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Abstract—Reducing power consumption and increasing effi-
ciency is a key concern for many applications. It is well-accepted
that specialization and heterogeneity are crucial strategies to
improve both power and performance. Yet, how to design highly
efficient processing elements while maintaining enough flexibility
within a domain of applications is a fundamental question. In this
paper, we present the design of a specialized Linear Algebra Core
(LAC) for an important class of computational kernels, the level-
3 Basic Linear Algebra Subprograms (BLAS). We demonstrate a
detailed algorithm/architecture co-design for mapping a number
of level-3 BLAS operations onto the LAC.

Results show that our prototype LAC achieves a performance
of around 64 GFLOPS (double precision) for these operations,
while consuming less than 1.3 Watts in standard 45nm CMOS
technology. This is on par with a full-custom design and up to
50× and 10× better in terms of power efficiency than CPUs and
GPUs.

I. INTRODUCTION

Reducing power consumption is an increasingly important
issue both in the embedded domain, where systems have to op-
erate in highly restricted environments, and in general-purpose
computing, where physical limits of technology scaling have
made power walls the main roadblock to sustained perfor-
mance. Furthermore, many emerging systems, increasingly
demand both very high performance and power efficiency on
nontraditional platforms.

Application-specific design of hardware accelerators can
provide orders of magnitude improvements in power and area
efficiency [1]. However, full-custom design is expensive in
many aspects. The question is whether these concepts can be
applied to a broader class of more general applications. If
neither fine-grain programmable computing nor full-custom
design are feasible, can we design specialized on-chip cores
that maintain the efficiency of full custom hardware while pro-
viding enough flexibility to execute whole classes of coarse-
grain operations?

The goal of our project is to design high-performance,
low-power Linear Algebra Cores (LACs) that realize the
level-3 BLAS kernels directly in specialized hardware. In
previous work [2], we examined how this can be achieved
for GEneral Matrix-Matrix multiplication (GEMM). In this
paper, we generalize our design to other level-3 Basic Linear
Algebra Subprograms (BLAS), demonstrating that with small
micro-architectural modifications, the LAC can be extended
to support the full set of BLAS operations without loss in
efficiency. Furthermore, we custom design and integrate a

specialized Multiply-ACcumulate (MAC) unit. We synthesize
it and other key components of the LAC micro-architecture,
and the resulting analysis suggests that it should be possible to
achieve a performance of 50 double- and 120 single-precision
GFLOPS/W in 30 GFLOPS/mm2 in current 45nm technol-
ogy. This represents two orders of magnitude improvement
over current CPU architectures and an order of magnitude
improvement over current GPUs.

II. RELATED WORK

Matrix computations on general-purpose machines have
been studied extensively [3]. Furthermore, in recent years,
GPUs have become a popular target for acceleration. Modern
general-purpose GPUs (GP-GPUs) can be effectively used
for matrix computations [4]. With throughputs of more than
360 double-precision GFLOPS when running many level-3
BLAS for large matrices, GPUs utilize around 30-70% of
their theoretical peak performance. However, in all cases,
inherent general-purpose instruction handling overheads limit
efficiencies, as indicated by low utilizations.

Over the years, many more specialized, parallel architec-
tures for high-performance computing have been proposed
and in most cases benchmarked using GEMM and other
level-3 BLAS as a prototypical applications. Systolic arrays
were popular in the 80s [5]. With increasing memory walls,
recent approaches have brought the computation units closer to
memory, including hierarchical clustering of shared memory
tiles [6] or network-on-chip architectures [7]. Despite such
optimizations, utilizations still range from 60% down to less
than 40% with increasing numbers of tiles.

Specialized realizations of BLAS routines on FPGAs have
been explored [8]. Such approaches show promising re-
sults [9], [10], but are limited by inefficiencies in area, per-
formance, and power due to programmable routing and logic
overheads. In contrast, our design is optimized to support all
level-3 BLAS kernels at high performance and high efficiency
using dedicated, fixed cores.

III. DESIGN OF A LINEAR ALGEBRA CORE

We start by briefly reviewing the LAC proposed in [2]
and illustrated in Figure 1. It consists of a 2D array of
nr × nr Processing Elements (PEs), each of which has a
MAC unit with a local accumulator, local storage, simple
distributed control, and bus interfaces to communicate data
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Fig. 1. Core architecture. Each PE contains control logic, SRAM, and MAC unit and is connected to row and column broadcast buses.

within rows and columns. In the following, we describe the
core micro-architecture and the mapping of representative
BLAS operations onto it. For illustrative purposes, we focus
on the case of a mesh with nr × nr = 4× 4 PEs.

Details of the PE-internal architecture are shown in Figure 1
(right). Each PE has a MAC unit to perform the inner
dot-product computations that are key to almost all BLAS
operations. Apart from preloading accumulators with initial
values, all accesses to elements of a nr × nr matrix being
updated are performed directly inside the MAC units, avoiding
the need for any register file or memory accesses.

We utilize pipelined MAC units that can typically achieve
a throughput of one MAC operation per cycle by utilizing a
fast feedback path to postpone normalization of results until
after the last accumulation. Leveraging a Fused MAC (FMA)
unit with delayed normalization also significantly decreases
power consumption while increasing accuracy. The FMA unit
incorporated within each PE is designed using the technique
presented in [11]. We extend that design to support double-
precision floating-point operands and a higher precision for the
intermediate result. Figure 1 illustrates the double-precision
FMA unit employed within each PE. Key aspects of the design
include the fast feedback path between the Adder/Accumulator
output and its input, along with the use of a block exponent to
help avoid rounding and normalization in intermediate results.

In our design, we connect PEs by horizontal and vertical
broadcast busses. Interconnect is realized as simple, data-only
busses that do not require overhead for address decoding or
complex control. Power and delay analysis shows that we can
have one cycle bus latency for LAC sizes up to 16× 16 PEs.

Local storage in each PE consists of a larger single-ported
memory, a smaller dual-ported memory, and a small register
file with one write and two read ports. Typically in dense
linear algebra problems, access patterns are predictable and in
most cases sequential. Hence, only simple, auto-incrementing
address generators are required.

LAC control is distributed and each PE has a state machine
that drives a predetermined, hardcoded sequence of commu-
nication, storage and computation steps for each supported
BLAS operation. The basic state machine in each PE requires
two address registers, one loop counter and less than 10 states
per BLAS operation.
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Fig. 2. Second iteration of a 4× 4 SYRK on LAC.

IV. ALGORITHM MAPPING

In previous work, we showed how GEMM is mapped on to
the LAC [2]. In the following, we will describe the mapping
of TRiangular Solve with Multiple Right-hand sides (TRSM),
SYmmetric Rank-K update (SYRK), and SYmmetric Rank-
2K update (SYR2K) onto our LAC architecture. These are
representative of the full class of level-3 BLAS operations. It
is commonly accepted that if these operations perform well,
all level-3 BLAS operations can be mapped efficiently [3].
The important observation is that all operations require similar
computations and data movements.

A. SYRK and SYR2K

The SYRK operation computes C := C + AAT with
a rectangular matrix A ∈ Rn×m, updating only the lower
triangular part of the symmetric matrix C ∈ Rn×n.

At the lowest level, an unblocked algorithm is utilized. To
compute the SYRK of a nr × nr sub-matrix of C stored in
the accumulators of the LAC from a nr × kc sub-matrix of
A, three different operations take place in the same cycle in
each iteration. Figure 2 illustrates the second (i = 1) iteration
of a SYRK operation. The ith column of PEs broadcasts the
values of the ith column of A, ai, across the row busses,
where the PEs in each row keep a copy of these values in
their register file for use in the next iteration. At the same
time, the values ai−1 from the previous iteration are transposed
along the diagonal PEs by broadcasting them over the column
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Fig. 3. Second iterations of a 4× 4 TRSM on LAC.

busses. Hence, all PEs now have copies of elements of ai−1

and aT
i−1, and a rank-1 update is performed to compute C :=

C + ai−1 × aT
i−1. The aT

i−1 is also kept in (i − 1)th row of
PEs to store AT . This is repeated for i = 0, . . . , kc cycles.

A bigger SYRK for C of size mc × mc and A of size
mc × kc can be blocked into smaller subproblems using a
lower order SYRK (mentioned above) to update the diagonal
nr×nr lower triangular blocks of C and produce the transpose
of the corresponding nr×kc panels of A in a single iteration.
Most of the computations are thereby cast into typical GEMM
operations using the produced panel of AT and the remaining
panels of A.

Finally, the LAC uses very similar principles as for SYRK
to perform the SYR2K operation and its blocked versions.
The SYR2K produces C := C + ABT + BAT by cross-
multiplying rectangular matrices A,B ∈ Rn×m by their
transpose to update the lower triangular part of the symmetric
matrix C ∈ Rn×n. The amount of both communication and
computation is doubled in this case.

B. TRSM

The TRSM operation solves a system of equations LX =
B, with lower triangular matrix L ∈ Rn×n and rectangular
matrix B ∈ Rn×m for X ∈ Rn×m, such that upon completion
X = L−1B.

Figure 3 shows the mapping of an unblocked down-looking
TRSM algorithm for a nr × nr sub-matrix of B and lower
triangular nr × nr diagonal sub-matrix of L, both stored in
the registers of the LAC (with nr × nr PEs). The LAC is
augmented with an inverse unit that computes f(x) = 1/x.
In each iteration i = 0...nr − 1, the algorithm performs three
steps S1 through S3, where the figure shows the second such
iteration (i = 1). In S1 and S2, the element λi,i of L in
PE(i,i) is updated with its inverse. The result is broadcast
within the ith PE row and used to multiply into the elements
of the corresponding row of matrix B (effectively dividing row
elements of B by λi,i). In S3, the results of those computations
are broadcast within their respective columns to be multiplied
by the corresponding column of L (which is broadcast within
the respective rows) in order to perform a rank-1 update that
subtracts the result of this multiplication from the remaining
lower part of matrix B. This completes the current iteration,

which is repeated for i = 0, . . . , nr − 1. Given a MAC unit
with p pipeline stages, this nr×nr TRSM takes 2pnr cycles.
Due to the data dependencies between different PEs within and
between iterations, each element has to go through p stages
of MAC units while other stages are idle.

A bigger TRSM problem for L of size mc ×mc and B of
size mc × kc can be blocked into smaller subproblems using
a standard blocked up-looking algorithm. In each iteration,
nr × kc panels of B are replaced with values of X computed
from the corresponding diagonal nr × nr blocks of L using
the basic TRSM algorithm on the LAC as described above.
Most of the computations are thereby cast into typical GEMM
operations as was described previously.

V. IMPLEMENTATION RESULTS AND ESTIMATIONS

We have developed both simulation and analytical perfor-
mance models of the LAC. In addition, we synthesized key
components to estimate overall area and power consumption.
We validated the performance model and LAC operation in
general by developing a cycle-accurate simulator. The simula-
tor is configurable in terms of PE pipeline stages, bus latencies,
and memory and storage sizes. Furthermore, using power
consumption numbers for the components, our simulator is
able to produce an accurate power profile of the overall
execution. We accurately modeled the cycle-by-cycle control
and data movement for GEMM and TRSM, and we verified
functional correctness of the produced results.

A. Performance Results

Details of analytical performance models and LAC op-
eration for GEMM can be found in [2]. GEMM operation
typically achieves the best utilization and hence performance
among all other level-3 BLAS. Figure 4 shows a comparison of
selected level-3 BLAS for nr ∈ {4, 8}, mc = kc and n = 512.
We can observe that for a PE memory size of 20KBytes and
off-core memory bandwidth of 4 B/cycles, GEMM, TRSM,
SYRK, and SYR2K achieve 100%, 95%, 90%, and 85%
utilization, respectively.

The LAC shows utilizations for TRSM, SYRK and SYR2K
that are close to what GEMM can achieve. The reason why
none of the other operations reach 100% utilization is that their
basic operations do not fully utilize all the PEs. This is due
to the triangular shape of the diagonal blocks in each of these
cases. However, since lower-order terms only form a fraction
of all computations, the overall performance ends up close to
peak as the size of problem grows.

TRSM achieves better performance for smaller problem
sizes, even though the computation of the triangular part
of the lower order term of TRSM is less efficient than
SYRK. The difference between SYRK and TRSM is in the
bandwidth demand. SYRK needs more bandwidth than TRSM
for the same problem size. In small problems, the amount of
bandwidth directly affects the performance and results in a
higher utilization for TRSM. By contrast, SYRK has higher
utilization of the lower order term and better performance in
bigger problem sizes. For example, with 25 Kbytes of local
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TABLE I
45NM PERFORMANCE, POWER AND AREA FOR A LAP PE WITH

16+4=20 KB SRAM.
Speed
[GHz]

FMAC
Depth

Area PE
[mm2]

Memory
[mW]

FMAC
[mW]

PE
[mW]

1.67 5 0.083 20.28 13.46 34.74
SP 1.43 4 0.092 10.27 14.05 25.32

1.25 4 0.092 8.97 11.80 21.77
1.1 4 0.082 7.84 9.52 18.36

2 6 0.110 23.02 56.34 80.36
DP 1.43 5 0.101 17.71 38.73 57.44

1.25 4 0.101 15.84 35.96 52.79
1.11 4 0.103 8.58 31.24 40.81

memory per PE, SYRK with 98% utilization overtakes TRSM
with 96% utilization.

SYR2K performs worse than SYRK as is expected for
this operation. For the same PE memory size, only a smaller
SYR2K operation can be mapped on the LAC. A typical level-
3 BLAS has O(n2) communication and O(n3) computation
complexity. The SYR2K operation doubles the amount of
communication and computation, which is not bandwidth
efficient compared to solving a bigger SYRK problem.

B. Area and Power Efficiency

We studied the feasibility of a LAP implementation in 45nm
bulk CMOS technology. MAC and inverse units were synthe-
sized using Synopsys Design Compiler and a 45nm TSMC
standard cell library. The pipeline depths is kept constant until
there is a timing failure, at which point the number of pipeline
stages are increased. An increase in pipeline depth can also
mean a reduction in power, since more timing slack is available
for each stage resulting in less power hungry logic. We
measured power consumption using PowerCompiler assuming
random inputs. Area and power numbers for memories and
buses were obtained from CACTI-6.0 [12]. Since GEMM
results in the highest utilization and load, we used access
patterns of the GEMM algorithm obtained from our simulator
to estimate SRAM power consumption.

Table I shows the estimated area and power efficiency of a
PE at different design points at peak performance for GEMM.
Running at a clock frequency of 2 GHz, a 4 × 4 LAC is
estimated to achieve 50 double-precision (DP) GFLOPS/W.
The corresponding area efficiency and energy-delay values are
36 mm2/GFLOPS and 5 mW/GFLOPS2.

TABLE II
LAC EFFICIENCY FOR LEVEL-3 BLAS ALGORITHMS AT 1.1 GHZ.

Algorithm W
mm2

GFLOPS
mm2

GFLOPS
W Utilization

GEMM nr = 4 0.397 21.61 54.4 100%
TRSM nr = 4 0.377 20.53 51.7 95%
SYRK nr = 4 0.357 19.45 49.0 90%
SYR2K nr = 4 0.314 17.07 43.0 79%
GEMM nr = 8 0.397 21.61 54.4 100%
TRSM nr = 8 0.377 20.53 51.7 95%
SYRK nr = 8 0.346 18.80 47.3 87%
SYR2K nr = 8 0.290 15.77 39.7 73%

With GEMM being an operation that exhibits amble par-
allelism and locality and that has been studied extensively
through careful and tedious hand-tuning on conventional ar-
chitectures, many systems, including our LAC, are able to
achieve close to peak performance. However, in contrast to
other architectures, we show that we are able to sustain
such utilization rates, performance and efficiencies for almost
all other, more complex linear algebra operations. Table II
summarizes detailed performance and area efficiencies of the
LAC for all presented level-3 BLAS operations at 1.1 GHz.

VI. CONCLUSION

This paper presents the algorithm/architecture co-design of
a linear algebra core for level-3 BLAS. Our core is general
and flexible in supporting all representative level-3 BLAS
operations while synthesis and power estimation results show
that it can provide order of magnitude improved efficiencies
compared to other architectures. Our analysis clearly shows
the fundamental architectural tradeoffs for efficient execution
of linear algebra computations.

We have begun to generalize our design towards other, more
complicated linear algebra operations like LU and Cholesky
factorization. Our simulator is already able to run the latter.
The conclusion is that with minor extensions to PEs, such
as inverse square root units, the LAC can be generalized to
accommodate these operations.
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