Formal Correctness and Stability of Dense Linear Algebra Agorithms

Paolo Bientinesi Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
{paul dj , rvdg}@s. ut exas. edu

Abstract - The Formal Linear Algebra Methods Environ- [Step [Annotated Algorithm: [C, D,...] = op(4, B, C,...) |
ment (FLAME) project at UT-Austin pursues the mechanical 1a T Pore |
derivation of algorithms for linear algebra operations. Raher Partition
than proving loop based algorithms correcta posteriori, a sys- 4
tematic methodology is employed that determines loop invar > 7 W}here
ants from a mathematical specification of a given linear alge 3 whiiva o
bra operation. Algorithms and their correctness proofs are 23 (P JA (G}
then constructively derived from this loop invariant. Repartition
The process has been made mechanical via a prototype sys- 5a
tem implemented with Mathematica. Once an algorithm has 5 pawr }Where
been determined, a similarly systemati@ posteriori process is 5 SUbefore
used to determine the correctness in the presence of roundof 7 T Pareer
error (stability properties) of the algorithm. In this paper, we 5b Continue with
report progress towards the ultimate goal of full automatian
of the system. 2 { Piny }
enddo
23 [{(Pnv)A=(G)}Y
Keywords—formal derivation, linear algebra algorithms, sta- 1b { Poost }
bility analysis, automated system, mechanical derivation
I. INTRODUCTION Fig. 1. Worksheet for developing linear algebra algorithms

In Fig. 1, we give a generic “worksheet” for deriving a large)) . i »
class of loop based linear algebra algorithms. The wori@lgorithms solving the target operation can be identiéied
sheet resembles the skeleton of a linear algebra algoritfori- While the example is simple, the methodology has
in the sense that it consists of an initialization step (gep PeeN shown to apply to most of the operations supported
and a while loop (Step 3). In the body of the while loopPY the Basic Linear Algebra Subprograms, LAPACK and
updates with operands are performed (Steps 5a, 8 and 5)¢ RECSY library [LAW 79], [DON 88], [DON 90],
The skeleton is also annotated with predicates, in curly/\ND 92], [BIE 05], [QUI 03], [JON 02b], [JON 02a].
brackets, that describe the status of output variabled-at dAlthough the procedure that we describe in Sect. Il ensures
ferent stages in the algorithm (Steps 1a, 2, 2,3, 6, 7, 18he derived algorithm to be formally correct, it is the ap-
The steps number refer to the first column of Fig. 1 and thilication of the procedure itself that is error prone, due to
numbering follows the order in which the boxes are fillededious algebraic manipulations. As the complexity of the
to yield a valid algorithm. target operation increases, it becomes difficult to perform
The basic idea behind the FLAME approach to dethe procedure by hand. In Section Il we illustrate how,
riving algorithms is that the predicates in the work-Starting from the loop invariant for a target operation, the
sheet are systematically derived, after which the statéteps of the procedure can be automated and performed by
ments between the predicates are chosen to make th@symbolic system.

predicates correct. In other words, the approach ©ur methodology generates many algorithms for the same
goal oriented: every command between two prediarget operation. The numerical stability properties atea
cates is derived in such a way that the Hoare’s triplalgorithm needs to be ascertained, since often new algo-
{predicatey g } command {predicate,g,, } is satisfied. rithms are derived. And given that often times more than
If it is possible to derive commands for all the predicateshalf a dozen algorithms are derived, it becomes a necessity
then the derived algorithm will be guaranteed to be forto develop tools to help the user assert numerical progertie
mally correct. for these algorithms. In Section IV we present an extended
In Section Il we describe, by means of a practical examworksheet that allows the stability analysis to be perfatme
ple, the steps necessary to derive a family of algorithmsy following a sequence of steps similar to the ones for de-
from the mathematical specification of a target operatiomiving the algorithm itself.

Key to this result is the fact that the loop invariant for the

1. ACONCRETEEXAMPLE: A := A+ UU7T of the operations will have been performed. For example,
the intermediate state
We describe here the eight-step procedure for filling out the
worksheet in Fig. 1. We consider the SYmmetric Rank-K A A Arr + Up UL || i
operationd := A + UUT (SYTRRK), where thex x n (i“i> — < IL T -TherL || A TR)
matricesA andU are, respectively, symmetric and upper * Apr * || ABRr

triangular. We will assume that only the upper triangular

part of A is stored. The completed worksheet is presented)) 1)
in Fig. 2, while the final algorithm appears in Fig. 3. comes from assuming thatr; has been partially up-
Steps 1a,1b: DetermineP,.. and P,.. The generic dated while the other parts of the matrix have not yet been

target operation is given by [C, D,...]=op(A, B, C,...).touched. Let us use this loop invariant for the remainder of

Some operands may be both input and output variabld§is discussion: it becomes,, in the worksheet in Fig. 1
The structure and properties of the input variables arengivéS illustrated in Fig. 2. _
by the predicateP,,., the precondition. The postcondi- Step 3: Determine loop guardG:. The loop guard is
tion, P, is the predicate that describes the desired stat@e condition under which the program remains in the
upon completion of the algorithm. Predicat&s.. and |00p. Thus, when the loop completes(: holds, and
Poost for the operationd := A + UUT are, respectively, SO doesPy,. We are seeking a loop guard so that
(Pnv A =G) implies P,; this condition dictatess. In
A=ANA= AT AUpperTriU) andA = A + UUT as OUr example,. 'by comparing the Iogp invariant (1) and
shown in Fig. 2. The predicaté3,. andP,.. dictate how the postconditionf{A = A + UU™} it's easy to deter-
the remainder of the worksheet must be filled. mine thatG: = SameSize(A, Arr,), where the predicate
Step 2: Determine loop invariant P..,. The loop invari- SameSize(A, Ary) is true iff the dimensions ofA and
antis a predicate that expresses the contents of the vesiabfl7z are equal. _ o
during the computation. In order to determine possible im>tep 4: Determine initialization. Since the Iqqp invariant
termediate contents of the output variable, one starts gust hold before the loop commences, thitialization,
partitioning the input and output operands. The partition=t€P 4 in Fig. 1, must have the property that starting in
ing corresponds to an assumption that algorithms progre$¥ StatePp., it sets the variables to a state in whieh,
through data in a systematic fashion. holds:{ Pre} Step 4 {Piny}. Ideally, only the partitioning
In this example the matrice$ andU are partitioned into of operands is required to attain this state. Notice that the

quadrants to capture the symmetric and upper triangul#tialization in Step 4 in Fig. 2 has this property.
structure: Steps 5a, 5b: Determine how to traverse the operands.

In our notation, the double lines indicate progress through
the operands. For the SYTRRK operation, initially the
n (Arp || Arr) U (Urt || Urr) top-left quadrant of matrixl is empty, and ultimately that
AT 1 Agr)7 0 Ugr | quadrant must encompass all of the matrix. The repartition-
ing of the operands in Step 5a and the moving of the double
lines in Step 5b expose and move rows and columns from

Here the indiced’, B, L, and i stand for p, Bottom, the bottom-right quadrant to the top-left one. Respegtjvel
Left, and_Rght, respectively.

Now, the partitioned matrices are substituted into the-post
condition after which algebraic manipulation expresses th (Arp || Arr) . (Aoo || Aor | Aoz) and

. . . - A, [A
final result in terms of operations on the original contents * BR = H i I Tos
of those quadrants. We refer to this expression as the Parti-

tioned Matrix Expression (PME): (s 1l A) Aoo I 1201 H 11202
—“— * 11 12 .
* BR > | * || A=

(ATL Arr) _

* ABr Step 6: Determine Ppesore- Step 5a exposes submatrices

of the operands. The predicate in Step 6 merely expresses
Arp + UrpUL, + UrrUZy, || Arg + UrrUL the contents of thpse_: submatrices. This pre(_jicatg is de-
Vi = . termined by substituting the exposed submatrices into the
* H Br+UBrUpR loop invariant. Formally{ P, } Step 5a { Ppefore }- Math-
ematically Pyesore 1S given by:

Here A denotes the original content of the matrixand
* is used to indicate that the matrix is symmetric. At an

intermediate stage (at the top of the loop body) only some Simplify (P“W

b
Repartitioning)

[Step || Annotated Algorithm:A := A + UUT

la {A:AAA:ATAUpperTri(U)}
Partition
A A U U . A A
4 A—»(TL TR>’U_>< TL TR>’ _ TL TR\
~~ 1 Aor "0 N[Usr x| Asr
where Ary, and Uy, are 0 X 0
2 (Arp || Arr)_ Arp +UrrUL, || Arr
* || ABR * || ABR
3 while =SameSize(A, Apr,) do
A A App, +Ur UL || A
2,3 (rL || Arr): r1 + UreUz, || Ars A (~SameSize(A, Ary,))
1 Aos = I ion
Repartition
A A A U U U
Arp || Ars 00 || Ao1 | Ao2 Ure || Urn 00 || Uo1 | Uo2
5a THA— - * Aqr | A2 ’ T”U— - 0 Uir | Ur2
BR m * | Az BR 0 0 | U2z
where A1 and L11 areb x b
Ago || Aor | Aoz Ago + UooUZE, || Ao1 | Aoe
6 * A1l | A2 = * A1 | Arn
* * A22 * * AQQ
Aoo = Aoo + UnUH
8 Aot := Ao + UnUE
Aqr = A+ UnU
Aoco | Ao1 || Aoz Ao + UooUL + Uor UL Ao1 + Uo1 U, Aoz
7 * [An || A2 | = * An +UnUL || A
* | * || A22 * | * || AQQ
Continue with
Aoo | Ao1 || Aoz Uoo | Uo1 || Uo2
5b (ﬂﬂj& > Tan A), %LIZT_R (70 T T
-~ T 4Br ~ 0 [[Usr
* BE x|+ [Az BR 0 [0 [[Usn
) (Arp || Arr) ([Arp+Ur UL, || Arg
* || ABR * || ABR
enddo
A A A Ur UL || A
2,3 (rL || Are): ro + UreUsy || Avs A = (—=SameSize(A, Arr,))
* || ABR * || ABR
1b {A =A+ UUT}

Fig. 2. Worksheet for developing an algorithm for the synmmmetink-k update.

where the vertical bar signifies the application of textual'he required updateSy; are determined by comparing the

substitution rules and the functi@mplify indicates alge-
braic simplifications.

Step 7: Determine Pyger. The Hoare's triple

state in Step 6 with the desired state in Step 7.
Predicates and commands for the example that we are car-
rying on are presented in Fig. 2. Once the predicates are

{Paster} Step 5b {Piny} must hold. Therefore the pred- removed the resulting algorithm appears as shown in Fig. 3.

icate P,sor denotes the loop invariant before ti@on-
tinue with (Step 5b) execution. Sind&,,, is known, P, e,
can be determined by executing the converse ofGbe-

Correctness. If it is possible to successfully execute the

tinue statement, i.e. executing the textual substitution rul¢&dnt steps we described, the resulting algorithm is guaran

backwards. Mathematicallf,s.. is determined by:

Simplify (va

Continue—!)

Both the predicated} ctore and Pygier are shown in Fig.2.
Step 8: Determine the updatesSy. The statements;
must be such that the triplePyctore } St { Patter} holds.

teed to be formally correct. Itis in fact possible to statea s
quence of valid Hoare’s triples, the first one beginning with
the predicatd P, } and the last one ending with the pred-
icate{ Pyost }. Thus the triple{ Py, falgorithm{P s } is
also valid.

Family of Algorithms. Among the aforementioned eight
steps, only one is not fully determined: the choice of the
loop invariantP,,, (Step 2). Often times for a given PME,

there are many loop invariants yielding valid algorithms.

N Arr || Arr) U (Urr || Urr) Steps 3, 4, 5: Determine loop guardz, the initializa-

~ * I 4sr 0 BR tion, and how to move the boundariesThese three steps
i (ArL |l AT > can be performed by comparing the selected loop invariant
* || ABr P, and the expressions fd?,,. andP,.s. By means of

while ~SameSize(A, Azy) do repartitionings only, we wank,,,, to hold before the loop

Repartition is entered (initialization) and after the loop is completed
A || Ars Aoo || Aot | Aoz (loop guard). Then the boundaries are moved in such a
(W) - * H A I ﬁl? ; way to make progress towards renderrdglse.
* * 22

. . Uoo || Uos | Usz Steps 6, 7: DeterminePyetore aNd Pygier. It IS impor-
(gL) =0 [0u [T tant to realize that the two predicatBs.iorc anNd Pager are
EBR 0 0 U-
oo A and L N I | U2z nothing more than the loop invariant expressed in terms of
Where Arp and Ly are b x newly exposed parts of the operands, respectively at the

Aoo 1= Ago + UnUgy top and the bottom of the loop. The expressionsHQkore

Ap1 := Ao1 + UnUfy and P, can therefore be computed by applying textual
A1 = A+ UnUf substitution, exploiting the knowledge of the PME and per-
Continue with forming algebraic manipulations. It is this computatioatth

App || Arn Aoo | Aot || Aoz becomes difficult to perform mgnually for complex opera-
<—”7_T“TR> — * [An [Aiw tions. Fortunately it can be entirely automated.
UZO || U(Tl |I| [2222 Step 8: Determine the updateS;;. The updates are deter-
(%UUT—R> [T0 T [T mined by comparing of the statd3cfore and Pagrer. A
Uk 0 [0 [U2 symbolic system with pattern matching capabilities, like
enddo Mathematica, can be programmed to idenfify.
Fig. 3. Algorithm for the symmetric rank-k update. Implementation of the Mechanical System. We have imple-

mented a prototype mechanical system. Evidence suggests
)))) thatthe system is as general as the FLAME methodology it-
Repeating Steps 3-8 for different loop invariants resuits igot. it has been successfully applied to complex operation

a family of algorithms solving the_z same operation. As af} .« the triangular Sylvester equatiohX + XU = C) and
example, the following predicate is also a valigl, forthe o triangular Lyapunov equation & + X LT = (), op-

SYTRRK operation: erations frequently encountered in control theory.
We now show how the system is applied to the SYTRRK
(Arp || Arg) operation. The complete output from the system is a work-
= sheet identical to the one shown in Fig. 2. In Fig. 4 we
instead display the output as produced by the mechanical
system without the annotations (predicates). The regultin
Arp + Ur UYL, + UrrUf, || Arr algorithm is equivalent to the algorithm we derived step-
N || Ann by-step in Sect. II.

We briefly comment on how the mechanical system per-
forms Steps 6, 7 and 8. First the predic&gor. IS cOM-
puted. This predicates displays the current contents of the
In this section we cover the eight steps forming the deriv. Ql.JtpUt variables. The result matches exactly with Step 6 in
. X . . ig. 2 (the empty triangles are used to represent a symmet-
tion procedure again, looking at how automation can be o
. . . . ric matrix):
achieved. It will be apparent that once a loop invariant has
been selected, all the other steps in the procedure are com-
pletely determined and therefore computable by a mechan-
ical system.

Step 1: DetermineP,,. and Pp.. These two predicates | 00p invariant before the updates:

* ABR

I11. M ECHANICAL GENERATION OFALGORITHMS

are given as part of the specifications for the operation w [Agp | Aoz | Ao2 Ugo- T[Uoo 1 + Ao | Ao1 | Aoz
want to implement. We also assume the knowledge of tt | v [A;1 [Ap | = v A | A
expression forP,.s. when the input operands are parti- | v | v [Axp v v | A

tioned: the PMEThe expressionsPye, Ppost and PME

are the input to a mechanical system.

Step 2: DetermineP,,,. Loop invariants are obtained by Then the predicat®, ., is computed. This predicate dis-
selecting a subset of the operations that appear in the PMidays what the variables need to contain at the bottom of
Notice that not every subset leads to a viable algorithm. the loop. The result matches exactly with Step 7 in Fig. 2:

Partition
Ar ATR] UL | Ur
A- U-
[T[ATR] Agr (0 UBR)
wher e Ar Un are enpty
Wi | e Ar <> A
Repartition
Ao | (Por Ao) Wo | (W1 W)
A A Uy U
{{T[;:R] A;: - (T[A‘”]]‘[Au AlZ] (o UB:)% T’WJ}
T(Ao2] T[A2] Az 0 Up
Ao = Uz T(Uo T + AQO
Por = Un.Tiuwd Aol
Aqg = Ui T[Up] +A11
Continue with
A00 A01 AOZ Uyo Up Uo
{ [T[Am] An] HAUJ - A A , (O Uu)‘(ulz) Q(UT'- UTR)}
T[ATR] ABR 0 0 UBR
(TiAz] TiAz]) | Az s
end while

Fig. 4. Mechanical Derivation of Algorithms: SYTRRK

after the updates:

Uno - T[Uno] + Upz- T[Up1] + Ago

Upr- T[U11] +Aox

Ap1 = Ao1 + UolUirl and Aq; = Ay + U11U171 which

Ao have to be performed at each iteration of the loop in or-

v

Ui T[Ui1] +An

AL der to maintain the loop invariant true.

v

\

A22
IV. SYSTEMATIC ERRORANALYSIS

This last predicate is then simplified by performing pat-
tern matching to identify expressions frof, ... that
also appear inP,... For instance the quadranty, in
Pasier €Qualsdgg + UnoUdy + U1 UZ,, but the expression
Aoo + UnoUd, appears aslyg in Poefore, therefore can be

replaced by Agg . Once this step has been performed, an?

quadrantX;; in Pager CONtaining only the expressic X;;

Thanks to the mechanical system we presented in the for-
mer section, it is possible to obtain a family of algorithms
for one operation in matter of seconds. Therefore the users
can select the best algorithm for their needs, according to
the target given system and environment (sequential, dis-
ibuted memory, shared memory,..). It is then important
0 be able to assert numerical properties of the generated
algorithms. A numerically unstable algorithm is useless,
regardless of performance considerations. Coming up with
numerical stability analysis by hand for each algorithm in

requires no updates. In our example, the simplified predipe tamily is a difficult and tedious effort, especially when

cate P,er IS (Quadrantsigs, A2 and A require no op-

eration):

Ws. Tl] + Ago

. TrU] + Aol

Ao

facing operations like the Sylvester equation, for which
more than 15 different algorithms are produced.

In Fig. 5 we propose an extended version of the worksheet
in Fig. 1 that facilitates the derivation of stability refsNia
induction. Associated with the extended worksheet we in-

v

U Tiunl + A1l

A1

troduce a three-stage procedure to identify stability prop
ties of a derived algorithm. The first stage of the procedure

v

This final expression forP,g.. is then transformed
into the traditional assignmentsigg := Agg + U01U§’1,

v

Azo

is the standard FLAME derivation of algorithms. In the
second stage a formula for the error analysis is determined.
In the third and last stage error bounds for this formula are
generated. The focus of this section is the second stage of

[LAOp. Stability formula_ || Step | Standard computation model

Partition
Operands Error Operandg 4 [x op y] = (xopy)(1+e),
where le] <u, and op =+, —, %,/
{ Loop Invariant} { Error Invariant} 2
while G do E and the resulting analysis is:
Repartition
Wheré)perands Error Operandg| 9@ P = (R + X11/11(1 4 e*)) (1 4 €+)’ (2)
{ Loop Invariant} { Error Invariant} ° wheree, is the error due to the multiplicatiog v1 ande
Updates Error Analysis Error Updates 8 is the error due to the surH x 17, . Recall that we want to
for the Updates prove that: = 27 Ay holds, where) is a diagonal matrix.
{Toop Invarant} T Error Invariant} 7 Equivalently we can show that at each iteration of the al-
Continue with gorithm, the equality: = =2 Aryr holds (Step 2), where
Operands Error Operands| 2P Ar is the top-left quadrant oh (Step 4). For this, repar-
enddo

Ao |l O] O

titioning (Step 5a) the matrid as| ~ g 5, | 0 | We

Fig. 5. Extended worksheet for deriving linear algebra atgms 0 0| A,
and proving their stability properties.

obtain the inductive hypothesis= = Agyo, (Step 6) that
can be exploited to prove the theorem. Combining formula
the procedure. (2) with the inductive hypothesis we obtain

Space constraints require us to limit the discussiontoaver & = a1 Ag(1 + €4)yo + x1(1 4+ €.)(1 + €1)t
simple problem: the determination of the backward stabil-

ity of the inner produck e Q;Ty_ We must show that which dictates how the matrikxo and the scalaﬁl have
the computed quantity is the exact result for slightly per- to be updated to maintain the loop invariant 27 Aryr
turbed inputs. This can be expressedias 27 Ay, where (Step 8):

the diagonal matriXA is given by the sum of the identity

matrix I and the matrix®, whose entries have magnitude Ag = Aol +ep)

of the order of the unit roundoff{ = I + ©). o= (1+er)(1+e)

In the worksheet (Fig. 6), the notatidaxpression] is

used to indicate the result that is computed in the prestis then easy to find bounds on the entries of the malrix
ence of roundoff error (other texts often use the notatiomhe reader may have the feeling that this approach intro-
fl(expression)). Also, notice the difference between theduced unnecessary complications to prove a simple fact
operator= which represents the assignment, andihich like the backward stability of the inner product. Instead,
signifies the equality relation. the strength of the approach relies on the modularity. Even
for more complex operations the structure of the proof re-

Looking at Fig. 6, the left side of the worksheet is used tg__. . .
. . . T mains the same and results for simpler operations can be
derive an algorithm for the operation := z*y. On the

right side. the operation — 2T Av is considered. where used incrementally. As an example, the extended work-
9 > the op =T oy ’ sheet yields a proof for the backward stability of the LU
the matrixA is the unknown that we want to compute. It

is important to stress that the operation on the right side (];?Ctof“iat'on that IS as CONCISE, In our opinion, as I the
the worksheet corresponds to the error analysis for the zﬁfoo thatappears in [HIG 02].

gorithm on the left side. The difference between the deriva-
tion process in the left and right columns is that while the

updates (Step 8) for the operation on the left are S'[I’ICt|\\?ge have presented a methodology for deriving linear alge-

dictated by the operation, the updates on the right side . .
dictated by the operation itself and by the error introducglara algorithms. The methodology requires only the math-

by the updates in the presence of roundoff error ematical description for the operation for which an algo-
' rithm is to be found. It relies on the loop invariant concept

In our example, the inner product, we choose the loop irte generate formally correct algorithms. The proof of cor-
varianti := xLyr (Step 2 on the left). The loop invariant rectness is inherently embedded in the derivation process.
determines the update := [k + x1¢1], as shown in the The methodology is so systematic that can be performed
left-most column of Step 8. In the middle column of Step 8nechanically by a system. In the paper we introduced a
the error analysis for the update is performed, using tharototype system written in Mathematica that achieves this

V. CONCLUSIONS

| w:=2aTy

Partition

(mT) (yT)
xr — Y —
B YB

where z7 and yr are 0 x 1 and Atis0 x 0

{# = [e7yr]}

N

{/VQ = JJ%:ATyT}

while m(zp) >0 do

Repartition

() -(3) (2)- ()

where 7, yr and §; are 1 x 1

=0 55 O o[0

0 0 Ao

(AT O)H(—“—I—AO 0 0) Ea

{% = [23w0[}

{Iv{ = ngoyo} 6

i = [k + xa1] = 2T Ao(1 + €y)yo+

X1 (14 €)(1 + ey)i

fi=(F+x1vi(l+e)) (L +ey)

AQ = Ag(l + 6+)
01:=(1+ep)(1+e€)

{# = [adyo +x1¢1]}

=G0 Pl 0=

=z Aogyo + x101¢1

Continue with

(=) (E) () - (&)

A 0 0
S) 5b

() - (B

enddo

Fig. 6. Extended worksheet used to proof the backward #tabflthe inner product

Experimental results suggest that the system is as genebalrr I., A Set of Level 3 Basic Linear Algebra Subprograms,
. . . 17, March 1990.
Correctness in the usual sense is not enough in the pres-

; ; IG 02] HIGHAM N. J., Accuracy and Sability of Numerical
ence of roundoff error. In this paper we discussed how Igorithms, Society for Industrial and Applied Mathematics,

extend the methodology to prove facts about the stability &#hiladelphia, PA, USA, second dition, 2002.
the generated algorithms. The resulting process fa@état

inductive proofs and modularity in the error analyses.

REFERENCES

[AND 92] ANDERSONE., Bal Z., DEMMEL J., DONGARRA
J. E., DuCroz J., GREENBAUM A., HAMMARLING S.,
MCKENNEY A. E., OSTROUCHOVS., SORENSEND., LAPACK
Users Guide, SIAM, Philadelphia, 1992.

[BIE 05] BIENTINESI P., GUNNELS J. A., MYERS M. E.,
QUINTANA-ORTI E. S.,vAN DE GEIIN R. A., The Sience of
Deriving Dense Linear Algebra Algorithms, ACM Transactions
on Mathematical Software, vol. 31, n1, March 2005.

[DON 88] DONGARRA J. J., Du CROZ J., HAMMARLING S.,
HANSONR. J.,An Extended Set of FORTRAN Basic Linear Alge-
bra Subprograms, ACM Transactions on Mathematical Software,
vol. 14, n1, p. 1-17, March 1988.

[DON 90] DONGARRA J. J., DU CROZ J., HAMMARLING S.,

[JON 02a] dNssSoNI., KAGSTROM B., Recursive Blocked Al-
gorithms for Solving Triangular Systems: Part I1: Two-Sded and
Generalized Sylvester and Lyapunov Matrix Equations, ACM
Transactions on Mathematical Software, vol. 28, n4, p. 416-435,
December 2002.

[JON 02b] bNssonl., KAGSTROM B. B., Recursive Blocked
Algorithms for Solving Triangular Systems: Part |: One-Sded
and Coupled Sylvester-type Matrix Equations, ACM Transactions
on Mathematical Software, vol. 28, n4, p. 392-415, ACM Press,
2002.

[LAW 79] LAwsON C. L., HANSON R. J., KINCAID D. R.,
KROGHF. T.,Basic Linear Algebra Subprograms for Fortran Us-
age, ACM Trans. Math. Soft., vol. 5, n3, p. 308-323, Sept. 1979.

[QUI 03] QUINTANA-ORTI E. S.,vAN DE GEIUN R. A., For-
mal Derivation of Algorithms: The Triangular Sylvester Equa-
tion, ACM Transactions on Mathematical Software, vol. 29, n2,
p. 218-243, June 2003.

