
1

Formal Correctness and Stability of Dense Linear Algebra Algorithms

Paolo Bientinesi Robert van de Geijn
Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

{pauldj,rvdg}@cs.utexas.edu

Abstract - The Formal Linear Algebra Methods Environ-
ment (FLAME) project at UT-Austin pursues the mechanical
derivation of algorithms for linear algebra operations. Rather
than proving loop based algorithms correcta posteriori, a sys-
tematic methodology is employed that determines loop invari-
ants from a mathematical specification of a given linear alge-
bra operation. Algorithms and their correctness proofs are
then constructively derived from this loop invariant.
The process has been made mechanical via a prototype sys-
tem implemented with Mathematica. Once an algorithm has
been determined, a similarly systematica posteriori process is
used to determine the correctness in the presence of roundoff
error (stability properties) of the algorithm. In this pape r, we
report progress towards the ultimate goal of full automation
of the system.

Keywords—formal derivation, linear algebra algorithms, sta-
bility analysis, automated system, mechanical derivation

I. INTRODUCTION

In Fig. 1, we give a generic “worksheet” for deriving a large
class of loop based linear algebra algorithms. The work-
sheet resembles the skeleton of a linear algebra algorithm
in the sense that it consists of an initialization step (Step4)
and a while loop (Step 3). In the body of the while loop
updates with operands are performed (Steps 5a, 8 and 5b).
The skeleton is also annotated with predicates, in curly-
brackets, that describe the status of output variables at dif-
ferent stages in the algorithm (Steps 1a, 2, 2,3, 6, 7, 1b).
The steps number refer to the first column of Fig. 1 and the
numbering follows the order in which the boxes are filled
to yield a valid algorithm.
The basic idea behind the FLAME approach to de-
riving algorithms is that the predicates in the work-
sheet are systematically derived, after which the state-
ments between the predicates are chosen to make those
predicates correct. In other words, the approach is
goal oriented: every command between two predi-
cates is derived in such a way that the Hoare’s triple
{predicatebefore} command {predicateafter} is satisfied.
If it is possible to derive commands for all the predicates,
then the derived algorithm will be guaranteed to be for-
mally correct.
In Section II we describe, by means of a practical exam-
ple, the steps necessary to derive a family of algorithms
from the mathematical specification of a target operation.
Key to this result is the fact that the loop invariant for the

Step Annotated Algorithm: [C,D, . . .] = op(A,B, C, . . .)

1a { Ppre }

4
Partition

where
2 { Pinv }
3 while G do

2,3 {(Pinv) ∧ (G)}

5a
Repartition

where
6 { Pbefore }
8 SU

7 { Pafter }

5b
Continue with

2 { Pinv }
enddo

2,3 {(Pinv) ∧ ¬ (G)}
1b { Ppost }

Fig. 1. Worksheet for developing linear algebra algorithms.

algorithms solving the target operation can be identifieda
priori. While the example is simple, the methodology has
been shown to apply to most of the operations supported
by the Basic Linear Algebra Subprograms, LAPACK and
the RECSY library [LAW 79], [DON 88], [DON 90],
[AND 92], [BIE 05], [QUI 03], [JON 02b], [JON 02a].

Although the procedure that we describe in Sect. II ensures
the derived algorithm to be formally correct, it is the ap-
plication of the procedure itself that is error prone, due to
tedious algebraic manipulations. As the complexity of the
target operation increases, it becomes difficult to perform
the procedure by hand. In Section III we illustrate how,
starting from the loop invariant for a target operation, the
steps of the procedure can be automated and performed by
a symbolic system.
Our methodology generates many algorithms for the same
target operation. The numerical stability properties of each
algorithm needs to be ascertained, since often new algo-
rithms are derived. And given that often times more than
half a dozen algorithms are derived, it becomes a necessity
to develop tools to help the user assert numerical properties
for these algorithms. In Section IV we present an extended
worksheet that allows the stability analysis to be performed
by following a sequence of steps similar to the ones for de-
riving the algorithm itself.

II. A C ONCRETEEXAMPLE : A := A + UU
T

We describe here the eight-step procedure for filling out the
worksheet in Fig. 1. We consider the SYmmetric Rank-K
operationA := A + UUT (SYTRRK), where then × n
matricesA andU are, respectively, symmetric and upper
triangular. We will assume that only the upper triangular
part ofA is stored. The completed worksheet is presented
in Fig. 2, while the final algorithm appears in Fig. 3.
Steps 1a,1b: DeterminePpre and Ppost. The generic
target operation is given by [C, D,. . .]=op(A, B, C,. . .).
Some operands may be both input and output variables.
The structure and properties of the input variables are given
by the predicatePpre, the precondition. The postcondi-
tion, Ppost, is the predicate that describes the desired state
upon completion of the algorithm. PredicatesPpre and
Ppost for the operationA := A + UUT are, respectively,

A = Â ∧ A = AT ∧ UpperTri(U) andA = Â + UUT as
shown in Fig. 2. The predicatesPpre andPpost dictate how
the remainder of the worksheet must be filled.
Step 2: Determine loop invariantPinv. The loop invari-
ant is a predicate that expresses the contents of the variables
during the computation. In order to determine possible in-
termediate contents of the output variable, one starts by
partitioning the input and output operands. The partition-
ing corresponds to an assumption that algorithms progress
through data in a systematic fashion.
In this example the matricesA andU are partitioned into
quadrants to capture the symmetric and upper triangular
structure:

A→

(

ATL ATR

AT
TR ABR

)

, U →

(

UTL UTR

0 UBR

)

.

Here the indicesT , B, L, andR stand for Top, Bottom,
Left, and Right, respectively.
Now, the partitioned matrices are substituted into the post-
condition after which algebraic manipulation expresses the
final result in terms of operations on the original contents
of those quadrants. We refer to this expression as the Parti-
tioned Matrix Expression (PME):

(

ATL ATR

⋆ ABR

)

=

(

ÂTL + UTLU
T
TL + UTRU

T
TR ÂTR + UTRU

T
BR

⋆ ÂBR + UBRU
T
BR

)

.

Here Â denotes the original content of the matrixA and
⋆ is used to indicate that the matrix is symmetric. At an
intermediate stage (at the top of the loop body) only some

of the operations will have been performed. For example,
the intermediate state

(

ATL ATR

⋆ ABR

)

=

(

ÂTL + UTLU
T
TL ÂTR

⋆ ÂBR

)

(1)
comes from assuming thatATL has been partially up-
dated while the other parts of the matrix have not yet been
touched. Let us use this loop invariant for the remainder of
this discussion: it becomesPinv in the worksheet in Fig. 1
as illustrated in Fig. 2.
Step 3: Determine loop guardG. The loop guard is
the condition under which the program remains in the
loop. Thus, when the loop completes,¬G holds, and
so doesPinv. We are seeking a loop guard so that
(Pinv ∧ ¬G) impliesPpost; this condition dictatesG. In
our example, by comparing the loop invariant (1) and
the postcondition{A = Â + UUT } it’s easy to deter-
mine thatG = SameSize(A,ATL), where the predicate
SameSize(A,ATL) is true iff the dimensions ofA and
ATL are equal.
Step 4: Determine initialization. Since the loop invariant
must hold before the loop commences, theinitialization,
Step 4 in Fig. 1, must have the property that starting in
the statePpre, it sets the variables to a state in whichPinv

holds:{Ppre} Step 4 {Pinv}. Ideally, only the partitioning
of operands is required to attain this state. Notice that the
initialization in Step 4 in Fig. 2 has this property.
Steps 5a, 5b: Determine how to traverse the operands.
In our notation, the double lines indicate progress through
the operands. For the SYTRRK operation, initially the
top-left quadrant of matrixA is empty, and ultimately that
quadrant must encompass all of the matrix. The repartition-
ing of the operands in Step 5a and the moving of the double
lines in Step 5b expose and move rows and columns from
the bottom-right quadrant to the top-left one. Respectively,

(

ATL ATR

⋆ ABR

)

→

(

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

)

and

(

ATL ATR

⋆ ABR

)

←

(

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

)

.

Step 6: DeterminePbefore. Step 5a exposes submatrices
of the operands. The predicate in Step 6 merely expresses
the contents of those submatrices. This predicate is de-
termined by substituting the exposed submatrices into the
loop invariant. Formally:{Pinv} Step 5a {Pbefore}. Math-
ematicallyPbefore is given by:

Simplify

(

Pinv

∣

∣

∣

Repartitioning

)

,

Step Annotated Algorithm:A := A+ UUT

1a
n

A = Â ∧A = AT ∧ UpperTri(U)
o

4

Partition

A→

„

ATL ATR

⋆ ABR

«

, U →

„

UTL UTR

0 UBR

«

, Â→

ÂTL ÂTR

⋆ ÂBR

!

,

where ATL and UTL are 0× 0

2

(

„

ATL ATR

⋆ ABR

«

=

ÂTL + UTLU
T

TL
ÂTR

⋆ ÂBR

!)

3 while ¬SameSize(A,ATL) do

2,3

(

„

ATL ATR

⋆ ABR

«

=

ÂTL + UTLU
T

TL
ÂTR

⋆ ÂBR

!!

∧ (¬SameSize(A,ATL))

)

5a

Repartition
„

ATL ATR

⋆ ABR

«

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A ,

„

UTL UTR

0 UBR

«

→

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A

where A11 and L11 are b× b

6

8

>

<

>

:

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A =

0

B

@

Â00 + U00U
T

00 Â01 Â02

⋆ Â11 Â12

⋆ ⋆ Â22

1

C

A

9

>

=

>

;

8

A00 := A00 + U01U
T

01

A01 := A01 + U01U
T

11

A11 := A11 + U11U
T

11

7

8

>

<

>

:

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A =

0

B

@

Â00 + U00U
T

00 + U01U
T

01 Â01 + U01U
T

11 Â02

⋆ Â11 + U11U
T

11 Â12

⋆ ⋆ Â22

1

C

A

9

>

=

>

;

5b

Continue with
„

ATL ATR

⋆ ABR

«

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A ,

„

UTL UTR

0 UBR

«

←

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A

2

(

„

ATL ATR

⋆ ABR

«

=

ÂTL + UTLU
T

TL
ÂTR

⋆ ÂBR

!)

enddo

2,3

(

„

ATL ATR

⋆ ABR

«

=

ÂTL + UTLU
T

TL
ÂTR

⋆ ÂBR

!!

∧ ¬ (¬SameSize(A,ATL))

)

1b
n

A = Â+ UUT

o

Fig. 2. Worksheet for developing an algorithm for the symmetric rank-k update.

where the vertical bar signifies the application of textual
substitution rules and the functionSimplify indicates alge-
braic simplifications.
Step 7: Determine Pafter. The Hoare’s triple
{Pafter} Step 5b {Pinv} must hold. Therefore the pred-
icate Pafter denotes the loop invariant before theCon-
tinue with (Step 5b) execution. SincePinv is known,Pafter

can be determined by executing the converse of theCon-
tinue statement, i.e. executing the textual substitution rules
backwards. Mathematically,Pafter is determined by:

Simplify
(

Pinv

∣

∣

∣

Continue−1

)

.

Both the predicatesPbefore andPafter are shown in Fig.2.
Step 8: Determine the updatesSU . The statementsSU

must be such that the triple{Pbefore} SU {Pafter} holds.

The required updatesSU are determined by comparing the
state in Step 6 with the desired state in Step 7.
Predicates and commands for the example that we are car-
rying on are presented in Fig. 2. Once the predicates are
removed the resulting algorithm appears as shown in Fig. 3.

Correctness. If it is possible to successfully execute the
eight steps we described, the resulting algorithm is guaran-
teed to be formally correct. It is in fact possible to state a se-
quence of valid Hoare’s triples, the first one beginning with
the predicate{Ppre} and the last one ending with the pred-
icate{Ppost}. Thus the triple{Ppre}algorithm{Ppost} is
also valid.

Family of Algorithms. Among the aforementioned eight
steps, only one is not fully determined: the choice of the
loop invariantPinv (Step 2). Often times for a given PME,
there are many loop invariants yielding valid algorithms.

A→

„

ATL ATR

⋆ ABR

«

, U →

„

UTL UTR

0 UBR

«

,

Â→

ÂTL ÂTR

⋆ ÂBR

!

while ¬SameSize(A,ATL) do
Repartition
„

ATL ATR

⋆ ABR

«

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A ,

„

UTL UTR

0 UBR

«

→

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A

whereA11 and L11 are b× b

A00 := A00 + U01U
T

01

A01 := A01 + U01U
T

11

A11 := A11 + U11U
T

11

Continue with
„

ATL ATR

⋆ ABR

«

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A ,

„

UTL UTR

0 UBR

«

←

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A

enddo

Fig. 3. Algorithm for the symmetric rank-k update.

Repeating Steps 3-8 for different loop invariants results in
a family of algorithms solving the same operation. As an
example, the following predicate is also a validPinv for the
SYTRRK operation:

(

ATL ATR

⋆ ABR

)

=

(

ÂTL + UTLU
T
TL + UTRU

T
TR ÂTR

⋆ ÂBR

)

III. M ECHANICAL GENERATION OF ALGORITHMS

In this section we cover the eight steps forming the deriva-
tion procedure again, looking at how automation can be
achieved. It will be apparent that once a loop invariant has
been selected, all the other steps in the procedure are com-
pletely determined and therefore computable by a mechan-
ical system.
Step 1: DeterminePpre and Ppost. These two predicates
are given as part of the specifications for the operation we
want to implement. We also assume the knowledge of the
expression forPpost when the input operands are parti-
tioned: the PME.The expressionsPpre, Ppost and PME
are the input to a mechanical system.
Step 2: DeterminePinv. Loop invariants are obtained by
selecting a subset of the operations that appear in the PME.
Notice that not every subset leads to a viable algorithm.

Steps 3, 4, 5: Determine loop guardG, the initializa-
tion, and how to move the boundaries.These three steps
can be performed by comparing the selected loop invariant
Pinv and the expressions forPpre andPpost. By means of
repartitionings only, we wantPinv to hold before the loop
is entered (initialization) and after the loop is completed
(loop guard). Then the boundaries are moved in such a
way to make progress towards renderingG false.

Steps 6, 7: DeterminePbefore and Pafter. It is impor-
tant to realize that the two predicatesPbefore andPafter are
nothing more than the loop invariant expressed in terms of
newly exposed parts of the operands, respectively at the
top and the bottom of the loop. The expressions forPbefore

andPafter can therefore be computed by applying textual
substitution, exploiting the knowledge of the PME and per-
forming algebraic manipulations. It is this computation that
becomes difficult to perform manually for complex opera-
tions. Fortunately it can be entirely automated.

Step 8: Determine the updateSU . The updates are deter-
mined by comparing of the statesPbefore andPafter. A
symbolic system with pattern matching capabilities, like
Mathematica, can be programmed to identifySU .

Implementation of the Mechanical System. We have imple-
mented a prototype mechanical system. Evidence suggests
that the system is as general as the FLAME methodology it-
self: it has been successfully applied to complex operations
like the triangular Sylvester equation (LX+XU = C) and
the triangular Lyapunov equation (LX +XLT = C), op-
erations frequently encountered in control theory.

We now show how the system is applied to the SYTRRK
operation. The complete output from the system is a work-
sheet identical to the one shown in Fig. 2. In Fig. 4 we
instead display the output as produced by the mechanical
system without the annotations (predicates). The resulting
algorithm is equivalent to the algorithm we derived step-
by-step in Sect. II.

We briefly comment on how the mechanical system per-
forms Steps 6, 7 and 8. First the predicatePbefore is com-
puted. This predicates displays the current contents of the
output variables. The result matches exactly with Step 6 in
Fig. 2 (the empty triangles are used to represent a symmet-
ric matrix):

loop invariant before the updates:

i

k

jjjjjjj
A00 A01 A02
õ A11 A12
õ õ A22

y

{

zzzzzzz =
i

k

jjjjjjjjjj

U00.T@U00D + A`00 A
`

01 A
`

02

õ A
`

11 A
`

12

õ õ A
`

22

y

{

zzzzzzzzzz

 Students

Then the predicatePafter is computed. This predicate dis-
plays what the variables need to contain at the bottom of
the loop. The result matches exactly with Step 7 in Fig. 2:

Partition

A ®
i
k
jjjj

A
`

TL A
`

TR

T@A`TRD A
`

BR

y
{
zzzz U ® J UTL UTR

0 UBR
N

where ATL UTL are empty

While ATL <> A

Repartition

9i
k
jjjj

A
`

TL A
`

TR

T@A`TRD A
`

BR

y
{
zzzz ®
i

k

jjjjjjjjjjj

A
`

00 H A`01 A
`

02 L
i
k
jjjj
T@A`01D
T@A`02D

y
{
zzzz
i
k
jjjj

A
`

11 A
`

12

T@A`12D A
`

22

y
{
zzzz

y

{

zzzzzzzzzzz
, J UTL UTR

0 UBR
N ®
i

k

jjjjjjj
U00 H U01 U02 L
0 J U11 U12

0 U22
N
y

{

zzzzzzz=

A00 := U01.T@U01D +A00
A01 := U01.T@U11D +A01
A11 := U11.T@U11D +A11

Continue with

9
i

k

jjjjjjjjjjj

i
k
jjjj

A
`

00 A
`

01

T@A`01D A
`

11

y
{
zzzz

i
k
jjjj
A
`

02

A
`

12

y
{
zzzz

H T@A`02D T@A`12D L A
`

22

y

{

zzzzzzzzzzz
®

i
k
jjjj

A
`

TL A
`

TR

T@A`TRD A
`

BR

y
{
zzzz,
i

k

jjjjjjj
J U00 U01

0 U11
N J U02

U12
N

0 U22

y

{

zzzzzzz ® J
UTL UTR
0 UBR

N=

end while

Fig. 4. Mechanical Derivation of Algorithms: SYTRRK

invariant after the updates:

y

{

zzzzzzz =
i

k

jjjjjjjjjj

U00.T@U00D + U01.T@U01D + A`00 U01.T@U11D + A`01 A
`

02

õ U11.T@U11D + A`11 A
`

12

õ õ A
`

22

y

{

zzzzzzzzzz

This last predicate is then simplified by performing pat-
tern matching to identify expressions fromPbefore that
also appear inPafter. For instance the quadrantA00 in
Pafter equalsÂ00 + U00U

T
00 + U01U

T
01, but the expression

Â00 + U00U
T
00 appears asA00 in Pbefore, therefore can be

replaced by A00 . Once this step has been performed, any

quadrantXij in Pafter containing only the expressionXij

requires no updates. In our example, the simplified predi-
catePafter is (quadrantsA02, A12 andA22 require no op-
eration):

y

{

zzzzzzz =
i

k

jjjjjjjjjjjjj

U01.T@U01D +A00 U01.T@U11D +A01 A02
õ U11.T@U11D +A11 A12
õ õ A22

y

{

zzzzzzzzzzzzz

This final expression forPafter is then transformed
into the traditional assignments:A00 := A00 + U01U

T
01,

A01 := A01 + U01U
T
11 and A11 := A11 + U11U

T
11 which

have to be performed at each iteration of the loop in or-
der to maintain the loop invariant true.

IV. SYSTEMATIC ERRORANALYSIS

Thanks to the mechanical system we presented in the for-
mer section, it is possible to obtain a family of algorithms
for one operation in matter of seconds. Therefore the users
can select the best algorithm for their needs, according to
the target given system and environment (sequential, dis-
tributed memory, shared memory,..). It is then important
to be able to assert numerical properties of the generated
algorithms. A numerically unstable algorithm is useless,
regardless of performance considerations. Coming up with
numerical stability analysis by hand for each algorithm in
the family is a difficult and tedious effort, especially when
facing operations like the Sylvester equation, for which
more than 15 different algorithms are produced.
In Fig. 5 we propose an extended version of the worksheet
in Fig. 1 that facilitates the derivation of stability results via
induction. Associated with the extended worksheet we in-
troduce a three-stage procedure to identify stability proper-
ties of a derived algorithm. The first stage of the procedure
is the standard FLAME derivation of algorithms. In the
second stage a formula for the error analysis is determined.
In the third and last stage error bounds for this formula are
generated. The focus of this section is the second stage of

LA Op. Stability formula Step

Partition

Operands Error Operands
where

4

{ Loop Invariant} { Error Invariant} 2
while G do 3

Repartition
Operands Error Operands

where
5a

{ Loop Invariant} { Error Invariant} 6

Updates Error Analysis
for the Updates

Error Updates
8

{ Loop Invariant} { Error Invariant} 7

Continue with
Operands Error Operands 5b

enddo

Fig. 5. Extended worksheet for deriving linear algebra algorithms
and proving their stability properties.

the procedure.

Space constraints require us to limit the discussion to a very
simple problem: the determination of the backward stabil-
ity of the inner productκ := xT y. We must show that
the computed quantity̌κ is the exact result for slightly per-
turbed inputs. This can be expressed asκ̌ = xT ∆y, where
the diagonal matrix∆ is given by the sum of the identity
matrix I and the matrixΘ, whose entries have magnitude
of the order of the unit roundoff (∆ = I + Θ).

In the worksheet (Fig. 6), the notation[expression] is
used to indicate the result that is computed in the pres-
ence of roundoff error (other texts often use the notation
fl(expression)). Also, notice the difference between the
operator:= which represents the assignment, and= which
signifies the equality relation.

Looking at Fig. 6, the left side of the worksheet is used to
derive an algorithm for the operationκ := xT y. On the
right side, the operatioňκ = xT ∆y is considered, where
the matrix∆ is the unknown that we want to compute. It
is important to stress that the operation on the right side of
the worksheet corresponds to the error analysis for the al-
gorithm on the left side. The difference between the deriva-
tion process in the left and right columns is that while the
updates (Step 8) for the operation on the left are strictly
dictated by the operation, the updates on the right side are
dictated by the operation itself and by the error introduced
by the updates in the presence of roundoff error.

In our example, the inner product, we choose the loop in-
variantκ̌ := xT

T yT (Step 2 on the left). The loop invariant
determines the updatěκ := [κ̌+ χ1ψ1], as shown in the
left-most column of Step 8. In the middle column of Step 8
the error analysis for the update is performed, using the

standard computation model

[

x op y
]

= (x op y)(1 + ǫ),

|ǫ| ≤ u, and op = +,−, ∗, /

and the resulting analysis is:

κ̌ =
(

κ̌+ χ1ψ1(1 + ǫ∗)
)

(1 + ǫ+), (2)

whereǫ∗ is the error due to the multiplicationχ1ψ1 andǫ+
is the error due to the sumκ+χ1ψ1. Recall that we want to
prove thaťκ = xT ∆y holds, where∆ is a diagonal matrix.
Equivalently we can show that at each iteration of the al-
gorithm, the equality̌κ = xT

T ∆T yT holds (Step 2), where
∆T is the top-left quadrant of∆ (Step 4). For this, repar-

titioning (Step 5a) the matrix∆ as

0

B

B

B

B

B

B

@

∆0 0 0

0 δ1 0
0 0 ∆2

1

C

C

C

C

C

C

A

, we

obtain the inductive hypothesišκ = xT
0 ∆0y0, (Step 6) that

can be exploited to prove the theorem. Combining formula
(2) with the inductive hypothesis we obtain

κ̌ = xT
0 ∆0(1 + ǫ+)y0 + χ1(1 + ǫ∗)(1 + ǫ+)ψ1

which dictates how the matrix∆0 and the scalarδ1 have
to be updated to maintain the loop invariantκ̌ = xT

T ∆T yT

(Step 8):

∆0 := ∆0(1 + ǫ+)

δ1 := (1 + ǫ+)(1 + ǫ∗)

It is then easy to find bounds on the entries of the matrix∆.
The reader may have the feeling that this approach intro-
duced unnecessary complications to prove a simple fact
like the backward stability of the inner product. Instead,
the strength of the approach relies on the modularity. Even
for more complex operations the structure of the proof re-
mains the same and results for simpler operations can be
used incrementally. As an example, the extended work-
sheet yields a proof for the backward stability of the LU
factorization that is as concise, in our opinion, as is the
proof that appears in [HIG 02].

V. CONCLUSIONS

We have presented a methodology for deriving linear alge-
bra algorithms. The methodology requires only the math-
ematical description for the operation for which an algo-
rithm is to be found. It relies on the loop invariant concept
to generate formally correct algorithms. The proof of cor-
rectness is inherently embedded in the derivation process.
The methodology is so systematic that can be performed
mechanically by a system. In the paper we introduced a
prototype system written in Mathematica that achieves this.

κ := xT y κ̌ = xT∆y Step

Partition

x→
(

xT

xB

)

, y →
(

yT

yB

)

∆→

„

∆T 0

0 ∆B

«

where xT and yT are 0× 1 and ∆T is 0× 0

4

{

κ̌ =
[

xT
T yT

]} {

κ̌ = xT
T ∆T yT

}

2
while m(xB) > 0 do 3

Repartition
„

xT

xB

«

→

0

@

x0

χ1

x2

1

A ,

„

yT

yB

«

→

0

@

y0

ψ1

y2

1

A

„

∆T 0

0 ∆B

«

→

0

@

∆0 0 0

0 δ1 0
0 0 ∆2

1

A

where xT , yT and δ1 are 1× 1

5a

{

κ̌ =
[

xT
0 y0
]} {

κ̌ = xT
0 ∆0y0

}

6

κ̌ := [κ̌+ χ1ψ1]

κ̌ :=
(

κ̌+ χ1ψ1(1 + ǫ∗)
)

(1 + ǫ+)

= xT
0 ∆0(1 + ǫ+)y0+
χ1(1 + ǫ∗)(1 + ǫ+)ψ1

∆0 := ∆0(1 + ǫ+)

δ1 := (1 + ǫ+)(1 + ǫ∗)
8

{

κ̌ =
[

xT
0 y0 + χ1ψ1

]}











κ̌ =

(

x0

χ1

)T [

∆0

δ1

](

y0
ψ1

)

=

= xT
0 ∆0y0 + χ1δ1ψ1











7

Continue with
„

xT

xB

«

←

0

@

x0

χ1

x2

1

A ,

„

yT

yB

«

←

0

@

y0
ψ1

y2

1

A

„

∆T 0

0 ∆B

«

←

0

@

∆0 0 0
0 δ1 0

0 0 ∆2

1

A

5b

enddo

Fig. 6. Extended worksheet used to proof the backward stability of the inner product

Experimental results suggest that the system is as general
as the derivation methodology itself.
Correctness in the usual sense is not enough in the pres-
ence of roundoff error. In this paper we discussed how to
extend the methodology to prove facts about the stability of
the generated algorithms. The resulting process facilitates
inductive proofs and modularity in the error analyses.

REFERENCES

[AND 92] A NDERSON E., BAI Z., DEMMEL J., DONGARRA
J. E., DUCROZ J., GREENBAUM A., HAMMARLING S.,
MCKENNEY A. E., OSTROUCHOVS., SORENSEND., LAPACK
Users’ Guide, SIAM, Philadelphia, 1992.

[BIE 05] BIENTINESI P., GUNNELS J. A., MYERS M. E.,
QUINTANA -ORTÍ E. S., VAN DE GEIJN R. A., The Science of
Deriving Dense Linear Algebra Algorithms, ACM Transactions
on Mathematical Software, vol. 31, n1, March 2005.

[DON 88] DONGARRA J. J., DU CROZ J., HAMMARLING S.,
HANSON R. J.,An Extended Set of FORTRAN Basic Linear Alge-
bra Subprograms, ACM Transactions on Mathematical Software,
vol. 14, n1, p. 1-17, March 1988.

[DON 90] DONGARRA J. J., DU CROZ J., HAMMARLING S.,

DUFF I., A Set of Level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, vol. 16, n1, p. 1-
17, March 1990.

[HIG 02] HIGHAM N. J., Accuracy and Stability of Numerical
Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, second dition, 2002.

[JON 02a] JONSSONI., K ÅGSTRÖM B., Recursive Blocked Al-
gorithms for Solving Triangular Systems: Part II: Two-Sided and
Generalized Sylvester and Lyapunov Matrix Equations, ACM
Transactions on Mathematical Software, vol. 28, n4, p. 416–435,
December 2002.

[JON 02b] JONSSON I., K ÅGSTRÖM B. B., Recursive Blocked
Algorithms for Solving Triangular Systems: Part I: One-Sided
and Coupled Sylvester-type Matrix Equations, ACM Transactions
on Mathematical Software, vol. 28, n4, p. 392–415, ACM Press,
2002.

[LAW 79] L AWSON C. L., HANSON R. J., KINCAID D. R.,
KROGHF. T.,Basic Linear Algebra Subprograms for Fortran Us-
age, ACM Trans. Math. Soft., vol. 5, n3, p. 308-323, Sept. 1979.

[QUI 03] QUINTANA -ORTÍ E. S., VAN DE GEIJN R. A., For-
mal Derivation of Algorithms: The Triangular Sylvester Equa-
tion, ACM Transactions on Mathematical Software, vol. 29, n2,
p. 218–243, June 2003.

