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Abstract

The arrival of hardware accelerators has created a new gold rush to be the first to deliver
their promise of high performance for numerical applications. Since they are relatively hard to
program, with limited language and compiler support, it is generally accepted that one needs to
roll up one’s sleeves and tough it out, not unlike the early days of distributed memory parallel
computing (or any other period after the introduction of a drastically different architecture). In
this paper we remind the community that while this is a noble endeavor, there is a lot of low
hanging fruit that can be harvested easily. Picking this low hanging fruit benefits the scientific
computing community immediately and prototypes the approach that the further optimizations
may wish to follow. We demonstrate this by focusing on a widely used set of operations, the
level-3 BLAS, targeting the NVIDIA family of GPUs.

Insanity: doing the same thing over and over again
and expecting different results.

– Albert Einstein (1879-1955)

1 Introduction

Every time a new architecture arrives, there is a mad dash for high performance. Since compilers,
languages, and tools are still rudimentary, this means that some experts roll up their sleeves and
achieve high performance the old-fashioned way: they earn it. The problem is that often there are
only a few with the right expertise and interest, and therefore this yields only a few routines that
are highly optimized. Furthermore, it is acceptable for code that achieves high performance to be
messy. When others then come into the picture, they use such implementations as their inspiration,
meaning that programmability does not enter the picture until much later in the game. In this
paper, we show how insights from the FLAME project, in particular the importance of having a



family of algorithms at one’s disposal, allow considerable performance gains to be attained with
minimal effort. We do so by focusing on the familiar and important matrix-matrix operations that
are part of the Basic Linear Algebra Subprograms (BLAS) [5] and targeting the NVIDIA family of
GPUs.

The arrival of NVIDIA’s GPUs and IBM’s Cell Broadband Engine and the recognition that they
can be used for computation outside of the field of graphics has created the latest gold rush for
performance. In scientific computing this has meant that considerable effort has been expended on
implementing the most important kernel: matrix-matrix multiplication (gemm). Very admirable
performance has been achieved [13].

Yet, even operations that are very similar to gemm, e.g., the other level-3 BLAS, did not
achieve decent performance in the CUBLAS library for the NVIDIA GPUs when we started this
study. Worse, the effort required to achieve the high performance for gemm is daunting enough
that experts like ourselves have stayed on the sideline, focusing our efforts on using the gemm

implementation for high-level operations like Cholesky factorization by using the accelarators only
to compute subproblems that are matrix-matrix multiplications [10, 9, 8]. We all hoped that soon
other functionality would be ported to the GPUs, but that some other poor soul would do it for
us.

In this paper we once again show that as new functionality and optimizations appear, there are,
for those of us who have an aversion to hard work, opportunities to quickly and easily help improve
performance in the short run while simultaneously prototyping how performance can eventually be
improved by those who are willing to code at a lower level.

This paper is organized as follows: In Section 2 we briefly review the three commonly encoun-
tered matrix-matrix multiplication algorithms and use this to remind the reader of the FLAME
notation for presenting algorithms. In Section 3 we discuss the corresponding algorithms for various
level-3 BLAS operations, where these algorithms have been modified to take advantage of special
structure in the matrices. The benefits of picking the right algorithmic variant is illustrated in
Section 4. Concluding remarks are found in the final section.

2 Matrix-Matrix Product

At the top level, there are three variants of matrix-matrix product, which we have come to refer to
as matrix-panel product (gemm mp) based, panel-matrix product (gemm pm) based, and (outer)
panel-panel product (gemm pp) based (also known as rank-k updating) [6]. We will discuss these
briefly in this section, so that we can refer to them later as we discuss algorithms for the other
matrix-matrix operations.

In Figure 1, we illustrate the gemm mp based algorithm. At the beginning of the iteration, C0

and B0 have already be updated and used, respectively. In the current iteration the next panel of
matrix C is updated: C1 := C1 +AB1. Then, the advancement for the next iteration shifts C1 and
B1 to the next blocks of data making blocks C0 and B0 larger since they contain more processed
data. This visual description of the algorithm motivates the algorithm, in FLAME notation, given
in Figure 2. In that figure, we also give the gemm pm and gemm pp based algorithms. Although all
three perform the same number of floating point operations, the final performance that is achieved
can be very different depending on the matrix shapes and cache subsystems.
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a) Partitioning before iteration

b) Computation in iteration

c) Advancement of partitioning for next iteration

Figure 1: A visualization of the algorithm for matrix-panel variant of matrix-matrix product. Dark
background means block is already processed.

3 Accelerating the CUBLAS

The level-3 BLAS operations are variations of the matrix-matrix product. We will study several:
symmetric matrix-matrix multiplication (symm), symmetric rank-k update (syrk), symmetrix
rank-2k update, (syr2k), triangular matrix-matrix multiplication (trmm), and triangular solve
with multiple right-hand sides (trsm).

It is well-known that for each operation there are algorithms that cast most computation in
terms of matrix-matrix multiplication, as was pioneered in [7]. Moreover, as part of the FLAME
project we have long advocated that it is important to have multiple algorithmic variants at our
disposal so that the best algorithm can be chosen for each situation [4]. The FLAME methodology
advocates systematic derivation of these variants [3, 11]. In Section 4 we will show that this
is again the case for GPUs. We view our ability to rapidly develop different algorithms as a
way of performing software acceleration, the natural (and much needed) counterpart to hardware
acceleration. It yields a cheap (in terms of effort) boost to performance.

The algorithms presented in this section correspond naturally to the matrix-matrix multiplica-
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Algorithm: Gemm mp(A,B,C)

Partition B →
(

BL BR

)

, C →
(

CL CR

)

where BL has 0 columns, CL

has 0 columns
while n(BL) < n(B) do

Determine block size b

Repartition
(

BL BR

)

→
(

B0 B1 B2

)

,
(

CL CR

)

→
(

C0 C1 C2

)

where B1 has b columns, C1 has
b columns

C1 := C1 + AB1

Continue with
(

BL BR

)

←
(

B0 B1 B2

)

,
(

CL CR

)

←
(

C0 C1 C2

)

endwhile

Algorithm: Gemm pm(A,B,C)

Partition A→

(

AT

AB

)

, C →

(

CT

CB

)

where AT has 0 rows, CT has 0
rows

while m(AT ) < m(A) do

Determine block size b

Repartition
(

AT

AB

)

→





A0

A1

A2



 ,

(

CT

CB

)

→





C0

C1

C2





where A1 has b rows, C1 has b

rows

C1 := C1 + A1B

Continue with
(

AT

AB

)

←





A0

A1

A2



 ,

(

CT

CB

)

←





C0

C1

C2





endwhile

Algorithm: Gemm pp(A,B,C)

Partition A→
(

AL AR

)

,

B →

(

BT

BB

)

where AL has 0 columns,
BT has 0 rows

while n(AL) < n(A) do

Determine block size b

Repartition

(

AL AR

)

→
(

A0 A1 A2

)

,

(

BT

BB

)

→





B0

B1

B2





where A1 has b columns, B1 has
b rows

C := C + A1B1

Continue with

(

AL AR

)

←
(

A0 A1 A2

)

,

(

BT

BB

)

←





B0

B1

B2





endwhile

Figure 2: Algorithms for computing matrix-matrix product: Top-left, matrix-panel variant; top-
right, panel-matrix variant; bottom-center, panel-panel variant.

tion algorithms given in Section 2, except that they take advantage of the special structure of one
of the matrices. Thus, the ... pp algorithm corresponds to the Gemm pp algorithm, etc.
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Algorithm: Symm pp pm(C,A,B)

Partition C →

(

CT

CB

)

, B →

(

BT

BB

)

,

A→

(

ATL ATR

ABL ABR

)

where CT , BT have 0 rows, ATL

is 0× 0
while m(CT ) < m(C) do

Determine block size b

Repartition
(

CT

CB

)

→





C0

C1

C2



 ,

(

BT

BB

)

→





B0

B1

B2



 ,

(

ATL ATR

ABL ABR

)

→





A00 A01 A02

A10 A11 A12

A20 A21 A22





where C1, B1 have b rows, A11

is b× b

Symm pp Symm pm
C0 := C0 + AT

10
B1 C1 := C1 + A10B0

C1 := C1 + A11B1 C1 := C1 + A11B1

C2 := C2 + A21B1 C1 := C1 + AT
21

B2

Continue with
(

CT

CB

)

←





C0

C1

C2



 ,

(

BT

BB

)

←





B0

B1

B2



 ,

(

ATL ATR

ABL ABR

)

←





A00 A01 A02

A10 A11 A12

A20 A21 A22





endwhile

Algorithm: Symm mp(C,A,B)

Partition C →
(

CL CR

)

,
B →

(

BL BR

)

where CL has 0 columns,
BL has 0 columns

while n(CL) < n(C) do

Determine block size b

Repartition
(

CL CR

)

→
(

C0 C1 C2

)

,
(

BL BR

)

→
(

B0 B1 B2

)

where C1 has b columns,
B1 has b columns

C1 := C1 + AB1

Continue with
(

CL CR

)

←
(

C0 C1 C2

)

,
(

BL BR

)

←
(

B0 B1 B2

)

endwhile

Figure 3: Algorithms for computing symm.

SYMM Operation For this operation we focus on C := AB+C , where A is symmetric and only
the lower triangular part of this matrix is stored. In Figure 3 we give three algorithmic variants.

SYRK Operation We will focus on a representative case of this operation: C := C − AAT ,
where C is symmetric and only the lower triangular part of this matrix is stored and computed. In
Figure 6 we give three algorithmic variants for this operation.

SYR2K Operation For this operation we focus on C := C−ABT−BAT , where C is symmetric
and only the upper triangular part of this matrix is stored and computed. In Figure 7 we give three
algorithmic variants.

TRMM Operation For this operation we focus on C := AB + C , where A is upper triangular.
In Figure 8 we give three algorithmic variants.
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TRSM Operation For this operation we focus on XAT = B , where A is lower triangular and
B is overwritten with the solution X. In Figure 9 we give three algorithmic variants.

Other Cases of the BLAS-3 Operations The same technique can be applied to the other
cases of the BLAS-3 operations above presented. Similarly, the same technique can be applied to
other BLAS-3 operations. We expect achieving similar results since the issues are the same.

4 Experimental Results

The current revision of this paper primarily differs from the original one in that it compares
performance against CuBLAS 2.2, which was released immediately after our first version of this
note was published. And this is where Einstein’s quote becomes relevant: we repeated the same
experience, and expected different results. . . In addition, we have developed and evaluated other
BLAS-3 operations, and we have evaluated our methods on rectangular matrices, as they are often
used in LAPACK.

The target platform used in the experiments was a NVIDIA T10 GPU (a single GPU of a four
GPU NVIDIA Tesla S1070) with 4 GBytes of RAM. The system is connected to a workstation
with one Intel Xeon QuadCore E5405 processors (4 cores) at 2.83 GHz with 8 GBytes of DDR2
RAM. CUBLAS Release 2.2 and single precision real floating-point arithmetic were employed in the
experiments. Performance is measured in terms of GFLOPS (billions of floating-point operations—
flops—per second). The time to transfer data from the host to the memory of the GPU has not
been included in the performance results.

Figure 4 reports the performances for the operations reported in the previous section on square
matrices. Left plots show the performance in GFLOPS of both the new methods and the corre-
sponding CUBLAS routines; right plots summarize the speedups obtained by the new operations
against the corresponding routines in CUBLAS. All new codes achieve about 300 or more GFLOPS
on square matrices.

Figure 5 reports the performances obtained by some operations on rectangular matrices, as they
are often used inside LAPACK codes. Again, left plot shows the raw performance in GFLOPS of
both new methods and CUBLAS routines; right plot summarizes the speedups obtained by the
new operations against the corresponding routines in CUBLAS.

The results in both figures show the benefits of our approach. We believe them to be represen-
tative of other cases of the presented level-3 BLAS (those where matrices may have been transposed
and/or stored in the other triangular part of the array) and the other level-3 BLAS.

The improvement of performances could have been even larger if we had used storage-by-
blocks, a well-known modification used in more recent software. We did not employ it to keep full
compatibility with NVIDIA CUBLAS.

5 Conclusion

We have demonstrated that with relatively little effort considerable performance gains can be
attained when new architectures arrive. The key is to pay attention to the fact that there are many
different algorithmic variants for the same operation and to program them in a productive manner.
The programs we wrote for this paper required a few hours of time and could have been developed
by a relative novice.
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Figure 4: Performances (left) and speedups (right) of the new implementations and equivalent
CUBLAS routines on square matrices.
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Figure 5: Performances (left) and speedups (right) of the new implementations and equivalent
CUBLAS routines on rectangular matrices.

Undoubtedly, in response to this paper, there will be a flurry of activity to further improve
the performance of the CUBLAS by coding at a much lower level and throwing programmability
out the door. In this case, we have indirectly made a contribution to the scientific computing
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community because faster libraries will then become available sooner. But we are confident that
this just means that we will be able to write yet another paper on how to improve the performance
of high level routines, with functionality similar to that of LAPACK [1]. And before you know it,
a new shift in computer architecture will come along and the mad dash will start all over again.
Thus the quote from Einstein.

We are working on an tool, FLAMES2S [12], that can automatically translate algorithms repre-
sented in code with the FLAME/C API, used to implement our libflame library [14], to low-level
code that uses loops and indexing. This tool could easily generate the code that was created manu-
ally for the experiments in this paper. With that, we will make further progress towards overcoming
the programmability problem for this class of operations and codes.

Recently Bientinesi developed a symbolic system for automatically generating families of algo-
rithms from a high-level description of the target operation [2]. Central to this result is a method-
ology for deriving an algorithm from a given loop-invariant. Combining the automatic system with
FLAMES2S would make it possible to derive algorithms and code from loop-invariants, simplifying
dramatically the developments of programs.
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Algorithm: Syrk mp pm(C,A)

Partition

C →

(

CTL CTR

CBL CBR

)

, A→

(

AT

AB

)

where CTL is 0 × 0, AT has 0
rows

while m(CTL) < m(C) do

Determine block size b

Repartition
(

CTL CTR

CBL CBR

)

→





C00 C01 C02

C10 C11 C12

C20 C21 C22



,

(

AT

AB

)

→





A0

A1

A2





where C11 is b × b , A1 has b

rows

Syrk mp Syrk pm
C11 := C11 −A1A

T
1

C10 := C10 −A1A
T
0

C21 := C21 −A2A
T
1

C11 := C11 −A1A
T
1

Continue with

· · ·
endwhile

Algorithm: Syrk pp(C,A)

Partition A→
(

AL AR

)

where AL has 0 columns
while n(AL) < n(A) do

Determine block size b

Repartition
(

AL AR

)

→
(

A0 A1 A2

)

where A1 has b columns

C := C −A1A
T
1

Continue with
(

AL AR

)

←
(

A0 A1 A2

)

endwhile

Figure 6: Algorithms for computing syrk.
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Algorithm: Syr2k mp(A,B,C)

Partition A→

(

AT

AB

)

, B →

(

BT

BB

)

,

C →

(

CTL CTR

CBL CBR

)

where AT has 0 rows, BT has 0
rows, CTL is 0× 0

while m(AT ) < m(A) do

Determine block size b

Repartition
(

AT

AB

)

→





A0

A1

A2



 ,

(

BT

BB

)

→





B0

B1

B2



 ,

(

CTL CTR

CBL CBR

)

→





C00 C01 C02

C10 C11 C12

C20 C21 C22





where A1 has b rows, B1 has b

rows, C11 is b× b

Syr2k mp
C01 := C01 + A0B

T
1

C01 := C01 + B0A
T
1

C11 := C11 + A1B
T
1

+ B1A
T
1

Syr2k pm
C12 := C12 + A1B

T
2

C12 := C12 + B1A
T
2

C11 := C11 + A1B
T
1

+ B1A
T
1

Continue with
(

AT

AB

)

←





A0

A1

A2



 ,

(

BT

BB

)

←





B0

B1

B2



 ,

(

CTL CTR

CBL CBR

)

←





C00 C01 C02

C10 C11 C12

C20 C21 C22





endwhile

Algorithm: Syr2k pp(A,B)

Partition A→
(

AL AR

)

,
B →

(

BL BR

)

where AL has 0 columns,
BL has 0 columns

while n(AL) < n(A) do

Determine block size b

Repartition
(

AL AR

)

→
(

A0 A1 A2

)

,
(

BL BR

)

→
(

B0 B1 B2

)

where A1 has b columns,
B1 has b columns

C := C + A1B
T
1

+ B1A
T
1

Continue with
(

AL AR

)

←
(

A0 A1 A2

)

,
(

BL BR

)

←
(

B0 B1 B2

)

endwhile

Figure 7: Algorithms for computing syr2k.
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Algorithm: Trmm pp pm(A,B)

Partition A→

(

ATL ATR

ABL ABR

)

, B →

(

BT

BB

)

where ATL is 0 × 0, BT has 0
rows

while m(ATL) < m(A) do

Determine block size b

Repartition
(

ATL ATR

ABL ABR

)

→





A00 A01 A02

A10 A11 A12

A20 A21 A22



,

(

BT

BB

)

→





B0

B1

B2





where A11 is b × b , B1 has b

rows

Trmm pp Trmm pm
B0 := B0 + A01B1 B1 := A11B1

B1 := A11B1 B1 := B1 + A12B2

Continue with

· · ·
endwhile

Algorithm: Trmm mp(A,B)

Partition B →
(

BL BR

)

where BL has 0 columns
while n(BL) < n(B) do

Determine block size b

Repartition
(

BL BR

)

→
(

B0 B1 B2

)

where B1 has b columns

B1 := AB1

Continue with
(

BL BR

)

←
(

B0 B1 B2

)

endwhile

Figure 8: Algorithms for computing trmm.

Algorithm: Trsm pp pm(A,B)

Partition A→

(

ATL ATR

ABL ABR

)

,

B →
(

BL BR

)

where ATL is 0× 0,
BL has 0 columns

while m(ATL) < m(A) do

Determine block size b

Repartition
(

ATL ATR

ABL ABR

)

→





A00 A01 A02

A10 A11 A12

A20 A21 A22



,

(

BL BR

)

→
(

B0 B1 B2

)

where A11 is b× b ,
B1 has b columns

Trsm pp Trsm pm

B1 := B1 −B0A
T
10

B1 := B1A
−T

11

B1 := B1A
−T

11
B2 := B2 −B1A

T
21

Continue with

· · ·
endwhile

Algorithm: Trsm mp(A,B)

Partition B →

(

BT

BB

)

where BT has 0 rows
while m(BT ) < m(B) do

Determine block size b

Repartition
(

BT

BB

)

→





B0

B1

B2





where B1 has b rows

B1 := B1A
−T

Continue with
(

BT

BB

)

←





B0

B1

B2





endwhile

Figure 9: Algorithms for computing trsm.
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