C12 − UT

01C02 − CT

01U02 −X11U12

Solve UT

11
X12 + X12U22 = C12

Variant 4

Solve UT

11X11 + X11U11 = C11

C12 := C12 − C11U12

Solve UT

11X12 + X12U22 = C12

C22 := C22 − UT

12C12 − CT

12U12

Continue with

UTL UTR

0 UBR

!

←

0

B

@

U00 U01 U02

0 U11 U12

0 0 U22

1

C

A
, · · ·

endwhile

Fig. 7. Algorithms for computing the solution to the triangular Lypunov equation. Left: unblocked algorithms. Right: blocked
algorithms.

VZCvdG+09, Zee09]. Additionally, the recently developed Elemental library for distributed memory archi-
tectures uses a similar API [PvdGB].

3. Performance

In Figure 9, we show the performance of different algorithmic variants that are implemented as part of
libflame, blocked and unblocked, on a Dell PowerEdge R900 server, using four cores and double precision
arithmetic. We report performance in GFLOPS (billions of floating point operations per second) by taking
the known floating point operation count for this operation, n3, dividing it by the time required to complete

10 P. Bientinesi et al.

function [C_out] = lyap_unb_var3(U, C)
[UTL, UTR, ...

UBL, UBR] = FLA_Part_2x2(U, ...
0, 0, ’FLA_TL’);

[CTL, CTR, ...
CBL, CBR] = FLA_Part_2x2(C, ...

0, 0, ’FLA_TL’);
while (size(CTL, 1) < size(C, 1))

[U00, u01, U02, ...
u10t, upsilon11, u12t, ...
U20, u21, U22] = ...

FLA_Repart_2x2_to_3x3(UTL, UTR, ...
UBL, UBR, ...
1, 1, ’FLA_BR’);

[C00, c01, C02, ...
c10t, gamma11, c12t, ...
C20, c21, C22] = ...

FLA_Repart_2x2_to_3x3(CTL, CTR, ...
CBL, CBR, ...
1, 1, ’FLA_BR’);

%--%
gamma11 = -gamma11 - 2 * u01’ * c01;
gamma11 = gamma11 / (2 * upsilon11);
c12t = -c12t - u01’ * C02 - c01’ * U02 ...

- gamma11 * u12t;
c12t = SolveSylv(upsilon11, U22, c12t);
%---%
[CTL, CTR, ...

CBL, CBR] = FLA_Cont_with_3x3_to_2x2(...
C00, c01, C02, ...
c10t, gamma11, c12t, ...
C20, c21, C22, ’FLA_TL’);

[UTL, UTR, ...
UBL, UBR] = FLA_Cont_with_3x3_to_2x2(...

U00, u01, U02, ...
u10t, upsilon11, u12t, ...
U20, u21, U22, ’FLA_TL’);

end
C_out = [CTL, CTR

CBL, CBR];
return

Fig. 8. M-script implementation of unblocked Variant 3.

the computation, and then scaling it by dividing it by 109. The commands in the body of the loop map
are implemented as calls to Basic Linear Algebra Subprograms (BLAS) [LHKK79, DDCHH88, DDCHD90],
an interface to commonly encountered linear algebra operations, as well as other routines supported by
libflame, which themselves call BLAS operations. As part of our project, we have derived a full library
of these operations, but for this experiment we are depending on optimized implementations provided by
the GotoBLAS2 implementation [GvdG08b, GvdG08a]. For the blocked algorithms, a block size of 128 was
used. While most of our papers focus on achieving high performance, this paper does not and hence we do
not go into further details regarding the experiments.

The important thing to note is that distinct variants give rise to different performance and that therefore
there is a benefit to identifying all algorithmic variants. For other operations, targeting sequential, multi-
threaded, and distributed memory architectures, we have consistently shown the benefit of having a choice
of algorithms. Several illuminating examples, including derivations and performance comparisons, can be
found in [GGHvdG01, BGM+05, QOvdG03, vdGQO08, BGdG].

Deriving Dense Linear Algebra Libraries 11

0 500 1000 1500 2000 2500 3000
0

5

10

15

problem size

G
F

LO
P

S

36% of peak
blk variant 1
blk variant 4
blk variant 2
blk variant 3
unb variant 1
unb variant 2
unb variant 4
unb variant 3

Fig. 9. Performance of the various algorithms, on a four core architecture.

4. Past, Current, and Future Directions

This paper gives a refined presentation of the methodology already proposed in [BGM+05, vdGQO08]. In
this section, we discuss the developments that this work has enabled over the last decade, the current impact
of the project, and future directions.

Mechanical derivation of linear algebra libraries. Early on in the project it was recognized that
with the introduction of the worksheet, the methodology became systematic to the point where it could
be automated. This led to a mechanical system, implemented in Mathematica, that does just that [Bie06].
For an operation like the solution of a triangular Lyapunov equation, that system performs the steps de-
scribed in Section 2 mechanically, provided that a loop-invariant is given by the user. The system outputs
an algorithm, M-script implementation, and C implementation. More recently, a system that can auto-
matically generate PMEs has been developed [FTB11b], as well as one that then automatically generates
loop-invariants [FTB11a]. Combining these efforts would yield a system that, given a linear algebra operation,
would automate all steps described in this paper.

Scope. As part of the libflame library, the illustrated methodology has been applied to all operations
supported by the BLAS and a large number of operations supported by the LAPACK library. In all, the
libflame library, written in C, comprises about 1500 implementations of algorithms for about 150 distinct
operations (operations that differ in whether they work, for example, with upper or lower triangular matrices
are counted separately). Most of these were formally derived as described in this paper.

Formal derivation of stability analyses. The notion of correctness of an algorithm is somewhat different
in the presence of round-off error. There, we must instead establish that an algorithm is numerically stable.
We have extended the derivation process and worksheet described in this paper so that once algorithms have
been derived, numerical stability results can be systematically derived in a similar fashion [Bie06, BvdG11].

12 P. Bientinesi et al.

Sparse linear solvers. As mentioned in the introduction, sparse iterative solvers for linear algebra problems
are more commonly used by applications. These are based on Krylov subspace methods, the Conjugate Gra-
dient method being one example. Recently, we showed that the formal derivation methodology we developed
can be extended to the formal derivation of these Krylov subspace methods [EBvdG10].

5. Conclusion

We have demonstrated how formal derivation of loop-based algorithms is both viable and valuable for the
domain of dense linear algebra. Key to the success of the methodology has been a notation that hides indexing
details when using arrays and subarrays, the definition of an operation to be implemented via the Partitioned
Matrix Expression (PME), a systematic way for identifying loop-invariants, and a framework (the worksheet)
that captures the Fundamental Invariance Theorem in a way that clearly links it to a loop-based algorithm.

Additional information

In this document, we cite a large number of our own papers. This is intended to convey how broadly
applicable the methodology is and the extend of its practical impact. This, however, obscures what papers are
particularly important for a reader who wants to learn more. We recommend first reading the paper in which
the worksheet was initially proposed [BGM+05] and the book that we wrote for a general audience, at the
undergraduate level [vdGQO08]. The FLAME project website, http://www.cs.utexas.edu/users/flame/
is also a useful resource.

Acknowledgments

We thank Jay Misra for encouraging us to target the formal methods community with this paper and the
members of the FLAME team for their contributions over the last ten years.

Researchers at UT-Austin were supported in part by NSF grants CCF-0342369, CCF-0540926, CCF-
0702714, CCF-0704217 (REU Supplement), OCI-0850750, CCF-0917096, CCF-0917167, the UT-Austin In-
stititue for Computational Engineering and Sciences (ICES), Intel, Microsoft, National Instruments (through
a grant from Dr. James Truchard), and NEC Systems (America), Inc. Researchers at Universidad Jaume I
(Spain) were supported in part by the Spanish Ministry of Science and Innovation through grant TIN2008-
06570-C04 and a grant from NVIDIA. Researchers at RWTH Aachen University gratefully acknowledge
financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant
GSC 111.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

Formal derivations of algorithms for the solution of the triangular Lyapunov equation was first pursued
by some of the authors as part of a Freshman Research Initiative project at UT-Austin that also involved
Eileen Martin, Burns Healey, and Nick Wiz.

References

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ Guide (Third ed.). Philadelphia, PA, USA,
1999.

[BGdG] Paolo Bientinesi, Brian Gunter, and Robert A. Van de Geijn. Families of algorithms related to the inversion of a
symmetric positive definite matrix. ACM Trans. Math. Soft., 35(1).

[BGM+05] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn.
The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1–26, March 2005.

[Bie06] Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algorithms. PhD
thesis, Department of Computer Sciences, The University of Texas, 2006. Technical Report TR-06-46. September
2006.

[BQOvdG05]Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Representing linear algebra algorithms
in code: The FLAME application programming interfaces. ACM Trans. Math. Soft., 31(1):27–59, March 2005.

Deriving Dense Linear Algebra Libraries 13

[BvdG11] Paolo Bientinesi and Robert A. van de Geijn. Goal-oriented and modular stability analysis. SIAM Journal on
Matrix Analysis and Applications, 32(1):286–308, 2011.

[DDCHD90] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra subpro-
grams. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[DDCHH88] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of FORTRAN
basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[Dij68] E. W. Dijkstra. A constructive approach to the problem of program correctness. BIT, 8:174–186, 1968.
[Dij76] E. W. Dijkstra. A discipline of programming. Prentice Hall, 1976.
[EBvdG10] Victor Eijkhout, Paolo Bientinesi, and Robert van de Geijn. Towards mechanical derivation of Krylov solver

libraries. Procedia Computer Science, 1(1):1799 – 1807, 2010. Proceedings of ICCS 2010, http://www.
sciencedirect.com/science/publication?issn=18770509&volume=1&issue=1.

[FTB11a] Diego Fabregat-Traver and Paolo Bientinesi. Automatic generation of loop-invariants for matrix operations. In
Proceedings of the 11th International Conference on Computational Science and its Applications, 2011. To appear.
Also TR AICES-2010/02-1, AICES, RWTH Aachen.

[FTB11b] Diego Fabregat-Traver and Paolo Bientinesi. Knowledge-based automatic generation of partitioned matrix expres-
sions. In Proceedings of the 13th International Workshop on Computer Algebra in Scientific Computing, 2011. To
appear. Also TR AICES-2010/01-3, AICES, RWTH Aachen.

[GGHvdG01]John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal Linear
Algebra Methods Environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.
[Gun01] John A. Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense Linear Algebra Algorithms.

PhD thesis, Department of Computer Sciences, The University of Texas, December 2001.
[GvdG01] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance linear algebra libraries. In

Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Architecture of Scientific Software, pages 193–210.
Kluwer Academic Press, 2001.

[GvdG08a] Kazushige Goto and Robert van de Geijn. High-performance implementation of the level-3 BLAS. ACM Trans.
Math. Soft., 35(1):1–14, 2008.

[GvdG08b] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Soft., 34(3: Article 12, 25 pages), May 2008.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, pages 576–580,
October 1969.

[Kha02] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 2002.
[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for Fortran usage.

ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.
[MLB87] C. Moler, J. Little, and S. Bangert. Pro-Matlab, User’s Guide. The Mathworks, Inc., 1987.
[PvdGB] Jack Poulson, Robert van de Geijn, and Jeffrey Bennighof. Parallel algorithms for reducing the generalized

Hermitian-definite eigenvalue problem. ACM Trans. Math. Soft. submitted.
[QOvdG03] Enrique S. Quintana-Ort́ı and Robert A. van de Geijn. Formal derivation of algorithms: The triangular Sylvester

equation. ACM Trans. Math. Soft., 29(2):218–243, June 2003.
[vdGQO08] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming Matrix Computations.

http://www.lulu.com/content/1911788, 2008.
[VZCvdG+09]Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-Ort́ı.

Introducing: The libflame library for dense matrix computations. IEEE Computation in Science & Engineering,
11(6):56–62, 2009.

[Zee09] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

