
Design of Scalable Dense Linear Algebra

Libraries for Multithreaded Architectures:

the LU Factorization

Gregorio Quintana-Ort́ı1, Enrique S. Quintana-Ort́ı1, Ernie Chan2,
Robert A. van de Geijn2, and Field G. Van Zee2

1 Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain, {gquintan,quintana}@icc.uji.es

2 Department of Computer Sciences, The University of Texas at Austin, Austin,
Texas 78712, {echan,field,rvdg}@cs.utexas.edu

Abstract. The scalable parallel implementation, targeting SMP and/or
multicore architectures, of dense linear algebra libraries is analyzed. Us-
ing the LU factorization as a case study, it is shown that an algorithm-
by-blocks exposes a higher degree of parallelism than traditional imple-
mentations based on multithreaded BLAS. The implementation of this
algorithm using the SuperMatrix runtime system is discussed and the
scalability of the solution is demonstrated on two different platforms
with 16 processors.

Key words: Dense linear algebra libraries, high-level APIs, run-time system,
multithreaded architectures, LU factorization.

1 Introduction

With the emergence of parallel computing architectures with many processing el-
ements (e.g., SMP systems with dozens of processors, multicore chips with many
cores, and CPUs featuring hardware accelerators such as the Cell processor [17,
1]), it is now widely recognized that commonly used dense linear algebra libraries
like LAPACK will need to be reimplemented, possibly from scratch. In this pa-
per, we explore algorithmic modifications to the LU factorization with pivoting
that support an algorithm-by-blocks. It is shown that this algorithm-by-blocks
exhibits a high degree of parallelism that can be exploited by multithreaded
architectures. This adds to a body of work that provides insights into how lin-
ear algebra algorithms in general can be rewritten to better utilize the compute
power of systems with many processing cores [6–8, 20, 22, 5, 4].

The challenge we confront in this paper is that of developing a high perfor-
mance LU factorization algorithm with pivoting while keeping the implementa-
tion simple. The contributions of this paper include:

– A demonstration that dense linear algebra operations can attain high per-
formance even when coded at a high level of abstraction and even when
targeting complex environments such as manythreaded architectures.

– A study that compares and contrasts traditional blocked algorithms for the
LU factorization, which extract parallelism within the Basic Linear Algebra
Subprograms (BLAS) [18, 10, 9], to the pure algorithm-by-blocks first pro-
posed in [15]. This algorithm is similar to the algorithm-by-blocks for the
QR factorization proposed in [13], for which multithreaded parallel imple-
mentations are given in [20, 5].

– Further examples of how (a) the FLASH extension of FLAME/C supports
storage by blocks for this type of algorithms and (b) the SuperMatrix run-
time system supports, transparent to the programmer, out-of-order compu-
tation on blocks.

– An analysis which reveals that the extra work associated with the algorithm-
by-blocks represents a lower order cost term, in contrast to a claim in [5],
and performance that rivals with that of an algorithms-by-blocks for the QR
factorization.

The remainder of the paper is structured as follows: Sections 2 and 3, re-
spectively, review the LAPACK algorithm for the LU factorization with partial
pivoting and introduce our algorithm-by-blocks for the LU factorization with
incremental pivoting. Section 4 provides an overview of various tools and meth-
ods derived from the FLAME project which were used in the implementation.
Performance results can be found in Section 5 and concluding remarks follow in
the final section.

We adopt the following conventions: matrices, vectors, and scalars are de-
noted by upper-case, lower-case, and lower-case Greek letters, respectively. Al-
gorithms are presented in a notation that we have developed as part of the
FLAME project [12, 2]. If one keeps in mind that the thick lines in the parti-
tioned matrices and vectors indicate how far the computation has proceeded, we
believe the notation to be mostly intuitive.

2 The LU Factorization with Partial Pivoting

Consider an m × n matrix A and its LU factorization with partial pivoting

PA = LU, (1)

where P is a permutation matrix, L is lower trapezoidal, and U is upper triangu-
lar. The LU factorization is obtained by means of a triangularization procedure
also known as Gaussian elimination [11, 23]. Here, a sequence of permutation
matrices and Gauss elimination matrices are computed to reduce matrix A to
upper triangular form. In practice, the factors L and U overwrite matrix A and
the pivots are stored in an array of min(m, n) elements.

Blocked variants of the LU factorization cast the bulk of their computation in
terms of matrix-matrix multiplication and inherently attain high performance
on modern architectures (see, e.g., [16]). LAPACK unblocked and blocked al-
gorithms for the LU factorization with partial pivoting are given in Figure 1.
Provided the (inner) block size b ≪ n, a major part of the computation in the
blocked algorithm is cast in terms of the matrix product that updates A22.

Algorithm:
[A, p] := [{L\U}, p]

= LU
lap
unb(A)

Partition A→

„

ATL AT R

ABL ABR

«

and

p→

„

pT

pB

«

where AT L is 0× 0 and
pT has 0 elements

while n(ATL) < n(A) do

Repartition

„

AT L AT R

ABL ABR

«

→

0

@

A00 a01 A02

aT

10
α11 aT

12

A20 a21 A22

1

A and

„

pT

pB

«

→

0

@

p0

π1

p2

1

A

where α11 is a scalar and
π1 is a scalar

»„

α11

a21

«

, π1

–

:= Pivot

„

α11

a21

«

„

aT

10

A20

«

:= P (π1)

„

aT

10

A20

«

„

aT

12

A22

«

:= P (π1)

„

aT

12

A22

«

a21 := l21 = a21/α11

aT

12
:= uT

12
= aT

12

A22 := A22 − l21u12

Continue with

„

AT L AT R

ABL ABR

«

←

0

@

A00 a01 A02

aT

10
α11 aT

12

A20 a21 A22

1

A and

„

pT

pB

«

←

0

@

p0

π1

p2

1

A

endwhile

Algorithm:
[A, p] := [{L\U}, p]

= LU
lap
blk(A)

Partition A→

„

AT L AT R

ABL ABR

«

and

p→

„

pT

pB

«

where AT L is 0× 0 and
pT has 0 elements

while n(ATL) < n(A) do

Determine block size b
Repartition

„

AT L ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A and

„

pT

pB

«

→

0

@

p0

p1

p2

1

A

where A11 is b × b and
p1 has b elements

»„

A11

A21

«

, p1

–

:=

»„

{L\U}11
L21

«

, p1

–

= LU
lap
unb

„

A11

A21

«

„

A10

A20

«

:= P (p1)

„

A10

A20

«

„

A12

A22

«

:= P (p1)

„

A12

A22

«

A12 := U12 = L−1

11
A12

A22 := A22 − L21U12

Continue with

„

AT L ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A and

„

pT

pB

«

←

0

@

p0

p1

p2

1

A

endwhile

Fig. 1. LAPACK unblocked (left) and blocked (right) algorithms for the LU factoriza-
tion, LU

lap
unb and LU

lap
blk, respectively. P (π1) and P (p1) refer to permutation matrices.

Function Pivot swaps α11 and the element of largest magnitude in the input vector,
and returns the index of that element in π1.

Implementations of these algorithms, whether unblocked or blocked, are typ-
ically written to perform linear algebra operations, such as matrix-vector and
matrix-matrix multiplication, via calls to the Basic Linear Algebra Subprograms
(BLAS).

Step Algorithm Cost

for k = 0 : N − 1
T-1 [Akk, pkk] := [{L\U}kk , pkk] = LU

lap
blk(Akk) 2

3
t3 flops

for j = k + 1 : N − 1
T-2 Akj := L−1

kk P (pkk)Akj t3 flops
endfor

for i = k + 1 : N − 1

T-3

»„

Akk

Aik

«

, Lik, pik

–

:= LU
sa−lin
blk

„

triu(Akk)

Aik

«

t3 + 1

2
bt2 flops

for j = k + 1 : N − 1

T-4

»„

Akj

Aij

«–

:= FS
sa−lin
blk

„„

Lik

Aik

«

, pik,

„

Akj

Aij

««

2t3 + bt2 flops

endfor

endfor

endfor

Fig. 2. Algorithm-by-blocks for the LU factorization with incremental pivoting and
cost of the operations (only major terms of the cost are listed). triu(Akk) refers to the
upper triangular part of the matrix.

Parallelism can be attained from these implementations within each invoca-
tion of a BLAS routine with the following benefits:

– The approach allows legacy libraries, such as LAPACK, to be used without
modifying the library source code.

– Parallelism within sub-operations, e.g., the update of A22, can be achieved
through multithreaded implementations of the BLAS.

Disadvantages of this approach, on the other hand, include:

– The degree of parallelism achieved is potentially limited by the efficiency of
the underlying multithreaded BLAS implementation.

– The end of each BLAS routine executed becomes an implicit synchronization
point (or barrier) for the threads.

– For many operations the choice of algorithmic variant can significantly im-
pact performance.

In the next section we propose an algorithm to overcome these difficulties.

3 An Algorithm-By-Blocks

In [21] it is shown how the insights gained from studying the problem of up-
dating an existing LU factorization yields the algorithm-by-blocks for the LU
factorization with incremental pivoting described next. (The algorithm was first
introduced in [15], as an out-of-core algorithm-by-tiles.) Throughout this section
we will consider a matrix A of dimension n × n.

Assume for simplicity that n = Nt, where N is an integer, and consider the
partitioning

A →











A00 A01 · · · A0,N−1

A10 A11 · · · A1,N−1

...
...

. . .
...

AN−1,0 AN−1,1 · · · AN−1,N−1











,

with all Aij of size t × t (t is the outer block size). Then, the algorithm in
Figure 2, combined with the building blocks in Figures 1, 3 and 4, computes an
LU factorization of A with incremental pivoting. The algorithm is annotated with
the cost of each operation (building block) in terms of floating-point arithmetic
operations (flops).

The key insight that allows the computational expense to be roughly the same
as the standard LU factorization with pivoting lies with a careful orchestration
of computation and pivoting so that the matrix on the diagonal, after being
factored itself, does not incur fill-in as it is being used to zero elements in the
blocks below it. For details, consult the algorithms in Figures 3 and 4, and [15,
21].

Provided b ≪ t, t ≪ n, and neglecting lower order terms, the total number
of flops performed by the algorithm-by-blocks is approximately given by

N−1
∑

k=0





2

3
t3 +

N−1
∑

j=k+1

t3 +

N−1
∑

i=k+1



t3 +

N−1
∑

j=k+1

2t3







 ≈
2

3

(n

t

)3

t3 =
2

3
n3.

In [5] it is claimed that a similar algorithm-by-blocks requires 50% additional
flops. Our analysis shows this overhead can be avoided; see [21].

Notice that that there is some flexibility in the order in which the loops
are arranged. Indeed, the SuperMatrix run-time system, described in the next
section, rearranges the operations and therefore the exact order of the loops is
not important.

The algorithm-by-blocks for the LU factorization with incremental pivoting
carries out a sequence of row permutations (corresponding to the application
of pivots) which are different from those that would be performed in an LU
factorization with partial pivoting. Therefore, the numerical stability of this
algorithm is also different. An analysis of the stability of the algorithm-by-blocks
is given in [21].

4 Tools

In this section we briefly review some of the tools that the FLAME project
puts at our disposal: high level APIs to both code linear algebra algorithms
(FLAME/C) and handle matrices stored by blocks (FLASH), and a run-time
system to schedule tasks to execution as dependencies are fulfilled (SuperMa-
trix).

Algorithm:

»„

U

D

«

, L̄, r

–

:= LU
sa−lin
blk

„

U

D

«

Partition U →

„

UTL UTR

0 UBR

«

, D →
`

DL DR

´

, L̄→

„

L̄T

L̄B

«

, r →

„

rT

rB

«

where UTL is 0× 0, DL has 0 columns, L̄T has 0 rows, and rT has 0 elements

while n(UTL) < n(U) do

Determine block size b

Repartition

„

UTL UTR

0 UBR

«

→

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A,
`

DL DR

´

→
`

D0 D1 D2

´

,

„

L̄T

L̄B

«

→

0

@

L̄0

L̄1

L̄2

1

A,

„

rT

rB

«

→

0

@

r0

r1

r2

1

A

where U11 is b× b, D1 has b columns, L̄1 has b rows, and r1 has b elements

»„

{L̄1\U11}

D1

«

, r1

–

:= LU
lap
unb

„

U11

D1

«

„

U12

D2

«

:= P (r1)

„

U12

D2

«

U12 := L̄−1

1
U12

D2 := D2 −D1U12

Continue with

„

UTL UTR

0 UBR

«

←

0

@

U00 U01 U02

0 U11 U12

0 0 U22

1

A,
`

DL DR

´

←
`

D0 D1 D2

´

,

„

L̄T

L̄B

«

←

0

@

L̄0

L̄1

L̄2

1

A,

„

rT

rB

«

←

0

@

r0

r1

r2

1

A

endwhile

Fig. 3. SA-LINPACK blocked algorithm for the LU factorization of
`

UT , DT
´T

built
upon an LAPACK blocked factorization.

The algorithm presented in this paper requires elaborated modifications to
the standard implementations. The FLAME/C API allows the algorithms that
are given in Figures 1, 3, and 4 to be coded in the C programming language
such that the code closely reflects these algorithm [3], thereby greatly reducing
the time required for development of library routines.

We have observed that, conceptually, one naturally thinks of a matrix stored
by blocks as a matrix of submatrices. As a result, if the API encapsulates infor-
mation that describes a matrix in an object, as FLAME/C does, and allows an
element in a matrix to itself be a matrix object, then algorithms over matrices

Algorithm:

»„

C

E

«–

:= FS
sa−lin
blk

„„

L̄

D

«

, r,

„

C

E

««

Partition L̄→

„

L̄T

L̄B

«

, D→
`

DL DR

´

, r →

„

rT

rB

«

, C →

„

CT

CB

«

,

where L̄T and CT have 0 rows, DL has 0 columns, and rT has 0 elements

while n(DL) < n(D) do

Determine block size b

Repartition

„

L̄T

L̄B

«

→

0

@

L̄0

L̄1

L̄2

1

A,
`

DL DR

´

→
`

D0 D1 D2

´

,

„

rT

rB

«

→

0

@

r0

r1

r2

1

A,

„

CT

CB

«

→

0

@

C0

C1

C2

1

A,

where L̄1 and C1 have b rows, D1 has b columns,
and r1 has b elements

„

C1

E

«

:= P (r1)

„

C1

E

«

C1 := L̄−1

1
C1

E := E −D1C1

Continue with

„

L̄T

L̄B

«

←

0

@

L̄0

L̄1

L̄2

1

A,
`

DL DR

´

←
`

D0 D1 D2

´

,

„

rT

rB

«

←

0

@

r0

r1

r2

1

A,

„

CT

CB

«

←

0

@

C0

C1

C2

1

A,

endwhile

Fig. 4. SA-LINPACK blocked algorithm for the update of
`

CT , ET
´T

consistent with

the SA-LINPACK blocked LU factorization of
`

UT , DT
´T

.

stored by blocks can be represented in code at the same high level of abstraction.
This layering may be instantiated recursively if multiple levels of hierarchy in
the matrix are to be exposed. We call this extension to FLAME/C the FLASH
API [19]. Examples of how simpler operations can be transformed from FLAME
to FLASH implementations can be found in [6, 8].

Finally, we observed that, given an API that views matrices as composed
of unit blocks and an algorithm implemented using this API, the inner work-
ings of the library can be changed so that instead of executing operations
over blocks, sub-operations can be enqueued as tasks and subsequently as-
sembled into a directed acyclic graph (DAG) that represents dependencies be-

tween sub-operations. The DAG can then be exploited by a run-time system
that dynamically schedules tasks for execution as dependencies are fulfilled.
These two phases—constructing the DAG (analyzer) and scheduling the tasks
(scheduler/dispatcher)—can take place transparently regardless of the algorithm
used in the library routine.

To accomplish this, the calls to dense linear algebra kernels within the sequen-
tial algorithm are replaced with function invocations that enqueue all pertinent
information about the sub-operation on a global task queue. Once all tasks are
enqueued, the DAG is complete, and a separate function call initiates parallel
execution. When a task completes execution, all dependent tasks that use blocks
updated by the recently completed task are “notified”. Once a notified task has
all of its dependencies fulfilled, it is marked as ready and then enqueued at the
tail of the execution queue. Idle threads dequeue tasks from the head of this sec-
ond queue until all tasks have been executed. We call this extension to FLASH
the SuperMatrix run-time system since it allows out-of-order computation sim-
ilar to machine instructions within superscalar architectures [14]. For further
details on SuperMatrix, see [6–8, 20–22].

5 Experiments

In this section, we examine the two approaches for the LU factorization in order
to assess the potential performance benefits offered by the algorithm-by-blocks
on multithreaded architectures.

All experiments were performed using double-precision floating-point arith-
metic. Details on the platforms that were employed in the experimental eval-
uation are given in Table 1. Both architectures consist of a total of 16 CPUs:
set is a CC-NUMA platform with 16 processors while neumann is an SMP of
8 processors with 2 cores each. The peak performance is 96 GFLOPS (96 × 109

flops per second) for set and 70.4 GFLOPS for neumann.

Platform Architecture Frequency L2 cache L3 cache Total RAM
(GHz) (KBytes) (MBytes) (GBytes)

set Intel Itanium2 1.5 256 4096 30

neumann AMD Opteron 2.2 1024 – 63

Platform Compiler Optimization BLAS Operating
flags System

set icc 9.0 -O3 MKL 8.1 Linux 2.6.5-7.244-sn2

neumann icc 9.1 -O3 MKL 9.1 Linux 2.6.18-8.1.6.el5

Table 1. Architectures (top) and software (bottom) employed in the evaluation.

We report the performance of the following four parallel implementations of
the LU factorization:

– LAPACK dgetrf + multithreaded MKL. LAPACK 3.0 routine dgetrf
(LU factorization) linked to multithreaded BLAS in MKL.

– Multithreaded MKL dgetrf. Multithreaded implementation of routine
dgetrf in MKL.

– AB + serial MKL. Our implementation of the algorithm-by-blocks, with
matrices stored in traditional column-major order so that blocks are not
contiguous, tasks scheduled using the SuperMatrix run-time system, and
linked to serial BLAS in MKL.

– AB + serial MKL + contiguous blocks. Our implementation of the
algorithm-by-blocks, with matrices stored in contiguous blocks, tasks sched-
uled using the SuperMatrix run-time system, and linked to serial BLAS in
MKL.

The GFLOPS rate attained by the different implementations are reported
in Figure 5. A flop count of 2n3 flops was used for all algorithms. The matrix
size (m = n) is reflected along the x-axis and the y-axis is scaled such that
the top of the graph represents the theoretical peak performance of the system.
An effort was made to determine the best values of the inner and outer block
sizes, b and t respectively, for all combinations of parallel implementations and
BLAS. An inner block size b = 16 was used for all problem dimensions in the
algorithm-by-blocks implementation. The best outer block size t was a function
of the problem dimension, with values between 64 and 320 providing the best
results. The block size used by MKL implementation of dgetrf is internally
hidden in the library and unknown to us at the time of this writing. The results
show that the algorithm-by-blocks clearly outperforms the LAPACK implemen-
tation for all problem sizes on both platforms. Only on neumann and starting
from problem dimensions over 6,000, the multithreaded MKL implementation
of dgetrf attains a higher performance than our algorithm-by-blocks.

6 Conclusions

With this study, we have demonstrated the benefits of algorithms-by-blocks,
coupled with the SuperMatrix run-time system, for all three major (dense and
banded) factorization operations: the Cholesky factorization [6, 22], the QR fac-
torization [20], and now the LU factorization. Altogether, these papers suggest
the broad applicability of this approach toward the goal of retargeting libraries
such as LAPACK and FLAME to multithreaded architectures.

Possibly the most important contribution of this and previous related work
is a practical demonstration of the reduced programming burden required for
implementing algorithms such as the one discussed in this paper. With the tools
provided by FLAME/C, FLASH, and SuperMatrix, the time required to take
an algorithm from whiteboard to high-performance parallel implementation may
be measured in days rather than weeks or months.

For the particular operation studied in this paper, the LU factorization of
a dense matrix, we have shown that an algorithm-by-blocks first developed for
out-of-core computation can be converted to a parallel algorithm that targets

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

LU factorization on SET (16 processors)

LAPACK dgetrf + multithreaded MKL
Multithreaded MKL dgetrf
AB + serial MKL
AB + serial MKL + contiguous blocks

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

LU factorization on NEUMANN (16 processors)

LAPACK dgetrf + multithreaded MKL
Multithreaded MKL dgetrf
AB + serial MKL
AB + serial MKL + contiguous blocks

Fig. 5. Performance of the LU factorization algorithms.

multithreaded architectures. By executing the algorithm with the SuperMatrix
run-time system on matrices stored by blocks, remarkable performance was at-
tained relative to the LAPACK implementations of routine dgetrf.

Acknowledgements

This research was partially sponsored by NSF grants CCF–0540926 and CCF–
0702714. We thank the other members of the FLAME team for their support.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

We thank John Gilbert and Vikram Aggarwal from the University of Cali-
fornia at Santa Barbara for granting the access to the neumann platform.

References

1. Pieter Bellens, Josep M. Pérez, Rosa M. Bad́ıa, and Jesús Labarta. CellSs: a
programming model for the Cell BE architecture. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 86, New York, NY, USA,
2006. ACM Press.

2. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı,
and Robert A. van de Geijn. The science of deriving dense linear algebra algo-
rithms. ACM Transactions on Mathematical Software, 31(1):1–26, March 2005.

3. Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Repre-
senting linear algebra algorithms in code: The FLAME application programming
interfaces. ACM Trans. Math. Soft., 31(1):27–59, March 2005.

4. Afredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of par-
allel tiled linear algebra algorithms for multicore architectures. LAPACK Working
Note 191 UT-CS-07-600, University of Tennessee, September 2007.

5. Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled
QR factorization for multicore architectures. LAPACK Working Note 190 UT-CS-
07-598, University of Tennessee, July 2007.

6. Ernie Chan, Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de
Geijn. SuperMatrix out-of-order scheduling of matrix operations for SMP and
multi-core architectures. In SPAA ’07: Proceedings of the Nineteenth ACM Sym-
posium on Parallelism in Algorithms and Architectures, pages 116–126, 2007.

7. Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Ort́ı, Gre-
gorio Quintana-Ort́ı, and Robert van de Geijn. Supermatrix: A multithreaded
runtime scheduling system for algorithms-by-blocks. FLAME Working Note #25
TR-07-41, The University of Texas at Austin, Department of Computer Sciences,
August 2007.

8. Ernie Chan, Field Van Zee, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and
Gregorio Quintana-Ort́ı. Satisfying your dependencies with SuperMatrix. In IEEE
Cluster 2007, pages 92–99, 2007.

9. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March
1990.

10. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math.
Soft., 14(1):1–17, March 1988.

11. Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 3rd edition, 1996.

12. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.
FLAME: Formal Linear Algebra Methods Environment. ACM Trans. Math. Soft.,
27(4):422–455, December 2001.

13. Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation
and updating the QR factorization. ACM Transactions on Mathematical Software,
31(1):60–78, March 2005.

14. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufman, 3rd edition, 2003.

15. Thierry Joffrain, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Rapid
development of high-performance out-of-core solvers. In PARA’04, volume 3732 of
Lecture Notes in Computer Science, pages 413–422. Springer-Verlag, 2005.

16. B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-
performance model, implementations and performance evaluation benchmark. LA-
PACK Working Note #107 CS-95-315, Univ. of Tennessee, Nov. 1995.

17. James Kahle, Michael Day, Peter Hofstee, Charles Johns, Theodore Maeurer, and
David Shippy. Introduction to the Cell multiprocessor. IBM Journal of Research
and Development, 49(4/5):589–604, September 2005.

18. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

19. Tze Meng Low and Robert van de Geijn. An API for manipulating matrices stored
by blocks. Technical Report TR-2004-15, Department of Computer Sciences, The
University of Texas at Austin, May 2004.

20. Gregorio Quintana-Ort́ı, Enrique Quintana-Ort́ı, Ernie Chan, Field G. Van Zee,
and Robert van de Geijn. Scheduling of QR factorization algorithms on SMP and
multi-core architectures. FLAME Working Note #24 TR-07-37, The University of
Texas at Austin, Department of Computer Sciences, July 2007.

21. Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Ernie Chan, Robert van de
Geijn, and Field G. Van Zee. Design and scheduling of an algorithm-by-blocks for
the LU factorization on multithreaded architectures. FLAME Working Note #26
TR-07-50, The University of Texas at Austin, Department of Computer Sciences,
September 2007.

22. Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Alfredo Remón, and Robert
van de Geijn. SuperMatrix for the factorization of band matrices. FLAME Working
Note #27 TR-07-51, The University of Texas at Austin, Department of Computer
Sciences, September 2007.

23. G. W. Stewart. Introduction to Matrix Computations. Academic Press, Orlando,
Florida, 1973.

