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Abstract

We present families of algorithms for operations related to the computation of the inverse of a Sym-
metric Positive Definite (SPD) matrix: Cholesky factorization, inversion of a triangular matrix, mul-
tiplication of a triangular matrix by its transpose, and one-sweep inversion of an SPD matrix. These
algorithms are systematically derived and implemented via the Formal Linear Algebra Methodology En-
vironment (FLAME), an approach for developing linear algebra algorithms. How different members of
these families of algorithms are more or less suited for a given architecture is demonstrated via imple-
mentations for sequential, shared-memory, and distributed memory parallel architectures. Performance
on various platforms is reported.

1 Introduction

We demonstrate how to create a set of provably correct dense linear algebra algorithms to attain high
performance for a variety of settings and architectures. Our derivation methods [17, 3] have successfully been
used to derive linear algebra operations such as the level-3 BLAS [11] and LU factorization [17], in addition
to the more complex solution of the triangular Sylvester equation [21, 4]. This paper applies the methods
to the inverse of a Symmetric Positive Definite (SPD) matrix. Our implementations were developed for the
computation of the covariance matrix of a linear least-squares problem. This operation has a particular value
to the Earth science and aerospace communities, where the solution of large overdetermined dense linear
systems is still a common procedure, and the statistics of the solution are often desired [18, 27, 23].

The inverse of an SPD matrix A, is typically obtained by first computing the upper triangular Cholesky
factor R of A, A = RT R, after which A−1 = (RT R)−1 = R−1R−T can be computed by first inverting
the matrix R (U = R−1) and then multiplying the result by its transpose (A−1 = UUT ). We will show
that each of these three operations can be orchestrated so that the result overwrites the input without
requiring temporary space. It will also be shown that A can be overwritten by its inverse without the

∗This work was supported in part by NSF grants ACR-0203685, ACI-0305163, and CCF-0342369. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
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explicit computation of these intermediate results, requiring only a single sweep through the matrix, as was
already briefly mentioned in [22].

Another aspect of this work lies with the fact that different algorithmic variants of the same operation
will perform differently based on the system architecture being used. Differences in memory configurations,
BLAS implementations, compilers and many other factors may favor one variant over another. The ability
to derive a suite of algorithms, and to then choose the most appropriate variant, allows the user to obtain
improved performance for their particular application.

This paper makes the following contributions:

• It provides what we believe to be the most complete treatment to date of loop-based algorithms for
computing the studied operations.

• It shows the benefit of using a single sweep algorithm for computing an operation when the same can
be computed via several intermediate steps [22].

• It demonstrates that on different architectures different algorithmic variants achieve superior perfor-
mance. This motivates the necessity for libraries like LAPACK [2], ScaLAPACK [7], FLAME, and
PLAPACK [28, 1] to include multiple algorithmic variants for every supported operation.

• It highlights the benefits of deriving and implementing high-performance linear algebra algorithms via
the Formal Linear Algebra Methodology Environment (FLAME) [17, 3, 5] approach.

The organization of the paper is as follows: Section 2 introduces the systematic approach for deriving
algorithms by applying it to the example of the Cholesky factorization. Having demonstrated the method,
Sections 3 and 4 illustrate how the same technique can be applied to the problem of the triangular matrix
inversion and the multiplication of a triangular matrix by its transpose. Section 5 shows how the three
individual operations of the SPD matrix inversion can be combined into a single-sweep algorithm using the
same formal derivation methodology. Section 6 provides some brief remarks regarding the numerical stability
of the derived algorithms. Section 7 highlights the performance of the newly derived algorithms. Section 8
gives a final summary and comments.

2 Cholesky Factorization: A := Chol(A)

We shall use the Cholesky factorization to demonstrate the formal derivation approach. The Cholesky
factorization of an SPD matrix A is given by A = RT R where R is upper triangular. This is the first step
towards the inversion of an SPD matrix.

2.1 Traditional derivation

Before demonstrating the FLAME approach, let us review how one particular algorithm for the Cholesky
factorization is usually motivated. Consider A = RT R and partition1

A =
(

A00 a01

? α11

)
and R =

(
R00 r01

0 ρ11

)
.

1We adopt the commonly used notation where Greek lower case letters refer to scalars, lower case letters refer to (column)
vectors, and upper case letters refer to matrices. The ? refers to the symmetric part of A that neither stored nor updated.
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Algorithm: A := Chol unb var1(A)

Partition A→
ţ

ATL ATL

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ATR

? ABR

ű
→

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

where α11 is a scalar

a01 := A−T
00 a01 (Trsv)

α11 := α11 − aT
01a01 (Dot)

α11 :=
√

α11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

endwhile

Algorithm: A := Chol blk var1(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A01 := A−T
00 A01 (Trsm)

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Figure 1: Unblocked and blocked algorithms for computing the Cholesky factorization (Variant 1).

By substituting the partitioned matrices A and R into A = RT R we find that
(

A00 a01

? α11

)
=

(
R00 r01

0 ρ11

)T (
R00 r01

0 ρ11

)
=

(
RT

00R00 RT
00r01

? rT
01r01 + ρ2

11

)
,

from which we conclude that

R00 = Chol(A00) r01 = R−T
00 a01

? ρ11 =
√

(α11 − rT
01r01)

.

These three equalities motivate the algorithm in Fig. 1(left). To understand that algorithm, consider that
before every iteration, quadrant ATL has already been overwritten by RTL. In the body of the loop, a next
row and column are exposed, and updated. The row and the column are then included in ATL so that at
the end of the iteration, again ATL contains the result RTL. Eventually ATL envelops the entire matrix, at
which point A contains the desired R.

Remark 1. In the figures in this paper we further clarify the operations that are being performed by
indicating the BLAS-like operation that would be used to implement it. These are tabulated in Fig. 2.

In order to attain high performance, the computation is typically cast in terms of matrix-matrix mul-
tiplications by so-called blocked algorithms [12]. For the Cholesky factorization, a blocked version of the
algorithm can be derived by partitioning

A →
(

A00 A01

? A11

)
and R →

(
R00 R01

? R11

)
,

where A11 and R11 are b× b. By substituting into A = RT R we find that

R00 = Chol(A00) R01 = R−T
00 A01

? R11 = Chol(A11 −RT
01R01)

.
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Name Operation
Dot Dot product
Gemv General matrix-vector multiply
Syr Symmetric rank-1 update
Trsv Triangular solve
Gepp General rank-k update
Gemp Matrix times panel-of-columns multiply
Gepm Panel-of-rows times Matrix multiply
Symm Symmetric matrix multiply
Syrk Symmetric rank-k update
Trmm Triangular matrix multiplication
Trsm Triangular solve with multiple right-hand sides

Figure 2: Basic operations used to implement the different algorithms.

A blocked algorithm is then given in Fig. 1(right).

2.2 Systematic derivation

We now show how the same algorithmic variant for the Cholesky factorization, as well as other variants,
can be created systematically using the FLAME methodology [3]. The idea is that the user fills out a
“worksheet” in a prescribed sequence of steps, so that various conditions are met at specific stages of the
computation. The manner in which the worksheet is populated guarantees the correctness of the algorithm.
As an example, the worksheet for the derivation of the blocked algorithm from Section 2.1 is illustrated in
Fig. 3. The order in which the worksheet was filled out is given in the column marked “Step”. Assertions
(predicates) indicating the desired state of variables at various points in the algorithm are given in the grey
boxes. These desired states then dictate the updates to variables, in the clear boxes. Further details for each
of the various steps is provided below.

Step 1: Precondition and postcondition. The precondition and postcondition for computing A :=
Chol(A) are given by

(
A = Â

)
and

(
A = R ∧R = Chol(Â)

)
, respectively. Here Â denotes the original

contents of the matrix A and the matrix R is only introduced to express the postcondition as a constraint.
The predicates are entered in Steps 1(a) and 1(b) in Fig. 3.

Step 2: Loop Invariant Pinv . Next, we choose what the state (contents) of matrix A must be before
and after every iteration. For the algorithms in Section 2.1, the state that is maintained is given by the
loop-invariant: (

ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

)
.

The predicate Pinv is entered in four places, marked Step 2 in Fig. 3.
Steps 3 and 4: We first determine the loop-guard G, which is the condition under which the computation

remains in the loop. If we choose G to equal m(ATL) < m(A), then the predicate ¬G means that the
matrices ATL and ÂTL equal all of A and Â, respectively. As a consequence, the predicate

((
ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

))
∧ ¬G

implies the desired result Ppost : A = RTL ∧RTL = Chol(Â). The loop-guard G is entered in Step 3.

4



Step Annotated Algorithm: [D, E, F, . . .] := op(A, B, C, D, . . .)

1a
n

A = Â
o

4 Partition X →
ţ

XT L XT R

? XBR

ű

where XT L, X ∈ {A, Â, R}, are 0× 0

2

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť)

3 while m(A) 6= m(AT L) do

2,3

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť
∧m(A) 6= m(AT L)

)

5a Determine block size b
Repartition

ţ
XT L XT R

? XBR

ű
→

0
@

X00 X01 X02

? X11 X12
? ? X22

1
A

where X11, X ∈ {A, Â, R}, are b× b

6

8
><
>:

0
@

A00 A01 A02

? A11 A12
? ? A22

1
A =

0
B@

R00 Â01 Â02

? Â11 Â12

? ? Â22

1
CA ∧ R00 = Chol

ş
Â00

ť
9
>=
>;

8
A01 := R01 = triu(A00)

−T A01 (= R−T
00 A01)

A11 := R11 = Chol
ş

A11 − triu(AT
01A01)

ť ş
= Chol

ş
A11 − triu(RT

01R01)
ťť

5b Continue withţ
XT L XT R

? XBR

ű
←

0
@

X00 X01 X02
? X11 X12

? ? X22

1
A, X ∈ {A, Â, R}

7

8
>>>>><
>>>>>:

0
@

A00 A01 A02
? A11 A12

? ? A22

1
A =

0
B@

R00 R01 Â02

? R11 Â12

? ? Â22

1
CA∧

ţ
R00 R01
0 R11

ű
= Chol

ţ
Â00 Â01

? Â11

ű

9
>>>>>=
>>>>>;

2

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť)

endwhile

2,3

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť
∧ ¬ (m(A) 6= m(AT L))

)

1b
n

A = R ∧ R = Chol
ş

Â
ťo

Figure 3: Worksheet for the computation of the Cholesky factorization of matrix A via Variant 1.

Remark 2. The postcondition and the loop-invariant prescribe a loop-guard.

Similarly, the initialization given in Step 4 in Figure 3 can be derived from the fact that before the
initialization the equality A = Â holds, while after the initialization the loop-invariant (Step 2) must hold.
The initialization given in Step 4 performs no computation: it is merely an indexing operation.

Remark 3. The precondition and the loop-invariant prescribe the initialization.

Steps 5a and 5b: For all variants, ATL, ÂTL, and RTL start as 0×0 matrices and must end by encompass-
ing all of A, Â, and RTL, respectively. Thus, to expand these submatrices, we must identify submatrices of A,
Â, and R to be added to ATL, ÂTL, and RTL, respectively. This is accomplished through the repartitioning
and redefinition of the quadrants given in Steps 5a and 5b in Figure 3.

Remark 4. The initialization and loop-guard prescribe in what direction the matrices are to be traversed.

Step 6: Now we finally get to the point where the loop-invariant dictates the update of submatrices to
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be performed in the loop. The thick and thin lines in Step 5a have semantic meaning:

XTL = X00 XTR =
(

X01 X02

)

? XBR =
(

X11 X12

? X22

)
, X ∈ {A, Â,R}.

Substituting the matrices A, Â and R into the loop-invariant we find that



A00

(
A01 A02

)
(

?
?

) (
A11 A12

? A22

)

 =




R00

(
Â01 Â02

)
(

?
?

) (
Â11 Â12

? Â11

)

 ∧R00 = Chol

(
Â00

)
,

which simplifies to the expression in Step 6 in Fig. 3.
Step 7: Similarly, the thick and thin lines in Step 5b have semantic meaning:

XTL =
(

X00 X01

? X11

)
XTR =

(
X02

X12

)

? XBR = X22

, X ∈ {A, Â,R}.

Again, by substituting A, Â and R into the loop-invariant shows that, after moving the thick lines, the
required contents of A are described by 5b:




(
A00 A01

? A11

) (
A02

A12

)

(
? ?

)
A22


 =




(
R00 R01

? R11

) (
Â02

Â12

)

(
? ?

)
Â22


 ∧

(
R00 R01

? R11

)
= Chol

((
Â00 Â01

? Â11

))
,

which simplifies to Step 7 in Fig. 3.

Remark 5. The expressions in Steps 6 and 7 are, in general, obtained via substitution and algebraic
manipulation.

Step 8: Finally, the updates in Step 8 of Figure 3 are determined by comparing the states in Step 6 and
7 of that figure.

Final algorithm: The worksheet in Figure 3 includes the assertions required to systematically derive
the algorithm. Variables Â and R were only introduced to assist the derivation. The final algorithm in
Fig. 1(right) is obtained by deleting the extra variables Â and R and the assertions.

2.3 Deriving the loop based algorithms

Section 2.2 showed how, given the loop-invariant, the algorithm can be systematically derived. The fact
that the assertions dictate the actual computational steps then proves the correctness of the algorithms as
a byproduct. The question now becomes how to systematically derive loop-invariants for a given operation.
We show next that multiple loop-invariants exist for the computation of the Cholesky factorization, each of
which leads to a different algorithm.

The operation is described by the precondition A = Â and postcondition
(
A = R ∧R = Chol

(
Â

))
.

The partitioning of A, Â, and R into quadrants,

X →
(

XTL XTR

? XBR

)
, X ∈ {A, Â,R}
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Invariant 1:
(

ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

)

Invariant 2:(
ATL ATR

? ABR

)
=

(
RTL RTR

? ÂBR

) ∧RTL = Chol(ÂTL)
∧RTR = R−T

TL ÂTR

Invariant 3:(
ATL ATR

? ABR

)
=

(
RTL RTR

? ÂBR −RT
TRRTR

) ∧RTL = Chol(ÂTL)
∧RTR = R−T

TL ÂTR

Figure 4: States maintained in matrix A corresponding to the algorithms given in Fig. 5 below.

Algorithm: A := Chol unb(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ATR

? ABR

ű
→

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

where α11 is 1× 1

Variant 1:

a01 := A−T
00 a01 (Trsv)

α11 := α11 − aT
01a01 (Dot)

α11 :=
√

α11

Variant 2:

α11 := α11 − aT
01a01 (Syr)

α11 :=
√

α11

aT
12 := aT

12 − aT
01A02 (Gemv)

aT
12 := aT

12/α11

Variant 3:

α11 :=
√

α11

aT
12 := aT

12/α11

A22 := A22 − a12aT
12 (Syr)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

Variant 1:

A01 := A−T
00 A01 (Trsm)

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

Variant 2:

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

A12 := A12 −AT
01A02 (Gepm)

A12 := A−T
11 A12 (Trsm)

Variant 3:

A11 := Chol(A11)

A12 := A−T
11 A12 (Trsm)

A22 := A22 −AT
12A12 (Syrk)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Figure 5: Unblocked and blocked algorithms for computing the Cholesky factorization.
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tracks how the iteration moves through A and allows the current contents of A to be related to Â and R.
Substituting the partitioned matrices A, Â and R into the postcondition yields

(
ATL ATR

? ABR

)
=

(
RTL RTR

? RBR

)
∧ (1)

(
RTL RTR

? RBR

)
= Chol

((
ÂTL ÂTR

? ÂBR

))
. (2)

We call (1)–(2) the Partitioned Matrix Expression (PME) for the Cholesky factorization. It defines the
factorization as a recurrence relation. Equation (2) is equivalent to the equalities:

RTL = Chol
(
ÂTL

)

RTR = R−T
TL ÂTR

RBR = Chol
(
ÂBR −RT

TRRTR

)
.

Remark 6. The PME represents all the computations that must be performed, as a function of the
quadrants that are tracked as the iteration proceeds.

A natural state (loop-invariant) for matrix A before and after any given iteration is that some of the
computations have been performed. Given constraints on the order in which A can be overwritten, this
leaves three loop-invariants that can be maintained at the top of the loop, shown in Fig. 4. The unblocked
and blocked algorithms in Fig. 5 are obtained by applying the techniques in Section 2.2 with each of these
three loop-invariants.

Remark 7. The family of loop-invariants for computing a given operation is dictated by the way operands
are partitioned, the postcondition, and inherent contraints on the order in which the result must be com-
puted.

Remark 8. The question of whether these are indeed all possible loop-based algorithms is not one that
lies within the scope of this paper.

3 Inversion of an Upper Triangular Matrix: R := R−1

In this section we discuss the “in-place” inversion of a triangular matrix, overwriting the original matrix
with the result. By in-place it is meant that no work space is required. The derivation of this algorithms
is very similar to those already described for the Cholesky decomposition, so the step-by-step details of the
worksheet will be left for the reader to pursue.

We will concentrate on the inversion of an upper-triangular matrix, R := R̂−1, where R̂ represents the
initial contents of the matrix. The precondition and postcondition are given by the predicates

(
R = R̂

)

and
(
R = R̂−1

)
, respectively. The fact that both R̂ and the result are upper triangular will be implicitly

assumed.
Recall from Section 2 that the loop-invariants prescribe the algorithms. Thus, we will concentrate on the
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Invariant 1: Invariant 2:(
R̂−1

TL R̂TR

0 R̂BR

) (
R̂−1

TL −R̂−1
TLR̂TRR̂−1

BR

0 R̂BR

)

Invariant 3: Invariant 4:(
R̂−1

TL −R̂−1
TLR̂TR

0 R̂BR

) (
R̂−1

TL −R̂TRR̂−1
BR

0 R̂BR

)

Figure 6: States maintained in matrix R corresponding to the algorithms given in Fig. 7 below.

Algorithm: R := R−1

Partition R→
ţ

RTL RTR

0 RBR

ű

where RTL is 0× 0

while m(RTL) 6= m(R) do
Determine block size b
Repartition

ţ
RTL RTR

0 RBR

ű
→

0
@

R00 R01 R02

0 R11 R12

0 0 R22

1
A

where R11 is b× b

Variant 1
R01 := −R00R01 (Trmm)

R01 := R01R−1
11 (Trsm)

R11 := R−1
11

Variant 2

R12 := −R12R−1
22 (Trsm)

R12 := R−1
11 R12 (Trsm)

R11 := R−1
11

Variant 3

R12 := −R−1
11 R12 (Trsm)

R02 := R02 + R01R12 (Gepp)

R01 := R01R−1
11 (Trsm)

R11 := R−1
11

Variant 4

R12 := −R12R−1
22 (Trsm)

R02 := R02 −R01R12 (Gepp)

R01 := R00R01 (Trmm)

R11 := R−1
11

Continue withţ
RTL RTR

0 RBR

ű
←

0
@

R00 R01 R02

0 R11 R12

0 0 R22

1
A

endwhile

Figure 7: Four algorithmic variants for the inversion of an upper triangular matrix, R.

derivation of loop-invariants for this operation. Partition

R →
(

RTL RTR

0 RBR

)
and R̂ →

(
R̂TL R̂TR

0 R̂BR

)
,

where RTL and R̂TL are square to exploit the triangular structure of the matrix. Substituting these parti-
tioned matrices into the postcondition yields the PME

(
RTL RTR

0 RBR

)
=

(
R̂TL R̂TR

0 R̂BR

)−1

=

(
R̂−1

TL −R̂−1
TLR̂TRR̂−1

BR

0 R̂−1
BR

)
. (3)
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As with the Cholesky, this PME relates the quadrants of the overwritten R (the output matrix, containing
the inverse of R̂) to the quadrants of R̂ (the input matrix) in the following way

RTL = R̂−1
TL RTR = −R̂−1

TLR̂TRR̂−1
BR

RBR = R̂−1
BR

.

From the PME, the loop-invariants in Fig. 6 can be derived for four algorithms that traverse the matrix
from the top-left to the bottom-right. An additional four loop-invariants exist that represent algorithms
progressing from the bottom-right to the top-left; however, we will focus only on the first four.

With the loop-invariants in place, the algorithms for each variant can now be derived. The blocked
algorithms are given in Fig. 7.

4 Triangular matrix multiplication by its transpose: C = UUT

We shall now talk briefly about the in-place multiplication of an upper triangular matrix, U , times its own
transpose, overwriting the original matrix with the result. As before, we shall focus the upper triangular case
in which C := UUT , pointing out that C is symmetric so that only its upper triangular portion is computed
and it overwrites the upper triangular part of U .

The precondition and postcondition for this operation are given by
(
U = Û

)
and

(
U = triu

(
Û ÛT

))
,

respectively. Because of the symmetric structure of the output matrix U and the triangular structure of Û ,
we partition

U →
(

UTL UTR

? UBR

)
, and Û =

(
ÛTL ÛTR

0 ÛBR

)
,

where UTL and ÛTL are square. Substituting these partitioned matrices into the postcondition yields the
PME:

(
UTL UTR

? UBR

)
=

(
ÛTL ÛTR

0 ÛBR

)(
ÛTL ÛTR

0 ÛBR

)T

=

(
ÛTLÛT

TL + ÛTRÛT
TR ÛTRÛT

BR

? ÛBRÛT
BR

)
.

By taking into account dependencies that arise from the fact that U is being overwritten, the three loop-
invariants given in Fig. 8 are identified. Blocked algorithms that are derived from these loop-invariants are
presented in Figure 9.

5 Inversion of a Symmetric Positive Definite Matrix

Two algorithms are derived for computing the inverse of an SPD matrix. We show how one of these algorithms
can also be obtained by merging carefully chosen algorithms from Sections 2–4 into a one-sweep algorithm.
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Invariant 1: Invariant 2:(
ÛTLÛT

TL ÛTR

? ÛBR

) (
ÛTLÛT

TL + ÛTRÛT
TR ÛTR

? ÛBR

)

Invariant 3:(
ÛTLÛT

TL + ÛTRÛT
TR ÛTRÛT

BR

? ÛBR

)

Figure 8: States mantained in matrix U corresponding to the algorithms given in Fig. 9 below.

Algorithm: U := UUT

Partition U →
ţ

UTL UTR

? UBR

ű

where UTL is 0× 0

while m(UTL) 6= m(U) do
Determine block size b
Repartition

ţ
UTL UTR

? UBR

ű
→

0
@

U00 U01 U02

? U11 U12

? ? U22

1
A

where U11 is b× b

Variant 1: Variant 2:

U00 := U00 + U01UT
01 (Syrk) U01 := U01UT

11 (Trmm)

U01 := U01UT
11 (Trmm) U01 := U01 + U02UT

12 (Gemp)

U11 := U11UT
11 U11 := U11UT

11

U11 := U11 + U12UT
12 (Syrk)

Variant 3:

U11 := U11UT
11

U11 := U11 + U12UT
12 (Syrk)

U12 := U12UT
22 (Trmm)

Continue withţ
UTL UTR

? UBR

ű
←

0
@

U00 U01 U02

? U11 U12

? ? U22

1
A

endwhile

Figure 9: Three algorithmic variants for multiplying an upper triangular matrix U with its own transpose.

5.1 Derivation of algorithms

Algorithms for computing the inverse can be derived directly from the postcondition,
(
A = Â−1

)
. First,

partition these matrices into quadrants,

A →
(

ATL ATR

? ABR

)
and Â →

(
ÂTL ÂTR

? ÂBR

)
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Invariant 1: Invariant 2:(
Â−1

TL ÂTR

? ÂBR

) (
Â−1

TL −A−1
TLÂTR

? ÂBR − ÂT
TRÂ−1

TLÂTR

)

Figure 10: States maintained in matrix A corresponding to the algorithms given in Fig. 12 below.

Algorithm: A := A−1 (Variant 1)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while G do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

Aux := −A00A01 (Gemp)

A11 := A11 + AT
01Aux (Gepp)

A11 := Chol(A11)

Aux := Aux A−1
11 (Trsm)

A01 := Aux A−T
11 (Trsm)

A00 := A00 + Aux AuxT (Syrk)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Algorithm: A := A−1 (Variant 2)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trsm)

A00 := A00 + A01AT
01 (Syrk)

A12 := A−T
11 A12 (Trsm)

A02 := A02 −A01A12 (Gepp)

A22 := A22 −AT
12A12 (Syrk)

A01 := A01AT
11 (Trsm)

A12 := −A−1
11 A12 (Trsm)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Figure 11: One-sweep algorithms for inverting an SPD matrix.

where ATL and ÂTL are square and of equal size. Substitution of the partitioned matrices into the postcon-
dition yields the PME:

(
ATL ATR

? ABR

)
=

(
ÂTL ÂTR

? ÂBR

)−1

=
(

Â−1
TL + Â−1

TLÂTRBBRÂT
TRÂ−1

TL −Â−1
TLÂTRBBR

? BBR

)
,

where we introduce BBR =
(
ÂBR − ÂT

TRÂ−1
TLÂTR

)−1

. A rather involved dependence analysis done by
the authors identified two loop-invariants, given in Fig. 10. Applying the derivation techniques with these
loop-invariants yields the algorithms in Fig. 11.

It is possible to identify more loop invariants other than the two shown in Fig. 10, but the corresponding
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Algorithm: A := A−1 (Variant 2)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A12 := A−T
11 A12

A22 := A22 −AT
12A12

9
=
;

Chol
Var. 3

A12 := −A−1
11 A12

A02 := A02 + A01A12

A01 := A01A−1
11

A11 := A−1
11

9
>>>=
>>>;

R := R−1

Var. 3

A00 := A00 + A01AT
01

A01 := A01AT
11

A11 := A11AT
11

9
>=
>;

U := UUT

Var. 1

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Algorithm: A := A−1 (Variant 2, reordered)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trsm)

A12 := A−T
11 A12 (Trsm)

A00 := A00 + A01AT
01 (Syrk)

A02 := A02 + A01A12 (Gepp)

A22 := A22 −AT
12A12 (Syrk)

A01 := A01A−T
11 (Trsm)

A12 := −A−1
11 A12 (Trsm)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Figure 12: One-sweep algorithm for inverting an SPD matrix as a merging of three sweeps.

algorithms perform redundant computations and/or are numerically instable. More loop invariants yet can
be devised by considering the alternative PME

(
ATL ATR

ABL ABR

)
=

(
BTL −BTLÂTLÂ−1

BR

? Â−1
BR + Â−1

BRÂT
TRBTLÂTRÂ−1

BR

)

where BTL =
(
ÂTL − ÂTRÂ−1

BRÂT
TR

)−1

. The corresponding algorithms compute the solution by sweeping
the matrix from the bottow right corner as opposed to the two algorithms that we present that sweep the
matrix from the top left corner.

5.2 Merging three sweeps into a one-sweep algorithm

As mentioned in the introduction, the inversion of an SPD matrix can be implemented by computing the
Cholesky factor (R := Chol(A)), inverting that factor (U := R−1), and multiplying the inverted factor by
its own transpose (A−1 := UUT ). We will call this a three-sweep algorithm, where for each sweep any of
the algorithmic variants can be used. A one-sweep algorithm can be obtained by merging carefully chosen
algorithmic variants for each of the three sweeps. The result, in Fig. 12, is identical to Fig. 11 (right), which
was obtained by applying the FLAME approach. The conditions under which algorithms can be merged is
a topic of current research and goes beyond the scope of this paper.
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5.3 Discussion

The real benefit of the one-sweep algorithm in Fig. 12 (left) comes from the following observation: The order
of the updates in that variant can be changed as in Fig. 12 (right), so that the most time consuming compu-
tations (A22 −AT

12A12, A00 + A01A
T
01, and A01 + A01A12) can be scheduled to be computed simultaneously:

A00 + A01A
T
01 A02 + A01A12

?

? ? A22 −AT
12A12

.

On a distributed memory architecture, where the matrix is physically distributed among memories, there is
the opportunity to: 1) consolidate the communication among processors by first performing the collective
communications for the three updates followed by the actual computations, and 2) improve load-balance
since during every iteration of the merged algorithm, on each element of the quadrants A00, A02 and A22 the
same amount of computation is performed.

6 Stability

Thus far, we have discussed how to compute the inverse of a symmetric positive definite matrix by means
of a three-sweep approach and a single-sweep approach. As part of the three-sweep approach, we described
three algorithms for computing the Cholesky factor of an SPD matrix, four algorithms to invert a triangular
matrix and three algorithms to multiply a triangular matrix and its transpose. Alternatively, we described
two variants to compute the inverse by a single sweep only. In the following we comment on the stability of
each of these variants.

Cholesky: In Golub-Van Loan [13], the three Variants presented in Table 5 are derived (two unblocked and
one blocked), and the stability is asserted based on an early work of Wilkinson [31]. In that paper, Wilkinson
proves the norm-wise backward stability of the factorization, e.g. ŘT Ř = A + ∆A, for ‖∆A‖ ≤ k1n

3/2‖A‖,
where Ř is the computed Cholesky factor. Higham [20], proves instead that variant 1 is element-wise
backward stable, i.e., |∆A | ≤ k2n | ŘT || Ř |. Pete Stewart in [25] points out that the difference between the
Cholesky and the LU factorization (applied to an SPD matrix) is that the former has no element growth,
and therefore the algorithm is “unconditionally stable”.

Triangular Inverse: Similar to the Cholesky factorization, the first analysis for the inversion of a matrix
has been performed by Wilkinson [30]. More recently, Higham [9, 20] presented the analysis for Variants
1 and 3 from Table 6, and claimed the equivalence of the rounding errors for Variant 1 to 2 and 3 under
‘suitable implementations’. The unblocked Variant 3 is used in LINPACK [10], while Variant 1 (unblocked
and blocked) is used in LAPACK [2]. Variant 4, (Table 6) is unstable because of cancellation: it is possible
to show that the non-diagonal entries are computed by (unnecessarily) adding and subtracting many times
similar quantities.

Computing UUT : The operation is a matrix multiplication and therefore perfectly stable.

SPD Inverse: The stability analysis for the invertion of an SPD matrix by means of a three-sweep process is
given in [20]. Our presentation shows that the computations performed by the one-sweep algorithm (Variant
2) is identical to that performed by the three-sweep approach, and therefore the stability results carry over
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to the one-sweep algorithm.

Numerical experiments were conducted that provide evidence that all algorithmic variants, unblocked and
blocked, for any of the operations that were discussed have, for all practical purposes, equivalent numerical
properties, with the exception of Variant 4 for inverting a triangular matrix. Also, using Mathematica [32],
it was possible to perform symbolic computations. The numeric computation was augmented so that the
accumulation (again symbolically) of roundoff error could be observed. The results support the observation
that the different variants are equally numerically stable, except for Variant 4 for inverting a triangular
matrix. We do note that some care must be taken to use triangular solve with multiple right-hand sides
whenever possible over the explicit inversion of the triangular matrix combined with matrix multiplication.

7 Performance Experiments

To evaluate the performance of the algorithms derived in the previous sections, both serial and parallel
implementations were tested on a variety of problem sizes and on different architectures.

Remark 9. Although the best algorithms for each operation attain very good performance, this study
is primarily about the qualitative differences between the performance of different algorithms on different
architectures.

7.1 Implementations

Implementing all the algorithms discussed in this paper on sequential, SMP, and distributed memory archi-
tectures would represent a considerable coding effort. FLAME was already mentioned as the methodology
used to derive the families of algorithms in this paper. In addition, FLAME encompasses a set of APIs for
different programming environments, including MATLAB (FLAME@lab), C (FLAME/C), and C interfaced
with MPI (PLAPACK) [5, 28, 8, 15, 24]. These APIs have the benefit that the code closely resembles the
algorithms as they are presented in this paper. Most importantly, they hide the indexing that makes coding
in a traditional style time-consuming. For blocked algorithms, the cost of raising the level of abstraction of
the code is amortized over enough computation that it does not noticeably affect performance.

The FLAME/C and PLAPACK APIs were used for all the implementations, making the coding effort
quite manageable. For examples see the paper [5].

7.2 Platforms

The two machines chosen for this study were designed to highlight performance variations when using
substantially different architectures and/or programming models.

Shared Memory IBM Power 4 SMP System. This architecture consists of SMP nodes, each containing
sixteen 1.3 GHz Power4 processors and 32 GBytes of shared memory. The processors operate at four FLOPS
(floating point operations per second) per cycle for a peak theoretical performance of 5.2 GFLOPS/proc
(billions of FLOPS, per processor), with a dgemm (matrix-matrix multiply) benchmarked by the authors at
3.7 GFLOPS/proc. We only measured performance within a single SMP node.

On this architecture, we compared performance when parallelism was attained in two different ways: 1)
Implementing the algorithms with PLAPACK, which uses message passing via calls to IBM’s MPI library;
and 2) invoking the sequential algorithms with calls to the multithreaded BLAS that are part of IBM’s ESSL
library.
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Distributed Memory Cray-Dell Linux Cluster. This system consists of an array of Intel PowerEdge 1750
Xeon processors operating at 3.06 GHz. Each compute node contains two processors and has 2 GB of total
shared memory (1 Gb/proc). The theoretical peak for each processor is 6.12 GFLOPS (2 FLOPS per clock
cycle), with the dgemm, as part of Intel’s MKL 7.2.1 library, benchmarked by the authors at roughly 4.8
GFLOPS.

On this system we measured the performance of PLAPACK-based implementations, linked to the MPICH
MPI implementation [16] and Intel’s MKL library as well as to the GotoBLAS [14].

7.3 Reading the graphs

The performance attained by the different implementations is given in Figs. 13–16. The top line of most of the
graphs represents the performance attained on the architecture by matrix-matrix multiplication (dgemm).
Since all the algorithms cast most computation in terms of this operation, its performance is the limiting
factor. In the case where different BLAS implementations were employed, the theoretical peak of the machine
was used as the top line of the graph. The following operation counts were used for each of the algorithms:
1
3n3 for each of Chol(A), R−1, and UUT , and n3 for the inversion of an SPD matrix. In the legends, the
variant numbers correspond to the numbering of Figs. 4, 6, 8, and 10, while the operations within parentheses
indicate the BLAS operation in which the bulk of the computation for that variant is cast (See Fig. 2 for
details).

7.4 Sequential performance

In Fig. 13 we show performance on a single CPU of the IBM Power4 system. In these experiments, a
block size of 96 was used for all algorithms. Variant 4 for computing R := R−1 attains considerably worse
performance since it performs more computations than necessary. From the graphs, it is obvious which
algorithmic variant was incorporated in LAPACK.

7.5 Parallel performance

In Fig. 14 we report performance results from experiments on a single sixteen CPU SMP node of the IBM
Power4 system and on 16 processors (eight nodes with two processors each) of the Cray-Dell cluster. Since
the two systems attain different peak rates of computation, the fraction of dgemm performance that is
attained by the implementations is reported.

On the IBM system parallelism was attained in two different ways: by linking sequential FLAME imple-
mentations to the ESSL multithreaded BLAS library and by executing PLAPACK implementations. For the
FLAME experiments an (algorithmic) block size of 96 was used. The PLAPACK experiments distributed
the matrix using a block size of 32 and used an algorithmic block size of 96.

The experiments on the IBM systems show that linking to multithreaded BLAS yields better performance
than the PLAPACK implementations since exploiting the SMP features of the system avoids much of the
overhead of communication and load-balancing.

For the Cholesky factorization the PLAPACK Variant 1 performs substantially worse than the other
variants. This is due to the fact that this variant is rich in triangular solves with a limited number of
right-hand sides. This operation inherently does not parallelize well on distributed memory architectures
due to dependencies. Interestingly, Variant 1 for the Cholesky factorization attains the best performance in
the sequential experiment on the same machine.

The PLAPACK implementations of Variants 1 and 2 for computing R−1 do not perform well. Variant
1 is rich in triangular matrix times panel-of-columns multiply where the matrix being multiplied has a
limited number of columns. It is not inherent that that operation does not parallelize well. Rather, it is the
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Figure 13: Sequential performance on the IBM Power4 system.

PLAPACK implementation for that BLAS operation that is not completely optimized. Similar comments
apply to PLAPACK Variant 3 for computing UUT and PLAPACK Variant 2 for computing the inversion
of an SPD matrix. Note the cross-over between the curves for the SMP Variants 2 and 3 for the parallel
triangular inverse operation. This shows that different algorithmic variants may be appropriate for different
problem sizes.

It is again obvious from the graphs which algorithmic variant is used for each of the three sweeps as part
of LAPACK. The LAPACK curve does not match either of the FLAME variants in the SPD inversion graph
since LAPACK uses a three-sweep algorithm.
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Figure 14: Parallel Performance.

7.6 Scalability

In Fig. 15 we report the scalability of the best algorithmic variants for each of the four operations. It is
well-known that for these types of distributed memory algorithms it is necessary to scale the problem size
with the square-root of the number of processors, so that memory-use per processor is kept constant [19, 26].
Notice that as the number of processors is increased, the rate of performance attained eventually decreases
very slowly, indicating that the implementations are essentially scalable.
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Figure 15: Scalability on the Dell Cluster. Here the matrix size is scaled to equal 5000×√p so that memory
use per processor is held constant. Left: when linked to MKL 7.X. Right: when linked to GotoBLAS 0.97.

7.7 Comparison of the Three-Sweep and Single-Sweep Algorithms

Finally we examine the benefits of consolidating the collective communications and improving the load
balancing in the single-sweep algorithm. In Fig. 16 (left) we show improvements in raw performance on
the Cray-Dell system. The improvement over three-sweep algorithm is quite substantial, in the 15-30%
range. Fig. 16(right) shows the time savings gained for the PLAPACK implementations of the SPD inverse
algorithms.

On serial and SMP architectures, essentially no performance improvements were observed by using the
single-sweep algorithms over the best three-sweep algorithm. This is to be expected, since for these archi-
tectures the communications and load balancing are not an issue.

8 Conclusion

In this paper, we have shown that it is beneficial to be able to find different algorithmic variants for dense
linear algebra operations. The best algorithm can be then be chosen for a given situation. This choice is often
a function of the architecture, the problem size, and the optimized libraries to which the implementations
are linked. The FLAME approach to deriving algorithms enables a systematic generation of such families of
algorithms.

Another contribution of the paper lies with the link it establishes between the three-sweep and one-sweep
approach to computing the inverse of an SPD matrix. The observation that the traditional three-sweep
algorithm could be fused together so that only a single pass through the matrix is required has a number of
advantages. The single-sweep method provides for greater flexibility because the sequence of operations can
be arranged differently than they would be if done as three separate sweeps. This allows the operations of
the SPD inverse to be organized to optimize load balance and communication. The resulting single-sweep
algorithm consistently outperforms the three-sweep method.
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Figure 16: Comparison of the Three-Sweep and Single-Sweep SPD inverse algorithms. The left panel shows
the performance difference for the case run on the Cray-Dell system linked to the GotoBLAS. The right
panel shows the wall-clock savings for all PLAPACK cases.

The paper raises many new questions. In particular, the availability of many algorithms and implemen-
tations means that a decision must be made as to when to use what algorithm. One approach is to use
empirical data from performance experiments to tune the decision process. This is an approach that has
been applied in the simpler arena of matrix-matrix multiplication (dgemm) by the PHiPAC and ATLAS
projects [6, 29]. An alternative approach would be to carefully design every layer of a library so that its
performance can be accurately modeled. We intend to pursue this second approach in the future.
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More Information

For more information on FLAME and PLAPACK visit
http://www.cs.utexas.edu/users/flame
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