Collective Communication:
Theory, Practice, and Experience

FLAME Working Note #22

Ernie Chan*f Marcel Heimlich Avi Purkayasthat Robert van de Geijn'

September 11, 2006

Abstract

We discuss the design and high-performance implementation of collective communications operations
on distributed-memory computer architectures. Using a combination of known techniques (many of
which were first proposed in the 1980s and early 1990s) along with careful exploitation of communication
modes supported by MPI, we have developed implementations that have improved performance in most
situations compared to those currently supported by public domain implementations of MPI such as
MPICH. Performance results from a large Intel Xeon/Pentium 4 (R) processor cluster are included.

1 Introduction

This paper makes a number of contributions to the topic of collective communication:

1. A review of best practices. Collective communication was an active research in the 1980s and early
1990s as distributed-memory architectures with large numbers of processors were first introduced [10,
13, 14, 19, 20, 21, 25]. Since then an occasional paper has been published [9, 12, 15, 27], but no

dramatic new developments have been reported.

2. Focus on simplicity. Historically, hypercube topologies were the first topologies used for distributed-
memory architectures. Examples include Caltech’s Cosmic Cube [22], the Intel iPSC, NCUBE [1], and
Thinking Machines’ Connection Machine architectures. As a result, highly efficient algorithms for
hypercubes were developed first, and these algorithms were then modified to target architectures with
alternative topologies. Similarly, textbooks often start their discussion of collective communication by

considering hypercubes.

In our exposition we take a different approach by considering one-dimensional topologies first. Al-
gorithms that perform well are then generalized to multidimensional meshes. Hypercubes are finally
discussed briefly by observing that they are log(p) dimensional meshes with two (computational) nodes
in each dimension. This fact allows us to focus on simple, effective solutions that naturally generalize

to higher dimensions and ultimately hypercubes.

3. Algorithms. One consequence of Item 2 is that we can state the algorithms more simply and con-
cisely. Minimum-spanning tree algorithms on hypercubes typically required loop-based algorithms that
computed indices of destination nodes by “toggling” bits of the indices of source nodes. We instead

present the algorithms recursively and avoid such obscuring by restricting bit manipulation.

*E-mail: echan@cs.utexas.edu
fDepartment of Computer Sciences, The University of Texas at Austin, Austin, TX 78712.
fTexas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712.

4. Analysis. The cost of algorithms is analysed via a simple but effective model of parallel computation.

5. Tunable libraries. More recently, the topic of tuning, preferrably automatically, of collective com-
munication libraries has again become fashionable [8, 18]. Unfortunately, many of these papers focus
on the mechanism for choosing algorithms from a loose collection of algorithms. Often this collection
does not even include the fastest and/or most practical algorithm. Perhaps the most important
contribution of this paper is that it shows how algorithms for a given operation can be
organized as a parameterized family, which then clearly defines what parameters can be tuned to
improve performance. This approach was already incorporated into the highly tuned InterCom library
for the Intel Touchstone Delta and Paragon architectures of the early and mid 1990s [3, 4, 5]. However,
many details of the theory and practical techniques used to build that library were never published.

6. Implementation. The merits of the approach are verified via a MPI-compatible implementation of all
the presented algorithms [7]. Experiments show that the resulting implementation is comparable and
sometimes better than the MPICH implementation of the Message-Passing Interface (MPI) [11, 23, 24].

There is an entire class of algorithms that we do not treat: pipelined algorithms [13, 14, 26]. The reason is
that we do not consider these practical on current generation architectures.

The remainder of the paper is organized as follows. In Section 2 we explain some basic assumptions that
are made for the purpose of presenting this paper. In Section 3 we discuss the communication operations.
Section 4 delineates the lower bounds of the collective communication operations followed by discussion of
network topologies in Section 5. In Section 6 we discuss different algorithms for varying data lengths. In
Section 7 we discuss strategies for the special cases where short and long vectors of data are communicated.
More sophisticated hybrid algorithms that combine techniques for all vector lengths are discussed in Section 8.
Performance results are given in Section 9. Concluding remarks can be found in Section 10.

2 Model of Parallel Computation

To analyze the cost of the presented algorithms, it is useful to assume a simple model of parallel computation.
These assumptions are:

e Target architectures: Currently, the target architectures are distributed-memory parallel architec-
tures. However, we expect that the methods discussed in this paper also have applicability when many
cores on a single processor become available.

e Indexing: This paper assumes a parallel architecture with p computational nodes (nodes hereafter).
The nodes are indexed from 0 to p— 1. Each node could consist of a Symmetric Multi-Processor (SMP)
but for communication purposes will be treated as one unit.

e Logically fully connected: We will assume that any node can send directly to any other node
through a communication network where some topology provides automatic routing.

e Communicating between nodes: At any given time, a single node can send only one message to
one other node. Similarly, it can only receive one message from one other node. We will assume a node
can send and receive simultaneously.

e Cost of communication: The cost of sending a message between two nodes will be modeled by
a + nB, in the absence of network conflicts. Here o and (3 respectively represent the message startup
time and per data item transmission time.

In our model, the cost of the message is not a function of the distance between two nodes. The startup
cost is largely due to software overhead on the sending and the receiving nodes. The routing of messages
between nodes is subsequently done in hardware using wormhole routing, which pipelines messages and
incurs a very small extra overhead due to the distance between two nodes [22]. Typically, « is four to
five orders of magnitude greater than 8 where 3 is on the order of the cost of an instruction.

e Network conflicts: Assuming that the path between two communicating nodes, determined by

the topology and the routing algorithm, is completely occupied, then if some link (connection between
neighboring nodes) in the communication path is occupied by two or more messages, a network conflict
occurs. This extra cost is modeled with a + kng where k is the maximum over all links (along the
path of the message) of the number of conflicts on the links. Alternatively, links on which there is a
conflict may be multiplexed, which yields the same modification to the cost.

Bidirectional channels: We will assume that messages traveling in opposite directions on a link do
not conflict.

Cost of computation: The cost required to perform an arithmetic operation (e.g., a reduction
operation) is denoted by 7.

Although simple, the above assumptions are useful when conducting an analysis of communication costs on
actual architectures.

3

Some additional discussion is necessary regarding parameters a and :

e Communication protocols: The most generic communication uses the so-called three-pass protocol.

A message is sent to alert the receiving node that a message of a given size will be sent. After the buffer
space for the message has been allocated, the receiving node responds. Finally, the message itself is
sent. Notice that this requires three control messages to be sent between the sending and receiving
nodes. We will denote the latency associated with this protocol by as.

If the sender can rely on the fact that a receive buffer already exists, a one-pass protocol can be used, in
which the message is simply sent without the above-described handshake. We will denote the latency
associated with this protocol by «;. In particular, we will assume that there is always static buffer
space for very short messages.

The three-pass protocol can easily cost up to three times more than the one-pass protocol. Thus, in
our discussion we will assume that ag = 3a;.

Relative order of send and receive calls: The cost per item sent is affected by the relative order
in which a send and corresponding receive are posted. If a send is initiated before the corresponding
receive is posted on the receiving node, the incoming message is buffered in temporary space and copied
when the receive, which indicates where the message is to be finally stored, is posted. If, on the other
hand, the receive is posted before the send, or the send blocks until the receive is posted, no such extra
copy is required. We will denote the cost per item transfered by 3; if no extra copy is required and by
B if it is.

Collective Communication

When the nodes of a distributed-memory architecture collaborate to solve a given problem, inherently com-
putation previously performed on a single node is now distributed among the nodes. Communication is
performed when data is shared and/or contributions from different nodes must be consolidated. Communi-
cation operations that simultaneously involve a group of nodes are called collective communication operations.
In our discussions, we will assume that the group includes all nodes.

The most typically encountered collective communications, discussed in this section, fall into two cate-

gories:

e Data redistribution operations: broadcast, scatter, gather, and allgather. These operations move

data between processors.

e Data consolidation operations: reduce(-to-one), reduce-scatter, and allreduce. These operations

consolidate contributions from different processors by applying a reduction operation. We will only
consider reduction operations that are both commutative and associative.

Operation Before After
Node 0 | Node 1 Node 2 Node 3 Node 0 | Node 1 Node 2 | Node 3
Broadcast
T T T T T
Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Reduce(-) ey e) ST)
to-one) 7
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
o xo
Scatter x1 T
T2 2
3 x3
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
xo xo
Gather T T1
x2 T2
T3 T3
Node 0 | Node 1 Node 2 Node 3 Node 0 | Node 1 Node 2 | Node 3
x0 xo xo Zo zo
Allgather T T x1 T T
T2 T2 x2 x2 z2
xr3 xr3 xr3 xr3 xr3
Node 0 Node 1 Node 2 Node 3 Node 8) ‘ Node 1 Node 2 ‘ Node 3
xéo) :c%l) x((f) xé’?’) Zj E) 0
Reduce- 3510) xll) xgz) 9513) j $1] _
scatter x%{?; m(é; :p%zi 1%2; Zj x(QJ) ‘
T3 T3 T3 Ty ; xéj)
N N 1 | N 2 | N
Allreduce ode 0 \ ode \ ode \ ode 3

x(o)

2D

e)

1(3)

Figure 1: Collective communications considered in this paper.

Communication Latency | Bandwidth | Computation
Broadcast [log, (p) | ng _
Reduce(-to-one) | [logy(p)]|a np %nv
Scatter [logy(p)] pp%lnﬁ _
Gather [logy(p)]er | P2np3 -
Allgather [log,(p)] pp%lnﬁ _
Reduce-scatter [logy(p) e % nf pp%ln’y
Allreduce [logy(p) e 2 %”ﬂ %n'y

Table 1: Lower bounds for the different components of communication cost. Pay particular attention to the
conditions for the lower bounds given in the text.

The operations discussed in this paper are illustrated in Fig. 1. In that figure, x indicates a vector of data
of length n. For some operations, z is subdivided into subvectors x;, i = 0,---,p — 1, where p equals the
number of nodes. A superscript is used to indicate a vector that must be reduced with other vectors from
other nodes. 3 2U) indicates the result of that reduction. The summation sign is used because summation
is the most commonly encountered reduction operation.

We present these collective communications as pairs of dual operation. We will show later that an
implementation of an operation can be transformed into that of its dual by reversing the communication
(and adding to or deleting reduction operations from the implementation). These dual pairs are indicated
by the groupings in Fig. 1 (separated by the thick lines): broadcast and reduce(-to-one), scatter and gather,
and allgather and reduce-scatter. Allreduce is the only operation that does not have a dual (or it can be
viewed as its own dual).

4 Lower Bounds

It is useful to present lower bounds on the cost of these operations under our model regardless of the
implementation. In this section, we give informal arguments to derive these lower bounds. We will treat
three terms of communication cost separately: latency, bandwidth, and computation. Lower bounds are
summarized in Table 1. It is assumed that p > 1 and that subvectors x; and a:l(-J) have equal length.

Latency: The lower bound on latency is derived by the simple observation that for all collective commu-
nications at least one node has data that must somehow arrive at all other nodes. Under our model, at each

step, we can at most double the number of nodes that get the data.

Computation: Only the reduction communications require computation. The computation involved
would require (p — 1)n operations if executed on a single node or time (p — 1)n~y. Distributing this com-
putation perfectly among the nodes reduces the time to pTTlrw under ideal circumstances. Hence the lower
bound.

Bandwidth: For broadcast and reduce(-to-one), the root node must either send or receive n items. The
cost of this is bounded below by nf3. For the gather and scatter, the root node must either send or receive
=1y items, with a cost of at least %nﬁ. The same is the case for all nodes during the allgather and
reduce-scatter. The allreduce is somewhat more complicated. If the lower bound on computation is to be
achieved, one can argue that %n items must leave each node, and %n items must be received by each

node after the computation is completed for a total cost of at least Q%nﬁ . For further details see [4].

d| p comment shape
0| 1 | A single node. o
11 Duplicate the 0 dimensional cube, and con- 0 . 1 .
nect corresponding nodes with a link.
10 11
o ————0
9 | 92 Duplicate the 1 dimensional cube, and con-
nect corresponding nodes with a link.
00 01
* —0
110 111
0 ————0
. . . 010 / 011
3 | 93 Duplicate the 2 dimensional cube, and con- ° °
nect corresponding nodes with a link.
10 101
(o] (0]
000 oo1l
o —0
4| 2d Duplicate the d—1 dimensional cube, and con-
nect corresponding nodes with a link.

Figure 2: Construction of hypercubes.

5 Topologies

In this section, we discuss a few topologies. The topology with least connectivity is the linear array. A fully
connected network is on the other end of the spectrum. In between, we consider higher dimensional mesh
topologies. Hypercubes, which have historical and theoretical value, are shown to be mesh architectures
of dimension log(p) with two nodes in each dimension. Many current architectures have multiple levels of
switches that route messages between subnetworks that are typically fully connected.

Linear arrays: We will assume that the nodes of a linear array are connected so that node ¢ has neighbors
1—1 (left) and i+1 (right), 1 <7 < p—1. Nodes 0 and p—1 do not have left and right neighbors, respectively.

A ring architecture would connect node 0 with p — 1. However, the communication that a ring facilitates
is important to us (e.g., simultaneous sending by all nodes to their right neighbor) since this communication
can be achieved on a linear array because the message from node p — 1 to node 0 does not conflict with any
of the other messages under our model.

Mesh architectures: The nodes of a mesh architecture of dimension D can be indexed using a D-tuple,
(’io, HEIN iD—1)7 with 0 < ij < dj andp = doX' --Xdp_1. The nodes indexed by (io, s ,’ij_l,]f, ij+1, HRIN iD—l)a
0 <k <dj, form a linear array.

A torus architecture is the natural extension of a ring to multiple dimensions. We will not need tori for
our discussion for the same reason that we do not need rings.

Hypercubes: In Fig. 2 we show how a hypercube can be inductively constructed:

e A hypercube of dimension 0 consists of a single node. No bits are required to index this one node.

e A hypercube of dimension d is constructed from two hypercubes of dimension d — 1 by connecting
nodes with corresponding index, and adding a leading binary bit to the index of each node. For all
nodes in one of the two hypercubes this leading bit is set to 0 while it is set to 1 for the nodes in the
other hypercube.

Some observations are:

e Two nodes are neighbors if and only if the binary representation of their indices differ in exactly one
bit.

e View the nodes of a hypercube as a linear array with nodes indexed 0,---,p — 1. Then,

— the subsets of nodes {0,---,p/2 — 1} and {p/2,---,p — 1} each form a hypercube, and
— node i of the left subset is a neighbor of node 7 + p/2 in the right subset.

This observation applies recursively to the two subsets.

A hypercube is a mesh of dimension log(p) with two nodes in each dimension.

Fully connected architectures: In a fully connected architecture, all nodes are neighbors of all other
nodes. We will see in the remainder of this paper that the primary advantage of a fully connected architecture
is that one can view such architectures as higher dimensional meshes by factoring the number of nodes, p,
into integer factors.

6 Commonly Used Algorithms

Depending on the amount of data involved in a collective communication, the strategy for reducing the cost
of the operation differs. When the amount of data is small it is the cost of initiating messages, «, that tends
to dominate, and algorithms should strive to reduce this cost. In other words, it is the lower bound on the
latency in Table 1 that becomes the dominating factor. When the amount of data is large it is the costs per
item sent and/or computed, 5 and/or v, that become the dominating factors. In this case the lower bounds
due to bandwidth and computation in Table 1 are the dominating factors.

6.1 Broadcast and reduce
Minimum-spanning tree algorithms

The best known broadcast algorithm is the minimum-spanning tree algorithm (MST Bcasr). On an arbitrary
number of nodes, this algorithm can be described as follows. The nodes {0,---,p — 1} are partitioned into
two (almost equal) disjoint subsets, {0,---,m} and {m + 1,---,p — 1}, where m = |p/2| is the “middle”
node. A destination node is chosen in the subset that does not contain the root. The message is sent from
the root to the destination after which the root and the destination become the roots for broadcasts within
their respective subsets of nodes. This algorithm is given in Fig. 3(a). In this algorithm, x is the vector
data to be communicated, me and root indicate the index of the node that participates and the current root
of the broadcast, and left and right indicate the indices of the left- and right-most nodes in the current
subset of nodes. The broadcast among all nodes is then accomplished by calling MSTBcAST(%, root, 0,
p —1). The algorithm is illustrated in Fig. 4.
It is not hard to see that, in the absense of network conflicts, the cost of this algorithm is

TS TBeast (P,) = [log(p)] (a3 +nB1)

in the generic case when the SEND and RECV routines use a three-pass protocol. This cost achieves the
lower bound for the latency component of the cost of communication.

Under our model, the algorithm does not incur network conflicts on fully connected networks and on
linear arrays, regardless of how the destination is chosen at each step. (The choice of dest in Fig. 3(a) is

MSTBCAST(x, root, left, right)

if left = right return
mid = [(left + right)/2]|
if root < mid then dest = right else dest = left

if me == root SEND(x, dest)
if me == dest RECV(x, root)

if me < mid and root < mid
MSTBcAST(x, root, left, mid)
else if me < mid and root > mid
MSTBcAsT(x, dest, left, mid)
else if me > mid and root < mid
MSTBcAST(x, dest, mid+1, right)
else if me > mid and root > mid
MSTBCAST(x, root, mid+1, right)

(a)

MSTREDUCE(x, root, left, right)

if left = right return
mid = |(left 4 right)/2]
if root < mid then srce = right else srce = left

if me < mid and root < mid
MSTREDUCE(x, root, left, mid)
else if me < mid and root > mid
MSTREDUCE(x, srce, left, mid)
else if me > mid and root < mid
MSTREDUCE(x, srce, mid+1, right)
else if me > mid and root > mid
MSTREDUCE(x, root, mid+1, right)

if me == srce SEND(x, root)
if me == root RECV(tmp, srce) and x = x + tmp

(b)

MSTSCATTER(x, root, left, right)

if left = right return

mid = [(left + right)/2]|

if root < mid then dest = right else dest = left

if root < mid

if me == root SEND(Xnid41:rignt, dest)

if me == dest RECV(Xmid+1:right, Yoot)
else

if me == root SEND(Xieft:nid, dest)

if me == dest RECV(Xieft:mia, TOOt)

if me < mid and root < mid
MSTSCATTER(x, root, left, mid)
else if me < mid and root > mid
MSTSCATTER(x, dest, left, mid)
else if me > mid and root < mid
MSTSCATTER(x, dest, mid+1, right)
else if me > mid and root > mid
MSTSCATTER(x, root, mid+1, right)

()

MSTGATHER(x, root, left, right)

if left = right return
mid = |(left 4+ right)/2]
if root < mid then srce = right else srce = left

if me < mid and root < mid
MSTGATHER(x, root, left, mid)
else if me < mid and root > mid
MSTGATHER(x, srce, left, mid)
else if me > mid and root < mid
MSTGATHER(x, srce, mid+1, right)
else if me > mid and root > mid
MSTGATHER(x, root, mid+1, right)

if root < mid

if me == srce SEND(Xnid41:right, TOOt)

if me == root RECV(Xnid{1:right, sTce)
else

if me == srce SEND(Xieft:mid, TOOt)

if me == root RECV(X1eft:nia, STCE)

(d)

Figure 3: Minimum-spanning tree algorithms.

simply convenient.) On a hypercube, the destination needs to be chosen to be a neighbor of the current
root. This change requires the algorithm in Fig. 3(a) to be modified by choosing dest as

if root < mid

dest = root — left + (mid + 1)
else

dest = root + left — (mid + 1)

in other words, choose the node in the subset that does not contain the current root that is in the same
relative position as the root.

The MST Rebuce can be implemented by reversing the communication and applying a reduction operation
with the data that is received. Again, the nodes {0, ---,p—1} are partitioned into two (almost equal) disjoint
subsets, {0,---,m} and {m + 1,---,p — 1}. This time, a source node is chosen in the subset that does not
contain the root. Recursively, all contributions within each subset are reduced to the root and to the source
node. Finally, the reduced result is sent from the source node to the root, where it is reduced with the data
that is already at the root node. This algorithm is given in Fig. 3(b) and illustrated in Fig. 5.

Comparing the algorithms in Fig. 3(a) and (b), we note that the partitioning into subsets of nodes is
identical. For the broadcast, the message is sent by the root after which the broadcast proceeds recursively
in each subset of nodes. For the reduce, the recursion comes first after which a message is sent to the root
where the data is reduced with the data at the root. In effect, the communication is reversed in order and
direction.

The cost of this algorithm, identical to that of the broadcast except that now a v term must be added
for the reduction at each step, is given by

TnvsTReduce(p;) = [log(p)] (a3 + nfy +n7) .
Both algorithms achieve the lower bound of [log(p)]a for the latency component of the cost.

6.2 Scatter and gather

A scatter can be implemented much like MST Beast, except that at each step of the recursion only the data
that ultimately must reside in the subnetwork, at which the destination is a member, need to be sent from
the root to the destination. The resulting algorithm is given in Fig. 3(c) and is illustrated in Fig. 6. The
MST Garuer is similarly obtained by reversing the communications in the MST Scarter, as given in Fig. 3(d).
Under the assumption that all subvectors are of equal length, the cost of these algorithms is given by

[log(p)]

TmsTscatter (P, 1) = TMsTGather (P, 1) = Z (as +27"nB1) = [log(p)las +
k=1

p—1
p

nﬂl .

This cost achieves the lower bound for the latency and bandwidth components. Under the stated assumptions
these algorithms are optimal.

6.3 Allgather and reduce-scatter
Bidirectional exchange algorithms

The best known algorithm for allgather assumes that p = 2¢ for some integer d and use so-called bidirectional
exchanges (BDE), which can be described as follows. Partition the network in two halves. Recursively perform
an allgather of all the data in the respective halves. Next, exchange the so-gathered data between disjoint
pairs of nodes where each pair consists of one node from each of the two halves. Generally, node i (i < p/2)
is paired with node ¢ + p/2, which are neighbors if the network is a hypercube. This algorithm, called
recursive-doubling, is given in Fig. 7(a) and illustrated in Fig. 8. In the absense of network conflicts (on a
hypercube or fully connected architecture) and assuming all subvectors are of equal length, the cost is

log(p)

TepEAngather (P; 1) = Z (as +27"np) = log(p)as +
k=1

p—
p

1
Tlﬂl.

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

z0
z1
x2
x3

z0
z1
x2
x3

—

—
—
—

Step 1

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

— Zo ro — zo zo zo o

— T xr1 — Tl T X1 X1

— X2 xr2 — €2 €2 €2 €2

«— I3 T3 — xr3 xr3 T3 T3
Step 2

Figure 4: Minimum-spanning tree algorithm for broadcast.

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

OB RGO R R I O - o0 | o@ | =P
xﬁl)o) 2 22 Q) xﬁl)o) . x?l) m?z) o
MO 2V 22 2 ORI IO 2@ | <o
O) 2 MOl 0| 2 2@ |

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

l‘(0:1> <—I<2:3) x(O:S)
?0:1) ?2:3) ?O:B)

Tony |l o)
(0:1 1 i

€T —XT x
%0:1) %2:3) %0:3)

T3 T3 T3

Step 2

Figure 5: Minimum-spanning tree algorithm for reduce.

This cost attains the lower bound for both the latency and bandwidth components and is thus optimal under
these assumptions.

Problems arise with BDE algorithms when the number of nodes is not a power of two. If the subnetwork
of nodes contains an odd number of nodes, one “odd” node does not contain a corresponding node in the
other subnetwork. In one remedy for this situation, one node from the opposing subnetwork must send its
data to the odd node. Unfortunately, this solution requires that one node must send data twice at each
step, so the cost of BDE algorithms doubles when not using a power of two number of nodes. In practice,
BDE algorithms still perform quite well because the node needing to send data twice is different at each
step of recursion, so the communication can be overlapped between steps. Nonetheless, the result is rather
haphazard.

Reduce-scatter can again be implemented by reversing the communications and their order and by adding
reduction operations when the data arrives. This algorithm, called recursive-halving, is given in Fig. 7(b)
and illustrated in Fig. 9. Again assuming all subvectors are of equal length, the cost is

log(p)

TBDEReduce—scatter(I’v n) = Z (043 + 2ikn(ﬂl + 7)) = 10g(p)043 +
k=1

p—1

n(B1 + 7).

10

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

zo
1
2
3

o
1
T2 —
r3 —

Step 1

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

— x0
1
xr2
r3 —
Step 2

Zo
1

z3

Figure 6: Minimum-spanning tree algorithm for scatter.

BDEALLGATHER(x, left, right)

if left = right return
size = right —left +1
mid = |(left + right)/2|
if me < mid

partner = me + |size/2]
else

partner = me — |size/2]

if me < mid

BDEALLGATHER(x, left, mid)
else

BDEALLGATHER(x, mid+1, right)

if me < mid
SEND(Xileft:mid, partner)
RECV(Xnid{1:rignt, partner)
else
SEND(Xmid+1:right, Partner)
RECV(X1eft:mid, partner)

(a)

BDEREDUCE-SCATTER(%, left, right)

if left = right return
size = right — left + 1
mid = [(left + right)/2|
if me < mid

partner = me + |size/2]
else

partner = me — |size/2|

if me < mid
SEND(Xmid+1:right, partner)
RECV(tmp, partner)
Xleft:mid = Xleft:mid 1 tmp

else
SEND(Xi1eftmid, partner)
RECV(tmp, partner)
Xnid+1:right = Xmid+l:right + tmp

if me < mid

BDEREDUCE-SCATTER(x, left, mid)
else

BDEREDUCE-SCATTER(x, mid+1, right)

(b)

Figure 7: Bidirectional exchange algorithms for allgather and reduce-scatter.

11

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
o xo
1 1
x2 €2
xrs3 T3
Step 1
Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
)) xo) o o
x1 xq 1 x x] z1
T2 T2 T2 T2 T2 2
x3 x3 x3 x3 x3 x3
Step 2

Figure 8: Recursive-doubling algorithm for allgather.

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
Q) (1) (2) (3) HQ) Q) (2) (3)
?0) (1) <2> (s) ?0) ?1) <2> (s)
(0) (1) (2) (3) (0) (1) (2) (3)
(0) (1) (2) (3) (0) (1) (2) (3)

Step 1
Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
£022) | (1:32) (0:3)
Lo

?0 2:2) ?1 :3:2) 2(0:3)

(0 2:2) (1 3:2) ! 2(0:3)

(0 2:2) (1 3:2) 2 (0:3)

T3
Step 2

Figure 9: Recursive-halving algorithm for reduce-scatter. Notation: a:l(»j‘):jl:s)

Sa"'ajl} and 1.5]0]1) — Z] xf where] c {j07j0 +]_,...7]'1}.

=, z) where j € {jo,jo +

We will revisit BDE algorithms as a special case of the bucket algorithms, discussed next, on hypercubes
in Section 7.3.

Bucket algorithms

An alternative approach to the implemention of the allgather operation views the nodes as a ring, embedded
in a linear array by taking advantage of the fact that messages traversing a link in opposite direction do
not conflict. At each step, all nodes send data to the node to their right. In this fashion, the subvectors
that start on the individual nodes are eventually distributed to all nodes. The bucket (BKT) algorithm, also
called the cyclic algorithm, is given in Fig. 10(a) and is illustrated in Fig. 11. Notice that if each node starts
with an equal subvector of data the cost of this approach is given by

n p—1
TeKTAlgather (P,) = (p — 1) (a3 + 551) =({p—-1as+ np,

achieving the lower bound for the bandwidth component of the cost.

12

BKTALLGATHER(x)

prev=me — 1

if prev < 0 then prev=p—1
next =me + 1

if next = p then next =0

curi = me

fori=0,---,p—2

BKTREDUCE-SCATTER(x)

prev=me — 1

if prev < 0 then prev=p—1
next =me + 1

if next = p then next =0

curi = next
fori=p—2,---,0

SEND(Xcuri, prev)

curi = curi—+1

if curi = p then curi =0
RECV(tmp, next)

Xcuri = Xcuri + tmp

endfor
(b)

SEND(Xcuri, next)
curi = curi —1
if curi < 0 then curi =p—1
RECV(Xcuri, prev)
endfor

(a)
Figure 10: Bucket algorithms for allgather and reduce-scatter.

A simple optimization comes from preposting all receives after which a single synchronization with the
node to the left (indicating that all receives have been posted) is required before sending commences so that
a one-pass protocol can be used. This synchronization itself can be implemented by sending a zero-length
message, at a cost of a; in our model '. The remaining sends each also incur only a; as a latency cost, for
a total cost of
p—1

p

Similarly, the reduce-scatter operation can be implemented by a simultaneous passing of messages around
the ring to the left. The algorithm is given in Fig. 10(b) and is illustrated in Fig. 12. This time, a partial
result towards the total reduction of the subvectors are accumulated as the messages pass around the ring.
With a similar strategy for preposting messages, the cost of this algorithm is given by

-1
TBKTAlgather (P, 1) = a1 + (p — 1)y + anﬂl = pai + np.

p—1

TBKTReduce—scatter (pa n) = pa;g + n(ﬂl + '7)-

6.4 Allreduce

Like the reduce-scatter the allreduce can be also be implemented using a BDE algorithm. This time at each
step the entire vector is exchanged and added to the local result. This algorithm is given in Fig. 13 and is
illustrated in Fig. 14. In the absense of network conflicts the cost of this algorithm is

TBDEAlIreduce (P, 1) = log(p)(as + nB1 +ny).

This cost attains the lower bound only for the latency component.

7 Moving On

We now discuss how to pick and/or combine algorithms as a function of architecture, number of nodes,
and vector length. We do so by presenting strategies for different types of architectures, building upon the
algorithms that are already presented.

IRecall that short messages incur a latency of a.

13

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Tro —
x| —
Tro —
r3 —

Step 1

o) Tro —
T x| —
z2 2 —
xr3 — xrs3
Step 2

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

zo zo ro —
x1 x1 ry —
xr2 — €2 x2
T3 r3 — T3
Step 3

zo zo zo o
1 1 1 1
€2 €2 €2 €2
3 z3 z3 z3

Figure 11: Bucket algorithm for allgather.

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
xéo) xé,l) x%Q) - x§3) IE)O) xél) — x8273)
H9610) 111) 112) xl.;) e zgz) _ xgo,.s)
SN DR T N O D RN NG
:Eéo) mgl) — a:g2) mgs) mgo) — mgl’Q) a:gs)
Step 1 Step 2
Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3 Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3
MO 2 123) 203)
’ () (0.2.3) 0 (0:3)
Zq —xy zy
x22> - wéO,L&) xéos)
RN CER) 2{09)

Step 3

Figure 12: Bucket algorithm for reduce-scatter.

7.1 Linear arrays

On linear arrays the MST Bcast and MST Repuce algorithms achieve the lower bound for the o term while
the BKT ArLcarner and BKT Repuck-scAaTTER algorithms achieve the lower bound for the 8 term. The MST
Scarrer and MST Garuer algorithms achieve the lower bounds for all vector lengths. BDE algorithms are

undesirable since they require 2¢ nodes and because they inherently incur network conflicts.

The following strategy provides simple algorithms that have merit in the extreme cases of short and long
vector lengths. Fig. 15 and Fig. 16 summarize this strategy where short and long vector algorithms can be

used as “building blocks” to compose different collective communication operations.

7.1.1 Broadcast

Short vectors: MST algorithm.
Long vectors:

TScatterfAllgather (p7 n)

= [log(p)lasz +

14

p—1

MST Scarter followed by BKT Aricaruer. The approximate cost is

-1
npy + pai + P nB

p

BDEALLREDUCE(x, left, right)

if left = right return
size = right — left + 1
mid = |(left + right)/2|
if me < mid

partner = me + |size/2]
else

partner = me — |size/2|

if me < mid
SEND(x, partner)
RECV(tmp, partner)
X = X + tmp

else
SEND(x, partner)
RECV(tmp, partner)
X = x + tmp

if me < mid

BDEALLREDUCE(x, left, mid)
else

BDEALLREDUCE(x, mid+1, right)

Figure 13: Bidirectional exchange algorithm for allreduce.

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

MO
?0>
(o>
<o>

T
?1)
<1>
(1)

(2)
(2)
(2)
(2)

(3)
(3)
(3)
(3)

MO
?0>
(o>
<0>

T
?1)

(1)

(2)
(2)
(2)

(3)
(3)
(3)

<1> zgz) (3)

Step 1

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

Node 0 ‘ Node 1 ‘ Node 2 ‘ Node 3

2022 [(132) [(0:2:2) (132)
?022) ?132) ?022) (132)
%022) %132) (022) (132)
(022) 1(132) x(ozz) x(132)

Step 2

(O 3) (O 3) (O 3) (0 3)
(()O 3) ?O :3) ?O :3) ?0 :3)
%O 3) %0 :3) (O 3) (0 3)
(O 3) (O 3) (0 3) (O 3)

Figure 14: Bidirectional exchange algorithm for allreduce.

Reduce

[log(p)]as + [log(p)In(B1 +)

Scatter

[og(p)]as + Ztnp:

Gather

[og(p)as + Z5tnp:

Broadcast

[log(p)]as + [log(p)|nfi

Figure 15: A building block approach to short vector algorithms on linear arrays.

Reduce-scatter

par + En(B1 +7)

Gather

Mog(p)]as + Ztn

Scatter

[og(p)as + Ztnp:

Allgather

po1 + %nﬁl

Figure 16: A building block approach to long vector algorithms on linear arrays.

16

Reduce-scatter
(Reduce/Scatter)

[log(p)1(as + a1)+[log(p)In(B1 +)
+%n61

Allreduce
(Reduce/Broadcast)
[og(p)[(as + a1)+[log(p)In(261 + 7)

Allgather
(Gather/Broadcast)
[log(p)1(as + a1)+[log(p)Infb1

+ pTTlnﬁl

Reduce
(Reduce-scatter/Gather)
1

(p + [log(p)])er + 225201 + Etny

Allreduce
(Reduce-scatter/Allgather)

2pay + QPlen,Bl + pTTln'y

Broadcast
(Scatter/Allgather)

pai + [log(p)]as + 2252 n

—1
= pa + [log(p)]as + Zanﬁl.

As n gets large, and the 8 term dominates, this cost is approximately [log(p)]/2 times faster than the MST
Beast algorithm and within a factor of two of the lower bound.

7.1.2 Reduce

Short vectors: MST algorithm.

Long vectors: BKT Repuce-scaTTer (the dual of the allgather) followed by a MST Garmer (the dual of the
scatter). This time all the receives for the gather can be preposted before the reduce-scatter commenses
by observing that the completion of the reduce-scatter signals that all buffers for the gather are already
available. Since the ready-receive sends can be used during the gather, the cost becomes

p—1 p—1
TReducefscatterfGather(pa n) = pax + Tn(ﬁl + 7) + flog(p)]oq + nﬁl

-1

(p + Nlog(p) s + 222 np,

p
Again, the (8 term is within a factor of two of the lower bound while the v term is optimal.

7.1.3 Scatter

Short vectors: MST algorithm.

Long vectors: Sending individual messages from the root to each of the other nodes. While the cost,
(p—Das + pp%lnﬁl, is clearly worse than the MST algorithm, in practice the # term has sometimes been
observed to be smaller possibly because the cost of each message can be overlapped with those of other
messages. We will call it the simple (SMPL) algorithm.

7.1.4 Gather

Same as scatter, in reverse.

7.1.5 Allgather

Short vectors: MST Garuer followed by MST Beast. To reduce the « term, receives for the MST Beast can
be posted before the MST Garner commenses, yielding a cost of

TGatherchast(p, TL) = ﬂog(pﬂaIS + 7”51 + ﬂOg()—|Oé1 + ﬂog(p)—lnﬁl

[log(p)](a1 + a3) + ([log(p)] + 1)nf:.
This cost is close to the lower bound of [log(p)]«a

%

Long vectors: BKT algorithm.

7.1.6 Reduce-scatter

Short vectors: MST Repuck followed by MST Scarter. The receives for the MST Scarter can be posted
before the MST Repuce commenses, for a cost of

TReduce—Scatter (P,) = [log(p)]asz + [log(p)|n(B1 +) + [log(p)]as +P nﬁl
)]

~ [log(p)](en + as) + ([log(p)] + 1)nfy + [log(p ﬂ
This cost is close to the lower bound of [log(p)]«a

17

Long vectors: BKT algorithm.

7.1.7 Allreduce

Short vectors: MST Repuck followed by MST Bceast. The receives for the MST Bceast can be posted before
the MST Repuce commenses, for a cost of

TReduce—Beast (P, 1) = [log(p)]as + [log(p) |n(B1 +) + [log(p) a1 + [log(p)|npb:
= [log(p)|(c1 + a3) + 2[log(p)|nB1 + [log(p)|ny.

This cost is close to the lower bound of [log(p)]e.

Long vectors: BKT Rebuce-scarter followed by BKT Avrrcarner. The approximate cost is

p—1
p

p—1

TReducefscatterfAllgather (pa 7’L) = po + n(ﬁl + 7) + banq + nﬂl

—1 -1
= 2pag + QLnﬁl + Ln'y.
p p
This cost achieves the lower bound for the 8 and ~ terms.

7.2 Multidimensional meshes

Next, we show that on multidimensional meshes the o term can be substantially improved for long vector
algorithms, relative to linear arrays.

The key here is to observe that each row and column in a two-dimensional mesh forms a linear array and
that all our collective communication operations can be formulated as performing the operation first within
rows and then within columns, or vise versa.

For the two-dimensional mesh, we will assume that our p nodes physically form a r x ¢ mesh and that
the nodes are indexed in row-major order. For a mesh of dimension d, we will assume that the nodes are
physically organized as a dy X dy X - -+ X dg—1 mesh.

7.2.1 Broadcast
Short vectors: MST algorithm within columns followed by MST algorithm within rows. The cost is
Tocasseast (1) = ([log(r)] + log(e)]) (a3 + 1)
~ [log(p)](as + nph).
Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1

> Tog(dw)] (e +nf) = [og(p)](as + nfi).

k=0

Observe that the cost of the MST algorithm done successively in multiple dimensions yields approximately
the same cost as performing it in just one dimension (e.g., a linear array).

Long vectors: MST Scarrer within columns, MST Scarter within rows, BKT AricarHer within rows, BKT
ArrLcaTaErR within columns. The approximate cost is

TSCatter7ScatterfAllgatherfAllgather (7’7 C, n)

= Tlog(r)las + gy + [log(e)las + <5,

r—1
nS;
r

c—1n
tcar + T?ﬁl +rag +

18

(c+r)as + (Nlog(e)] + Nog(r)])as + 27
—1

nﬁ1

~ (c+r)on + [og(p)las + 22—,

As n gets large, and the 8 term dominates, this cost is still within a factor of two of the lower bound for
while the a term has been greatly reduced.
Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1 d—1
Z dkOél + Zﬂog(dk)]ag + 2]9
k=0 k=0

7.2.2 Reduce

d—1

1
nf ~ Z droq + [log(p)las + ol
k=0

nﬂl

Short vectors: MST algorithm within rows followed by MST algorithm within columns. The cost is

TReducefReduce(Ta c, TL) = (ﬂog(c)—l + [IOg(T)—I) (Oég + n(/Bl + ’Y))
[log(p)](as +n(Br +7)).

Q

Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1 d—1
Mog(di)]as + 3 og(d)n(B1 +) ~ Nog(p)(as +n(Bi +7)).
k=0 k=0

Long vectors: BKT Rebuce-scarter within rows, BKT Repuce-scarTer within columns, MST Garuer within
columns, MST Garuer within rows. The approximate cost is

TReducefscatterfReducefscatterfGatherfGather(T C, ’I’L)

c—1 c—1 r—
= car+ ——nfi+——ny+ra+ —B1+ —
c c r o c c
r—1n c—1
+log(r)]as + =" 3y + [log(e)]as + “——n,

= (c+r)ar + ([log(r)] + [log(c)])

%

-1
(c+r)as + [log(p)las + 2p ’ nB1 + ny.

Generalizing to a d dimensional mesh yields an algorithm with a cost of

-1 -1
deal + Zﬂog(dkﬂ@s +2P » npB + b » ny

d—

—1 —1
E dray + [log(p)las + 9P nB + b ny.
0 p p

As n gets large, and the § term dominates, this cost is within a factor of two of the lower bound for 8. The
~ term is optimal.

7.2.3 Scatter

Short vectors: MST algorithms successively in each of the dimensions.

Long vectors: SMPL algorithms successively in each of the dimensions.

19

7.2.4 Gather

Same as scatter, in reverse.

7.2.5 Allgather

Short vectors: MST Garuer within rows, MST Bceast within rows, MST Gartuer within columns, MST Bcast
within columns. Again, preposing can be used to reduce the a term for the broadcasts, for a total cost of

c—1n n
TGatherchast7Gather7Bcast (’I“, c, n) = ﬂog(c)]ag + T;ﬁl + ﬂog(cﬂal + [IOg(C)—‘ ;ﬁl

+[log(r)]as + r%lnﬁl + [log(r)]aq + log(r)nS;

(Tog(r)] + Mgt e -+) + (222 4 FEOL . fiog(r)

log(pl(an + a) + (2 + DL og))

Q

Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1
>~ log(ai e +aa) + (220 4 poB] oy BOBIOL oy) sy
k=0 - 0

[log(dgq—1)] [log(dy)]
o des T

~ Tlog(p)](on +as) + (p 1 n flog(doﬂ) ns.

Notice that the o term remains close to the lower bound of [log(p)]a while the 5 term has been reduced!

Long vectors: BKT Avrrcather within rows, BKT ArLcaraer within columns. The cost is
TAligather—Allgather (T, €, 1)

c—1n r—1
= ca;+———01+ra;+——nf
c r r
-1
= (c—&—r)al—&—anﬁl_

Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1 p— 1
deal + nf.
k=0 p

7.2.6 Reduce-scatter

Short vectors: MST Repuce within columns, MST Scarter within columns, MST Repuce within rows, MST
Scarrer within rows. Preposing the receives for the scatter operations yields a total cost of

TReduce—Scatter—Reduce—Scatter (T7 C, ’/l) = |—10g(’l“)—|043 + ﬂog("q)‘ln(ﬁl + ’Y) + DOg(Tﬂal
T2+ Tlog(@)]as + (81 +7) + Mlog(e)e +log(e)niy

(Tog(r)] + Tl (e +)+ (2= + FEOL . frog(r1) s

(D gt) my

[log(p)] (o +) + (p;l . Nlog(e)]

+

Q

Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1

[log(do)] [log(dd—2)]
kzzoﬂog(dkﬂ (a1 + a3) + (erlmd(;l +ot T de. + ﬂog(dd—l)]) nh
[log(do)] [log(dd—2)]
* (d1 . "d(;—l Tt dys + ﬂOg(dd—lﬂ> ny
~ Tog(p(on +a) + (3200 oo BB gy 1)
+ (GE?§F22{1-+---4—[kﬁij%;2)]-+ ﬂog(dd_1)1> ny.

Notice that the « term remains close to the lower bound of [log(p)]a while both the 8 and v terms have
been reduced!

Long vectors: BKT Repuce-scATTER within rows, BKT Repuce-scatTer within columns. The cost is

r—1n c—1
TReduce—scatter—Reduce—scatter (7"7 C, n) = rop+ Tz(ﬁl + 'Y) +cag + T”(ﬁl + 7)-

(r+ c)as + Z==n(B +).

Generalizing to a d dimensional mesh yields an algorithm with a cost of

d—1

-1
3 dian + E=n(py +).
k=0 p

7.2.7 Allreduce

Short vectors: MST Repuce followed by MST Beast (both discussed above), preposting the receives for the
broadcast. The approximate cost is

d—1
TRcducchcast (d7 TL) =2 Z ﬂog(dkﬂ (0[1 + 0[3)
k=0
+2 (dTOg(ZZ)l +eee 7f10gd(ddj;2ﬂ + flog(dd1ﬂ> nB

[log(do)] [log(da—2)]
+ (d1 o dys +- 4 + [log(dd_l)]> nwy.

Long vectors: BKT Repuce-scattir followed by BKT Arrcaruer (both discussed above). The approximate
cost is
d—1

p—1 p—1
TReducefscatterfAllgather(da n) =2 Z dkal +2 P nﬁl + p ny.
k=0

This cost achieves the lower bound for the g and ~ terms.

7.3 Hypercubes

We now argue that the discussion on algorithms for multidimensional meshes includes all algorithms already
discussed for hypercubes. Recall that a d dimensional hypercube is simply a d dimensional mesh with
dy = -+ =dg—1 = 2. Now, the short vector algorithm for broadcasting successively in each of the dimensions

21

becomes the MST Beast on hypercubes. The long vector algorithm for allgather that successively executes a
BKT algorithm in each dimension is equivalent to a BDE algorithm on hypercubes. Similar connections can
be made for other algorithms discussed for multidimensional meshes.

The conclusion is that we can concentrate on optimizing algorithms for multidimensional meshes. A
by-product of the analyses will be optimized algorithms for hypercubes.

7.4 Fully connected architectures

Fully connected architectures can be viewed as multidimensional meshes so that, as noted for hypercube
architectures, it suffices to analyze the optimization of algorithms for multidimensional meshes.

8 Stategies for All Vector Lengths

We have developed numerous algorithms for the short and long vector cases. They have been shown to be
part of a consistent family rather than a bag full of algorithms. The natural next question becomes how to
deal with intermediate length vectors. A naive solution would be to determine the crossover point between
the short and long vector costs and switch algorithms at that crossover point. In this section, we show that
one can do much better with “hybrid” algorithms. Key to this approach is the recognition that all collective
communications have in common the property that the operation performed among all nodes yields the same
result as when the nodes are logically viewed as a two-dimensional mesh, and the operation is performed
first in one dimension and next in the second dimension. This observation leaves the possibility of using a
different algorithm in each of the two dimensions.

8.1 A prototypical example: broadcast
Consider a broadcast on a r X ¢ mesh of nodes. A broadcast among all nodes can then be implemented as

Step 1: A broadcast within the row of nodes that includes the original root.

Step 2: Simultaneous broadcasts within columns of nodes where the roots of the nodes are in the same row
as the original root.

For each of these two steps, a different broadcast algorithm can be chosen.
Now, consider the case where in Step 1 a long vector algorithm is chosen: MST Scarter followed by BKT
AvLrcatHer. It is beneficial to orchestrate the broadcast as

Step la: MST Scarrer within the rows of nodes that includes the original root.

Step 2: Simultaneous broadcasts within columns of nodes where the roots of the nodes are in the same row
as the original root.

Step 1b: Simultaneous BKT AvrLcatuer within rows of nodes.

The benefit is that now in Step 2 the broadcasts involve vectors of length approximately n/c. This algorithm
is illustrated in Fig. 17.

For fixed r and ¢, combinations of short and long vector algorithms for Steps 1 and 2 are examined in
Fig. 18. Notice that:

e Option 2 is never better than Option 1 since [log(r)] + [log(c)] > [log(p)].

e Option 4 is never better than Option 3. The observation here is that if a scarrer-aLLGaTHER broadcast
is to be used, it should be as part of Step la—1b so that the length of the vectors to be broadcast
during Step 2 is reduced.

e Option 5 is generally better than Option 6 since the « terms are identical while the 8 term is smaller
for Option 5 than for Option 6 (since n/p < n/r).

22

Step H

,1. S~ AN M
,,N “““ 88 8 8!
o) | o A A,
e | 18588
w
e | 18588
w
= | 8588
w
w

la

1b

Figure 17: Broadcast on a (logical) 2D mesh implemented by (1a) a scatter within the row that includes the

root, followed by (2) a broadcast within the columns, followed by (1b) an allgather within rows.

23

Option Algorithm Cost

1 MST Beast (all nodes). [log(p)]as + [log(p)|npb1

2 Step 1: MST Boeasr, ([log(r)] + [log(e)])as
Step 2: MST Bcasr. + ([log(r)] + |—10g())nby

3 Step la: MST SCATTER, car+ ([log(r)] + [log(c)])as
Step 2: MST Beasr, (“"g(T 14 2‘; Y
Step 1b: BKT ALLGATHER.

4 Step 1: MST Boeasr, can+ ([log(r)] + [log(e)])as
Step 2: MST SCATTER-BKT ALLGATHER. + ([log(r)] + QCzl)nﬁl

5 Step la: MST SCATTER, (r+c)ag + ([log(r)] + [log(e)])as
Step 2: MST ScATTER-BKT ALLGATHER, + Q%nﬂl
Step 1b: BKT ALLGATHER. (assuming 7 # 1 and ¢ # 1)

6 Step 1: MST Scarter-BKT ALLGATHER, (r+c)a; + (ﬂog()] + [log(c)])as
Step 2: MST Scarrer-BKT ALLGATHER. +2(=L + =ingy

7 MST ScaTTeER-BTK Arrcatrer (all nodes). | poy + [log(pﬂozg + 2pp n

Figure 18: Various approaches to implementing a broadcast on an r x ¢ mesh. The cost analysis assumes no
network conflicts occur.

e Option 5 is generally better than Option 7 because the 8 terms are identical while the o term has been
reduced since 7 + ¢ < p (when p is not prime).

Thus, we find that there are three algorithms of interest:
e Option 1: MST Beast among all nodes. This algorithm is best when the vector lengths are short.

e Option 3: MST Scarrer-MST Bcast-BKT Arvcarher. This algorithm is best when the vector length is
such that the scatter leaves subvectors that are considered to be small when broadcast among r nodes.

e Option 5: MST ScarTeErR-MST ScaTTER-BKT ALLGATHER-BKT ArLcarner. This algorithm is best when the
vector length is such that the scatter leaves subvectors that are considered to be long when broadcast
among r nodes if multiple integer factorizations of p exist.

In Fig. 19(left) we show the predicted cost, in time, of each of these options on a fully connected machine
with p = 256, r = ¢ =16, oy ~® 2 x 1075 8, ~ 1 x 107, and v ~ 1 x 1071, The graph clearly shows
how the different options trade lowering the o term for increasing the 3 term, the extremes being the MST
ScatTER-BKT ArLcaTher, with the greatest o term and lowest 8 term, and the MST Beast, with the lowest «
term and greatest § term.

Naturally, many combinations of = and ¢ can be chosen, and the technique can be extended to more than
two dimensions, which we discuss next.

8.2 Optimal hybridization on hypercubes

We now discuss how to optimally combine short and long vector algorithms for the broadcast operation. Our
strategy is to develop theoretical results for hypercubes, first reported in [25] for the allgather operation.
This theoretical result will then motivate heuristics for multidimensional meshes discussed in Section 8.3.

Assume that p = 2% and that the nodes form a hypercube architecture (or, alternatively, are fully
connected). We assume that a vector of length n is to be broadcast and, for simplicity, that n is an integer
multiple of p.

A strategy will be indicated by an integer D, 0 < D < d, and two vectors, (ap,a1, - ,ap—1) and
(do,dy,-+,dp—1). The idea is that the processors are viewed as a D dimensional mesh, that the ith dimension
of that mesh has d; nodes that themselves form a hypercube, and that a; € {long, short} indicates whether
a long or short vector algorithm is to be used in the ith dimension.

24

BCAST-Predicted-2D p=256 BCAST-Predicted p=256
T T T

10 T r r T T 10 T r T T
MST MST
- = Scatter-Aligather - = Scatter-Allgather
——+— Scatter-MST-Allgather ——t— "Optimal"
N Scatter-Scatter-Allgather-Allgather A7 2-2-2-2-2-2-2-2 Hybri
107} E 10 Hybrids q
107} 9 107 9
b b
3 3
¢ ¢
o o
E E
107 E 10° E
107 9 10" 9
10'5 L L L L L L 10'5 L L L L L L
10° 10t 10° 10° 10" 10° 10° 107 10° 10* 10° 10° 10" 10° 10° 10’
message size ~bytes- message size ~bytes—

Figure 19: Predicted performance of various hybrid broadcast algorithms. Left: Performance for Options 1,
3, 5, and 7. Right: Performance of many hybrids on a hypercube or fully connected architectures.

BCAST-Predicted p=210

10 T ;: T T
MST
= = Scatter-Allgather|
—+— "Optimal"
|| = = = 2-3-5-7 Hybrid
107 Hybrids E
107 E
b
2
¢
o
E
107} 9
107 E
107 1 . . 1 . .
10° 10' 10° 10° 10* 10° 10° 10’

message size ~bytes—

Figure 20: Predicted performance of various hybrid broadcast algorithms on a 2 x 3 x 5 x 7 mesh.

25

e If a; = long, then a long vector algorithm is used in the ith dimension of the mesh. The vector is
scattered among d; processors, and each piece (now reduced in length by a factor d;) is broadcast
among the remaining dimensions of the mesh using the strategy (a;1+1, - ,ap—1), (dit1, - *,dp_1),
after which the result is collected via BKT ALLGATHER.

e If a; = short, then MST Bceast is used in the ith dimension of the mesh, and a broadcast among the
remaining dimensions of the mesh using the strategy (a;+1,--+,ap-1), (dit1,--+,dp—1) is employed.

The cost given a strategy is given by the inductively defined cost function

C’(n7 (al07...7aD_1)7(d07...,dD_1)) —
0 ifD=0
dooy + log(do)ag + Zd?i;lnﬁl
+ C(%7 (a1,--,ap—_1),(d1,-+,dp_1)) if D >0 and ag = long

log(do)axs + log(do)nf1
+C(n, (a1, --,ap—1),(d1,---,dp_1)) if D >0 and ag = short

Some simple observations are:
e Assume d; > 2 (but a power of two). Then,

C(n, (a0, --,ai—1, a4, aiy1, - -,ap—1),(do, --,di—1, di, diy1,---,dp_1))
~— ~—

>
~ =
C(n, (a0, "+, @i—1,ai,a4,ai41, *+,ap—1),(do, -+, di—1,2, é,di+17 ~ydp-1)).
This observation tells us that an optimal (minimal cost) strategy can satisfy the restriction that D = d

anddoz---:dd_1 =2
e Assume a; = short and a;41 = long. Then,
C(n, (a0, - +,ai—1,0i,a;41,8i42, - ,ap_1),(do, -, di—1,di,diy1,diy2, - ,dp_1))
—— ——

>

/_/H
C(n, (a0, - ,a;-1,0i41,0, 012, - ,ap—1),(do, -, di—1,diy1,ds,dit2,---,dp_1)).

This observation tells us that an optimal strategy can satisfy the restriction that a short vector
algorithm is never used before a long vector algorithm.

Together these two observations indicate that an optimal strategy exists among the strategies
that view the nodes as a d dimensional mesh, with two nodes in each dimension, and have the
form (ag,---,ax—1,ak, - -,a4—1) where a; = long if i < k and a; = short if i > k.

An optimal strategy can thus be determined by choosing kqpt, the number of times a long vector algorithm
is chosen. The cost of such a strategy is now given by

2k —1
C(n,k) = 2Faq +1og(2%)as + 2771&1 +log(24 F)as + log(2d*k)%ﬁl
& 2k —1 n
= 21 +kag+2 oF nf +(d—k)a3+(d—k)2—kﬁl
n
= 2%a; +daz + (28 —24+d - k)51
Let us now examine C(n, k) vs. C(n,k + 1):
— k+1 k+2 n
Clnk+1)— C(n,k) = (2 oy + dag + (25 72+d7kf1)2m51)
n
— (2o + dag + (25 — 24 d— k)5 51)
n

26

Next, we will show that if C(n,k) < C(n,k + 1) then C(n,k+1) < C(n,k + 2):

n
C(n,k+2)—C(n,k+1) =21 + (2—d+k)wﬁ1
2—d+k n

2 9k+1

2;1151 = C(n,k+1) — C(n, k).

n

= 2(2k041) + B> Qkal +(2—-d+ k) ok+1 b

> 2%a+(1—d+k)

This result shows that C'(n, k) as a function of k is concave up. Thus, kpt, can be chosen to equal the smallest
nonnegative integer k such that C'(n, k) < C(n, k+1), which is equivalent to the smallest nonnegative integer
k for which the expression in (1) becomes nonnegative.

The above analysis supports the following simple observations:

e In each of the log(p) dimensions, it must be decided whether to use the long or short vector algorithm.

e It makes sense to use the long vector algorithm first since it reduces the vector length for subsequent
dimensions.

e The condition discussed above indicates when the short vector algorithm should be used for all subse-
quent dimensions.

Since hybrid algorithms can be composed in much the same way for all the discussed collective communica-
tions, a similar result can be established for the hybridization of all collective communication algorithms on
hypercubes.

In Fig. 19(right) we show the predicted cost, in time, of various strategies when the same parameters
were used as the graph on its left. In the graph “2-2-2-2-2-2-2-2 Hybrid” indicates the strategy that uses
the long vector algorithm in all dimensions and “Optimal” indicates the optimal strategy discussed above.
Various other hybrids, which represent different choices for k in the above discussion, are also plotted.

8.3 A strategy for designing tunable libraries

Developing an optimal strategy, supported by theory, for multidimensional mesh architectures and fully
connected architectures with non-power-of-two numbers of nodes is at the very least nontrivial and possibly
intractable. As a result, we advocate heuristics that are guided by the theory that were developed for the
ideal hypercube architecture in the previous section.

Assuming an architecture with p nodes. The basic hybrid algorithm for the broadcast, motivated by
Section 8.2, is given with:

e Choose dy X d; X -+ X dp_1, an integer factorization of p.

e Choose k, 0 <k < D.

e Step la: MST Scarter within the first £ dimensions.

e Step 2: MST Beast within the remaining D — k dimensions.

e Step 1b: BKT AvrLcaruer within the first k£ dimensions, in opposite order.

The parameters that need to be choosen, based on the architecture parameters o and 3 as well as the vector
length n, are the integer factorization, k, and the order in which dimensions are picked. Depending on the
architecture, it may also be necessary to factor in network conflicts. For example, one could view a linear
array with p nodes as a 7 x ¢ mesh, but then in one of the dimensions network conflicts would occur.

There are many variants to this theme. For example, one could restrict oneself to three integer factoriza-
tions: 1 x p, 7 X ¢, and p x 1, for r &~ ¢ ~ ,/p and only consider the three options mentioned in Section 8.1.
One could also carefully model all options and pick a strategy based on the minimal predicted cost. What
is important is that our exposition leading up to this section creates a naturally parameterized family of
options.

27

BCAST-Observed-2D p=256

BCAST-Observed p=256
T

T
MST

= = Scatter—Allgather
=+ Scatter-MST-Allgather|
F | == MPI-Bcast

-

time —sec—
time —sec—

10° 10 10* 10° 10° 10° 10° 10* 10 10°
message size —bytes— message size —bytes—

Figure 21: Observed performance of various hybrid broadcast algorithms on 256 nodes viewed as a hypercube
or fully connected architecture. Left: Performance for Options 1, 3, and 5 on 256 nodes. Right: Performance
of an “optimal” hybrid.

BCAST-Observed p=210
T

T
MST

= = Scatter—Allgather
=+ "Optimal"

10 p | —#— MPI-Bcast

time —sec—

10 10 10* 10 10
message size —bytes—

Figure 22: Observed performance of various hybrid broadcast algorithms on 210 nodes viewed as a 2x3x5x7
mesh.

In Fig. 20 we show the predicted cost, in time, of various hybrids on a mesh with p =2 x3 x5 x 7 =
256 and the same architectural parameters as in Fig. 19. In that graph “2-3-5-7 Hybrid” indicates the
hybrid that executes the long vector algorithm in each dimension while “Optimal” indicates an exhaustive
search through all strategies. What the graph demonstrates is that on higher dimensional meshes, or fully
connected architectures that are viewed as higher dimensional meshes, performance similar to that observed
on hypercubes can be attained by picking a reasonable strategy along the lines that we outlined above.

All other operations can be similarly treated since the general principle behind all algorithms is the same:
hybrids are created by nesting long vector and short vector algorithms.

9 Experiments

We now demonstrate briefly that the techniques that have been discussed so far have merit in practice.
Further evidence, from the Intel Touchstone Delta and Paragon systems, can be found in [3, 4, 5]. Rather
than exhaustively showing performance for all operations, we focus on the broadcast and reduce—scatter

28

REDUCE-SCATTER-Observed p=256 REDUCE-SCATTER-Observed p=210
T T T T T T

time —sec—
time —sec—

10° 10 10* 10 10° 10° 10 10* 10 10°
message size —bytes— message size —bytes—

Figure 23: Observed performance of various hybrid reduce-scatter algorithms. Left: Performance of hybrids
on 256 nodes viewed as a hypercube or fully connected architecture. Right: Performance of various hybrid
reduce-scatter algorithms on 210 nodes viewed as a 2 x 3 x 5 X 7 mesh.

operations.

9.1 Testbed architecture

The architecture on which experiments were conducted in Fig. 21 through Fig. 23 is a Cray-Dell PowerEdge
Linux Cluster operated by the Texas Advanced Computing Center (TACC). At the time the experiments
were conducted, this cluster contained 768 3.06 GHz and 256 3.2 GHz Xeon/Pentium 4 processors within
512 Dell dual-processor PowerEdge 1750 compute nodes where each compute node had 2 GB of memory. A
Myrinet-2000 switch fabric, employing PCI-X interfaces, interconnected the nodes with a sustainable point-
to-point bandwidth of 250 MB/sec. The experiments were conducted with the MPICH-GM library 1.2.5..12,
GM 2.1.2, and Intel compiler 7.0 running Red Hat Linux 7.1.

9.2 Implementation

The algorithms discussed in this paper were implemented using MPI point-to-point send and receive calls.
They are available as part of the InterCol library developed at UT-Austin which is available at

http://www.tacc.utexas.edu/resources/tools/intercol.php.

9.3 Results

In Fig. 21 and Fig. 22 we show performance attained by our broadcast implementations. The data mirrors
that of the predicted data in Fig. 19 and Fig. 20. When the data was collected, it was somewhat noisy.
This noise is indicated in the graphs by the “thin” lines and was removed from the “thick” lines so that the
predicted and observed data could be more easily compared. We note that the machine on which the data was
collected was not a dedicated machine, which explains the noise. Qualitatively the predicted and observed
data matches quite closely. It is interesting to note that the pure Scarrer-AvLcatuer algorithm performs
better than predicted relative to the hybrids. This result can be attributed to the fact that the architecture
is not a truly fully connected architecture which means that network conflicts occurred as logical higher
dimensional meshes were mapped to the physical architecture. Clearly, a truly optimal hybrid algorithm
would switch to the Scarter-ALLcaTrer algorithm at some point.

In Fig. 23 we show performance attained by our reduce-scatter implementations. The story is quite
similar to that reported for the broadcast. Most interesting is the performance curve for the MPICH
implementation. That library appears to create a hybrid from two algorithms: BDE and BKT. However,

29

their implementation of BKT Repuce-scarter appears to be less efficient and clearly the crossover point
was not optimized correctly. We note that such libraries are continuously improved and that the reported
performance may not be indicative of the current implementation.
In these figures, the “Optimal” performance curve was obtained by applying the heuristic described in
Section 8.3 with the estimates of o and (8 that were used for the predicted data in Fig. 19 and Fig. 20.
The performance data that we have reported is representative of data we observed for the other collective
communication operations.

10 Conclusion

Many of the techniques described in this paper date back to the InterCom project at UT-Austin in the early
1990s. That project produced a collective communication library specifically for the Intel Touchstone Delta
and Paragon parallel supercomputers [16], and it was used by MPI implementations on those platforms.
This paper shows that those early algorithms still represent the state-of-the-art.

The discussion in Section 8.3 is a key contribution of this paper. It provides a framework to those who
pursue automatic optimization of collective communication libraries by providing a parameterized family of
algorithms rather than an adhoc collection.

Clearly the model that we use to analyze and describe the algorithms is restricting. For example,
architectures that can send messages simultaneously in multiple directions exist such as the IBM Blue
Gene/L [2]. Tt is our belief that the descriptions given in this paper can be easily modified to take advantage
of such architectural features [6].

Collective communication is not just an issue for distributed-memory architectures that are commonly
used for large scientific applications. As multi-core technology evolves to the point where there will be many
cores on a chip, it is likely that each core will have their own local memory, and collective communication
will be used to reduce memory contention. Thus, the simple algorithms discussed in this paper may find
new uses.

Acknowledgments

Some of the material in this paper was taken from an unpublished manuscript by Payne, Shuler, van de
Geijn, and Watts [17]. We gratefully acknowledge the contributions of these researchers to the original
InterCom project and that manuscript.

This research was partially funded by NSF Award CCF-0540926. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation (NSF).

References

[1] NCUBE Company, NCUBE 6400 Processor Manual.

[2] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C. Erway, P. Heidelberger, X. Martorell, J. E.
Moreira, K. Pinnow, J. Ratterman, B. D. Steinmacher-Burow, W. Gropp, and B. Toonen. Design and
implementation of message-passing services for the Blue Gene/L supercomputer. IBM J. Res. and Dev.,
49(2/3):393-406, March/May 2005.

[3] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. A. van de Geijn, and J. Watts. Interprocessor collec-
tive communication library (InterCom). In Proceedings of the Scalable High Performance Computing
Conference 1994, 1994.

[4] M. Barnett, R. Littlefield, D. Payne, and R. van de Geijn. On the efficiency of global combine algorithms
for 2-d meshes with wormhole routing. J. Parallel Distrib. Comput., 24:191-201, 1995.

30

[5]

[6]

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Barnett, D. Payne, R. van de Geijn, and J. Watts. Broadcasting on meshes with wormhole routing.
J. Parallel Distrib. Comput., 35(2):111-122, 1996.

Ernie Chan, William Gropp, Rajeev Thakur, and Robert van de Geijn. Collective communication on
architectures that support simultaneous communication over multiple links. In Proceedings of the 2006
SIGPLAN Symposium on Principles and Practices of Parallel Programming, pages 2-11, New York,
NY, USA, March 29-31, 2006. ACM.

Ernie W. Chan, Marcel F. Heimlich, Avi Purkayastha, and Robert A. van de Geijn. On optimiz-
ing collective communication. In Proceedings of the 2004 IEEE International Conference on Cluster
Computing, pages 145-155, San Diego, CA, 2004. IEEE.

G. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, and J. Dongarra. Flexible collective communi-
cation tuning architecture applied to open MPIL. In 2006 Euro PVM/MPI, 2006. submitted.

Ahmad Faraj and Xin Yuan. Automatic generation and tuning of MPI collective communication rou-
tines. In ICS ’05: Proceedings of the 19th Annual International Conference on Supercomputing, pages
393-402, New York, NY, USA, 2005. ACM Press.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on Concurrent
Processors, volume 1. Prentice Hall, 1988.

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Comput., 22(6):789-828, 1996.

Rinku Gupta, Pavan Balaji, Dhabaleswar K. Panda, and Jarek Nieplocha. Efficient collective operations
using remote memory operations on VIA-based clusters. In IPDPS ’03: Proceedings of the 17th Inter-
national Symposium on Parallel and Distributed Processing, page 46.2, Washington, DC, USA, 2003.
IEEE Computer Society.

Ching-Tien Ho and S. Lennart Johnsson. Distributed routing algorithms for broadcasting and person-
alized communication in hypercubes. In Proceedings of the 1986 International Conference on Parallel
Processing, pages 640-648. IEEE, 1986.

S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube architectures.
J. Parallel Distrib. Comput., 4:133-172, 1987.

Yamin Li, Shietung Peng, and Wanming Chu. Efficient collective communications in dual-cube. J.
Supercomput., 28(1):71-90, 2004.

S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. In Sizth Distributed Memory Computing
Conference Proceedings, pages 671-677. IEEE Computer Society Press, 1991.

D. Payne, L. Shuler, R. van de Geijn, and J. Watts. Streetguide to collective communication. unpublished
manuscript.

J. Pjesivac-Grbovic, G. Fagg, T. Angskun, G. Bosilca, and J. Dongarra. MPI collective algorithm
selection and quadtree encoding. In 2006 Euro PVM/MPI, 2006. submitted.

Y. Saad and M.H. Schultz. Topological properties of hypercubes. Research Report YALEU/DCS/RR-
289, Yale University, 1985.

Y. Saad and M.H. Schultz. Data communciation in parallel architectures. Research Report
YALEU/DCS/RR-461, Yale University, 1986.

Y. Saad and M.H. Schultz. Data communications in hypercubes. J. Parallel Distrib. Comput., 6:115-135,
1989.

Charles L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33.

31

[23] Marc Snir, Steve Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI: The
Complete Reference, volume 1, The MPI Core. The MIT Press, 2nd edition, 1998.

[24] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in MPICH. International Journal of High-Performance Computing Applications, (19)1:49-
66, Spring 2005.

[25] Robert van de Geijn. On global combine operations. J. Parallel Distrib. Comput., 22:324-328, 1994.

[26] Jerrell Watts and Robert van de Geijn. A pipelined broadcast for multidimensional meshes. Parallel
Processing Letters, 5(2):281-292, 1995.

[27] Meng-Shiou Wu, Ricky A. Kendall, Kyle Wright, and Zhao Zhang. Performance modeling and tuning
strategies of mixed mode collective communications. In SC ’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, page 45, Washington, DC, USA, 2005. IEEE Computer Society.

32

