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Abstract—Take a multicore Digital Signal Processor (DSP) chip
designed for cellular base stations and radio network controllers,
add floating-point capabilities to support 4G networks, and out
of thin air a HPC engine is born. The potential for HPC is clear:
It promises 128 GFLOPS (single precision) for 10 Watts; It is
used in millions of network related devices and hence benefits
from economies of scale; It should be simpler to program than
a GPU. Simply put, it is fast, green, and cheap. But is it easy to
use? In this paper, we show how this potential can be applied to
general-purpose high performance computing, more specifically
to dense matrix computations, without major changes in existing
codes and methodologies, and with excellent performance and
power consumption numbers.

Index Terms—Low-power architectures, DSPs, linear algebra.

I. INTRODUCTION

A decade ago, it was recognized that Graphics Processing
Units (GPUs) could be employed for general purpose high-
performance computing. They were relatively easy to program,
highly efficient, and, importantly, economy of scale made them
affordable. Now, GPUs are an integral part of the scientific
computing landscape.

Digital Signal Processors (DSPs) have traditionally been at
the heart of embedded systems. Of importance to the HPC
community is that they are very low power, benefit from
economy of scale, and they are easy to program, provided
one is willing to forgo Fortran. Unlike traditional GPUs, they
are not accelerators that require a host processor and they
hence do not necessarily suffer from the overhead associated
with transfering data between the host and the accelerator.
They are fully functional cores that are quite similar, from the
point of view of programming and memory hierarchy, to a
conventional processor. The problem was that, until recently,
such processors utilized fixed-point rather than floating-point
computation. This has now changed.

We report on our experience with a specific DSP, the Texas
Instruments (TI) Keystone multi-core Digital Signal Processor
(DSP) architecture, codenamed C66x. The specific multicore
processor based on this architecture, namely C6678, studied
in this paper, represents the industry’s first combined floating-
point performance of 128 single precision (SP) GFLOPs (bil-
lions of floating point operations per second) on a single device
running at 1 Ghz, a power consumption of 10W per chip, and
thus with a theoretical ratio of 12.8 GFLOPS/Watt (SP). Its

ubiquitous use (they are present in a wide variety of embedded
systems, network devices, and similar applications) makes
it affordable and available. Its programming model (C/C++
with OpenMP support for multi-threaded codes) will make
the port of existing codes straightforward. The fact that it is
a standalone processor makes it attractive for applications for
which hardware accelerators are not an option. The question
is: does it live up to these promises?

Dense linear algebra libraries are often among the first
libraries to be ported to a new architecture. There are at least
two reasons for this: (1) Many applications cast computation in
terms of dense linear algebra options and (2) If an architecture
cannot support dense linear algebra libraries effectively, it is
likely not going to support other HPC applications well. The
libflame library [18] is a modern alternative to the widely
used LAPACK library. We examine how well it can be mapped
to the C66x.

A prerequisite for high performance for dense matrix
library is the high-performance implementation of matrix-
matrix multiplication kernels known as the level-3 BLAS [5].
The GEneral Matrix-Matrix multiplication (GEMM) operation
is simultaneously the most important of these and highly
representative of how well the rest of the level-3 BLAS can be
mapped to a processor [19], [7], [8]. Since no BLAS library
for the C66x existed when we started this study, we describe
in detail the implementation of GEMM on this architecture.
We will show that, as of this writing, it achieves roughly 10
GFLOPS/core and 74 GFLOPS aggregate on 8 cores, which
transforms multi-core DSPs into a highly energy-efficient HPC
architecture.

Parallelizing operations to multiple cores requires a thread
library and/or compiler support. When this project com-
mensed, there was no such support, but OpenMP support was
being added to the TI’s C/C++ compiler. Our implementation
of a multi-threaded version of GEMM and the libflame
library provides us with an opportunity to also report on early
experiences with the OpenMP implementation by TI.

II. THE C6678 DSP ARCHITECTURE

The C6678 DSP is a high-performance fixed/floating-point
DSP based on TI’s KeyStone multicore architecture [17]. This
device incorporates eight C66x DSP cores and runs at a core
speed of 1 GHz with a power dissipation of 10W.



512 Kb

4096 Kb

L2 Cache/

CFG Switch

SRAM

C
o

n
tr

o
lle

r 
(E

M
C

)
E

x
te

rn
a

l 
M

e
m

o
ry

E
x
te

n
d

e
d

 M
e

m
o

ry
C

o
n

tr
o

lle
r 

(X
M

C
)

U
n

if
ie

d
 M

e
m

o
ry

C
o

n
tr

o
lle

r 
(U

M
C

)

MSM SRAM

DDR3

SRAM

DMA

Switch Fabric

Fabric

Instruction Fetch

In
te

rr
u

p
t 

E
x
c
e

p
ti
o

n
 C

o
n

tr
o

lle
r

Program Memory Controller (PMC)

C66x DSP core

16−/32−bit Instruction Dispatch

Control Registers

In−Circuit Emulation

Instruction Decode

Data Path A Data Path B

A Register File B Register File

A31 − A16 B31 − B16

B15 − B0A15 − A0

.L1 .S1 .M1 .D1 .L2 .S2 .M2 .D2

Data Memory Controller (DMC)

32 Kb L1P

32 Kb L1D

x8
(C6678)

Fig. 1. C66x DSP Core Block Diagram.

A. C66x core capabilities and instruction set

The C66x DSP core is based on Very Long Instruction
Word (VLIW) architecture [16]. Figure 1 shows the func-
tional diagram of an individual C66x core. The core has 8
functional units arranged in two sides. Each unit is capable
of executing one instruction per cycle. The four unique units
on each side are termed as L, M, S, and D units. The M
units primarily perform mulitplication operations. The D units
performs load/store and address calculation. The additions and
various logical and branch operations are distributed between
the L and S units. The result is an 8-way VLIW machine
where up to eight instructions can be issued in parallel in a
single cycle. There are two general-purpose register files (A
and B) each containing 32 32-bit registers for a total of 64
registers. Each register file is connected to one side though
there is a cross-connect between each register file on one side
and the set of units on the other side. The art of programming
this architecture involves feeding instructions to as many of
the units as possible without overwhelming the registers and
the cross-connects. In the case of SGEMM, as will be shown
later, the kernel function keeps all the functional units busy
every cycle.

The instruction set also includes SIMD instructions which
allow vector processing operating on up to 128-bit vectors.
The M unit, in particular, can do 4 single precision mulitplies
in each cycle. Each of the L and S units can perform 2 single
precision additions in each cycle. With two sets of L, S and M
units, the core is thus capable of performing 8 single precison
multiply-add operations per cycle. The capability of double
precision operations are approximately one quarter to that of
the single precision operations in the current generation of the
architecture. The programmer can also perform various mixed
precision operations. All floating point operations are IEEE754
compliant.

B. Memory

The C6678 DSP integrates 32KB of L1 program (L1P) and
32KB of L1 data (L1D) cache as well as 512 KB of L2
cache per core. Both the L1 data and L2 memory can be
configured as RAM or cache or part RAM/part cache. The
device also integrates 4096KB of Multicore Shared Memory
(MSMC in the rest of the paper) accessible by all cores. All
L2 memories incorporate error detection and error correction.
For fast access to external memory, this device includes a 64-
bit DDR3 external memory interface running at 1600 MHz
and has ECC DRAM support. The flexibility in choosing
cache/RAM for the on-chip dedicated per core memory is fully
exploited for intelliegent data movement in the core SGEMM
implementation.

C. Programmability and multi-thread support

TI’s DSPs run a lightweight real time native operating
system called SYS/BIOS. Because SYS/BIOS can be used in
such a wide variety of different microprocessors with very
different processing and memory constraints, it was designed
to be highly configurable.

TI provides a C/C++ compiler as part of its Code Generation
Tools. In practice, virtually every C89-compliant C program
can be directly ported to run on the DSP with no additional
effort. To improve the efficiency of the generated code for
each TI architecture, the compiler provides a rich variety
of optimization and tuning flags. It supports optimization
techniques in form of pragmas and also intrinsics to extract
all the potential performance of the underlying architecture.
OpenMP 3.0 is the preferred programming model for C66x
multicore DSPs as of today. This allows rapid ports of existing
multi-threaded codes to the multi-core DSP, as we illustrate
in this paper. TI’s C66x compiler translates OpenMP into
multithreaded code with calls to a custom runtime library.
The runtime library provides support for thread management,
scheduling, and synchronization. TI has implemented a run-
time library that executes on top of SYS/BIOS and interproces-
sor communication (IPC) protocols running on each core of the
DSP. The TI OpenMP runtime library performs the appropriate
cache control operations to maintain the consistency of the
shared memory when required. Because TI’s C66x multicore
DSPs have both local private and shared memory they map
well into the OpenMP framework. Shared variables are stored
in shared on-chip memory while private variables are stored
in local on-chip L1 or L2 memory. Special precaution must be
taken to keep data coherency for shared variables, as no hard-
ware support for cache coherency between cores is provided.
Some of these issues will be illustrated in Section IV.

III. GEMM ON A SINGLE C66X CORE

Developing an optimized BLAS (Basic Linear Algebra
Subprograms [6]) library is usually a first step toward the
development of higher level scientific libraries when a new
HPC architecture emerges. It also illustrates the performance
that can be effectively extracted from the new architecture.



In addition, these kernels are commonly useful to illustrate
typical optimization techniques particular to the architecture.

The lack of a Fortran compiler in the TI toolchain makes it
even difficult to test a basic reference BLAS implementation.
Our trivial first approach was to take the Fortran reference
implementations of the BLAS from Netlib, translating these
into C using f2c, and to utilize the TI C compiler to get the
full BLAS running on one core of the DSP.

As is well-known, these reference implementations do not
attain high performance, even more on specific-purpose archi-
tectures like the TI DSP. To overcome this, an optimized ver-
sion of single precision matrix-matrix multiplication (SGEMM)
has been implemented and is described in this section. Note
that GEMM is a key routine towards the development of a
full Level-3 BLAS library [11]. Our algorithm is structured
much like the implementation in the GotoBLAS [8], [7]
library. GotoBLAS is a widely used and high performing
BLAS implementation. Since its early versions, it has been
successfully ported to many microarchitectures. We illustrate
next how Goto’s approach can be effectively implemented on
the TI DSP.

A. The GotoBLAS approach

Memory hierarchy is commonly divided into multiple levels,
each one with a particular size/performance ratio (smaller,
faster memories are found as one gets closer to the pro-
cessor, following a “pyramidal” approach.) The TI DSP is
no exception. Following this assumption, GotoBLAS aims at
decomposing GEMM into different layers, each one mapped
to a different level of the memory hierarchy, with the final
goal of amortizing data movements between memory levels
with computation and thus attaining near-optimal performance
by keeping recently used data as close to the processor as
possible.

A typical high-performance GEMM implementation follows
the three nested loop approach shown in Figure 2. Considering
the operation C := AB + C, where A, B, and C are m× k,
k × n, and m× n matrices, we partition the operands:

A =
(
A0 A1 . . . AK−1

)
, B =


B0

B1

...
BK−1

 ,

where Ap and Bp contain bk columns and rows, respectively
(except for AK−1 and BK−1 which may have less columns
or rows, respectively), as shown in the outer loop of Figure 2.
We consider this partition to proceed through dimension K.
With this partitioning scheme,

C := A0B0 +A1B1 + · · ·+AK−1BK−1 + C.

GotoBLAS implements GEMM as a sequence of highly
optimized updates C := ApBp + C, usually referred as
panel-panel multiplications, or GEPP attending to the shape
of the operands. The performance of the GEPP operation will
ultimately determine the performance of the overall GEMM
implementation.

Allocate packed buffers Â and B̂
{Partition in the K dimension.}

A0 A1 A2 B1

B2

B0

C

for p = 0 : K − 1 do
{Pack Bp into B̂}
{Partition in the M dimension.}

1

C0

C2

A 0,p

A 1,p

A 2,p

^

C

B

for i = 0 : M − 1 do
{Pack and transpose Ai,p into Â.}
sgemmKernel(. . . )

Ci B
^

A
^

end for
end for

Fig. 2. Basic algorithm for GEMM.

The GEPP algorithm proceeds by packing the correspond-
ing panel Bp in the outer loop into a contiguous memory
buffer, partitioning the panel Ap into roughly square blocks
A0,p, A1,p, . . . , AM−1,p and packing them in a similar fashion,
as indicated in Figure 2. This proceeds through dimension M .
The computation of the multiplication of a block Ai,p and the
panel Bp is cast in terms of an inner block-panel multiplication
kernel (GEBP) using the previously packed buffers.

In summary, each GEPP operation requires three different
basic building blocks, in which the developer must invest much
of the optimization effort:

• An inner kernel (GEBP) that computes Ci := Ai,pBp+Ci,
where both the block Ai,p and the panel Bp are stored
in packed buffers.

• Packing and transposing each block Ai,p into a contigu-
ous memory buffer Â. Ai,p is usually a sub-matrix part
of a bigger matrix, and thus it is not contiguously allo-
cated in memory. The packing into a contiguous buffer
reduces the number of TLB entries to be accessed. The
transposition usually favors the memory access pattern of
the inner kernel.

• Packing each panel Bp into a contiguous memory buffer
B̂, as it is reused for many GEBP calls.

Typically, the dimensions of the block Ai,p ∈ Rmc×kc are
chosen so that Â occupies as much of the cache memory as
possible. This often means half the L2 cache, to ensure that
accesses to data from matrices B and C do not evict data from
this block of A. Intuitively, the closer Â is to the processor, the
faster data movements are. This idea suggests that Ai,p should
be placed in the L1 cache during the corresponding update.
However, Goto demonstrated that loading data from the L2



cache is sufficiently fast that this block can be placed in that
layer instead. Since then mc×nc can be larger, the movement
of data between RAM and caches is amortized better over
actual computation [8]. The general principle is now to place
block Â in the largest cache level available, provided that
storing Â in this cache level allows the computation of
Ci := ÂB̂+Ci be computed at the peak rate of the processor.
For most architectures, with some care, elements of Â can
be prefetched so that the inner kernel can compute at near-
peak performance, when Â resides in the L2 cache. Thus, the
chosen cache level for storing Â is typically the L2 cache.

The inner kernel GEBP proceeds by partitioning the panel
B̂ into smaller sub-panels B̂0, B̂1, . . . B̂N−1. We consider this
partition to proceed through dimension N . The size of B̂j

makes it possible for it to be stored in the smaller L1 cache
as it is being multiplied by Â.

Thus, at the deepest level of computation, the overal opera-
tion is reduced to a successive set of multiplications of a block,
Â, residing in L2 cache by a sub-panel of B̂, B̂j , streamed
through the L1 cache.

B. Mapping GotoBLAS to the C66x core

Our tuned implementation of a GEMM kernel for the TI
DSP follows the same high-level guidelines reviewed in Sec-
tion III-A. However, the architecture differs from conventional
CPUs and their memory in that it allows greater control over
the placement of different data sections in physical memory.
Determinism necessary for real-time applications for which
DSPs were initially designed motivated the addition of these
mechanisms to the architecture. As a result, each level of the
cache hierarchy can be configured as a fully user-managed
scratchpad memory that becomes key to extending Goto’s
ideas to the DSP.

1) Managing the memory hierarchy: Goto’s approach
writes the GEBP so as to trick the architecture into keeping Â
and panels of B and C in specific memory layers while they
are being used for computations. With the DSP architecture
and TI toolchain, we can force the linker to allocate given
memory sections in a certain physical level of the memory
hierarchy (L1 cache, L2 cache, MSMC or DDR3 RAM). This
assures that a given buffer will reside on L1 cache, L2 cache
or MSMC SRAM during the execution of the kernel.

The usual workflow when developing a code for the TI DSP
proceeds in three main steps:

1) Definition of the memory architecture. Defines the archi-
tectural properties of the target platform, including mem-
ory sections, physical allocation of those sections and
other parameters such as section size and address range.
In our case, we define three different sections mapped
to L1 and L2 caches and MSMC SRAM, with names
L1DSRAM, L2SRAM, and MSMCSRAM, respectively, with
the desired sizes.

2) Linker configuration. Provides information to the linker
to bind data sections in the source code to memory
sections defined in the above memory architecture def-
inition. In our configuration file, we can define three

bk

4

8

4

8bk

A BC

+= *

Fig. 3. Inner kernel GEBP implementation proceeds by partitioning Â and
B̂ into panels of rows and columns, respectively (top). Each 4×bk by bk×8
update is performed in the L1 cache as a sequence of highly tuned 4× 1 by
1× 8 rank-1 updates (bottom).

different regions for allocation in L1 and L2 caches,
and MSMC SRAM:

/* Create .myL1 section mapped on L1 cache */
Program.sectMap[ ".myL1" ] = "L1DSRAM";
/* Create .myL2 section mapped on L2 cache */
Program.sectMap[ ".myL2" ] = "L2SRAM";
/* Create .myMSMC section mapped on MSMC */
Program.sectMap[ ".myMSMC" ] = "MSMCSRAM";

3) Use of scratchpad buffers in the code. In our GEMM im-
plementation, we guide the compiler to allocate memory
for packed buffers into the desired memory section, by
using pragma directives in the code. With the previous
definitions, it is possible to allocate static arrays (pL1,
pL2 and pMSMC) in different levels of the hierarchy:

/* L1 allocation */
#pragma DATA_SECTION( pL1, ".myL1" );
float pL1[ L1_SIZE ];

/* L2 allocation */
#pragma DATA_SECTION( pL2, ".myL2" );
float pL2[ L2_SIZE ];

/* MSMC allocation */
#pragma DATA_SECTION( pMSMC, ".myMSMC" );
float pMSMC[ MSMC_SIZE ];

With these considerations, the implementation of GEMM
for the DSP follows the same sequence of outer panel-panel
and inner block-panel multiplications described for the Goto
approach, using each buffer to allocate the corresponding sub-
blocks of A and B.

Most of the effort when developing a new GEMM implemen-
tation using this methodology resides in two basic building
blocks: the inner kernel and the packing routines. In fact,
many of the particularities of the architecture can be hidden
in these two routines, maintaining a common higher-level
infrastructure. We focus next on the particularities of the TI
DSP architecture for the implementation of the inner kernel
and packing routines.

2) Optimizing the inner GEBP kernel: The implementation
of the GEBP kernel is key to the final performance of the
GEPP implementation, and it is usually there where specific
optimizations are applied for each architecture. Our imple-
mentation partitions both the block, Â, and the panel, B̂, into
smaller sub-blocks of rows and panels, respectively, as shown
in Figure 3.

The computation of a new panel of columns of C is divided



into a sequence of multiplications involving a few rows of Â
(stored in L2 cache) and the current block of columns from
panel B̂ (B̂j , stored in L1 cache). This preliminary work
computes with four rows of Ai,p (four columns of Â) at a
time, multiplying a block B̂j with 8 columns. This appears
to balance the number of required registers and available
parallelism. Before the computation, we prefetch the small
sub-block of Â into the L1 cache, so the deepest level of the
overall computation is effectively performed using exclusively
data that reside in L1.

The design of the inner kernel implements techniques that
exploit many of the particular features of the C66x core
to attain high efficiency. Figure 5 shows an actual code
extract from the kernel used in our implementation; the kernel
proceeds by iterating in the k dimension and performing a
rank-1 update at each iteration to update a part of the result
matrix C.

The maximum GFLOPS rate offered by the C66x core is
attained by the use of vector datatypes and instructions in the
inner kernel. The code in Figure 5 illustrates some of the vector
datatypes available applied to the calculation of each rank-1
update. __x128_t is a container type for storing 128-bits of
data and its use is necessary when performing certain SIMD
operations. When the compiler puts a __x128_t object in
the register file, the __x128_t object takes four registers (a
register quad). Similarly, the __float2_t container type is
used to store two floats. This object are filled and manipulated
using specific intrinsics.

The SIMD capabilities of the architecture can be exploited
in our code by two different vector intrinsics operating
on floating-point data, CMPYSP and DAADDSP to perform
floating-point multipication and addition, respectively:

• Multiplication: The C66x core can perform eight single-
precision multiplications per cycle: CMPYSP instruction
can calculate four pairs of single-precision multiplies per
.M unit per cycle. Perform the multiply operations for
a complex multiply of two complex numbers a and b.
Both sources are in 64-bit format. The result is in 128-
bit format and contains the following results:

c3 = a[1] ∗ b[1]; c2 = a[1] ∗ b[0];
c1 = −a[0] ∗ b[0]; c0 = a[0] ∗ b[1];

The CMPYSP instruction was actually designed for an interme-
diate step in complex multiplication which gives it the negative
sign for one of the multiplications.

• Addition/substraction: The C66x core can perform eight
single-precision addition/subtraction per cycle: DADDSP
and DSUBSP can add/sub 2 floats and they can be
executed on both .L and .S units.

Each rank-1 update proceeds by loading the correspond-
ing elements of Â and B̂ into registers, and accumulating
the results of each intermediate SIMD multiplication in the
corresponding accumulators that will then be used to update
the corresponding entries of matrix C (the update of C is not
shown in the code sample), following the schema in Figure 4.
The usage of a register pair to reference elements of Â and the
volatile definition of these pointers forces the compiler to

Fig. 4. Basic rank-1 update in the computation of GEBP using SIMD
instructions (cmpysp).

use load instructions for both registers, and thus make full use
of the .D units. In summary, each iteration executes 8 lddw
(double load), 8 cmpysp (2x2 outer product), and 8 daddsp
(double add), and uses 32 registers to store the corresponding
entries of C. Four cycles per loop iteration are required, for a
total of 16 FLOPS/cycle, and a full occupation of units during
the kernel execution.

3) Overlapping communication and computation. Memory
requirements, DMA and packing: The DMA support in the
TI DSP allows us to hide the overhead introduced by data
movement between memory spaces by overlapping communi-
cation and computation. Our approach proceeds as described
in Figure 6(a), which illustrates a GEPP (the multiplication of a
panel of columns of Ap by a panel of rows of Bp) that initially
reside in DDR memory and are stored in column-major
order. As previously described, this panel-panel multiplication
proceeds by dividing Ap into blocks A0,p, A1,p, . . . , AM−1,p,
iteratively performing block-panel multiplications of Ai,p by
the panel Bp.

In order to overlap computation and communication be-
tween memory layers, we use double-buffering and we take
benefit of the whole memory hierarchy as illustrated in Fig-
ure 6(a). We create scratchpad buffers in the three cache levels,
that will host sub-blocks of A and B:

• L1 cache. A buffer will host a packed subblock of the
panel B̂ with dimensions bk× 8, necessary as part of the
block-panel multiplication. Successive sub-blocks of the
panel B̂ are streamed to L1 to complete the block-panel
multiplication.

• L2 cache. A buffer will allocate the complete packed
block Â with dimensions bm × bk, during the complete
computation of the block-panel multiplication.

• MSMC SRAM. We create three different buffers that
will be used to receive unpacked data from DDR RAM
through DMA transfers. The first one, with dimensions
bm× bk, will receive the unpacked block of Ai+1,p from
DDR. The other two, with dimensions bn × bk, will host
sub-panels of the panel B̂, and and will allow the overlap
of communication and computation in the block-panel
multiply.

The final goal of our algorithm is to multiply Â, residing in
L2 cache memory, by a small packed block of B̂ that resides
in L1. In the first step of a panel-panel multiply, the algorithm
starts two DMA transfers of the block A0,p and the first sub-
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Fig. 6. (a) Illustration of the overlapping of DMA transfers to on-chip memories and actual computation in an iteration of a GEPP operation. Blocks in blue
indicate pending DMA transfer. Blocks in green indicate packed buffers. Blocks in red indicate actual computation. (b) Packing (and transposing if necessary)
of sub-matrices of A and B.

panel of B to the corresponding locations in MSMC SRAM.
Upon the completion of the transfer, A0,p is packed and
stored in the corresponding L2 buffer, and the corresponding
buffer in MSMC SRAM becomes empty and ready to receive
A1,p. At this point, the communication of A1,p, necessary
for the next block-panel multiplication and the next columns
of B̂, necessary for the current block-panel multiplication,
to MSMC SRAM are started. These two transfers and the
multiplication occur simultaneously. The multiplication of Â
by a sub-panel of B, with Â packed in L2 cache and the
sub-panel of B unpacked in MSMC SRAM, proceeds by
sequentially streaming small sub-blocks of B to the buffer in
L1 cache, packing the sub-block in the format required by the
inner kernel. Once both a block of A and the small sub-block
of B (both packed) reside in L2 and L1 cache, respectively,
the inner kernel proceeds as described in the previous section.
The packing pattern of blocks of A and B is illustrated in
Figure 6(b) and performed by the CPU (not using the DMA
engine).

IV. MULTI-CORE DSP PROGRAMMING

Developing a multi-threaded BLAS implementation is one
approach to build efficient multi-threaded higher level dense
linear algebra libraries. We propose two different approaches
to extract parallelism and build efficient multi-threaded li-
braries for dense linear algebra on the DSP. The first one
aims at manually developing multi-threaded codes for each
particular BLAS operation. The second one is based on a
runtime system, SuperMatrix, that automatically extracts task
parallelism and only requires a sequential BLAS implementa-
tion to build multi-threaded codes.

A. Explicit multi-threaded GEMM

In this first multi-threaded implementation, each thread
updates a panel of rows of matrix C. Thus, each thread
multiplies a panel of rows of A by the whole matrix B.
Each local computation follows the same approach as that

illustrated for one core. From the point of view of memory,
we replicate the buffer structure allocated in MSMC memory,
as each thread packs its own block of Ap and panel of Bp

independently. L1 and L2 buffers are local to each core and
thus do not have to be replicated. DMA mechanisms are still
in place, using different DMA resources for each core, and
thus overlapping communication and calculation at core level.
As each thread operates on different blocks of C, no cache
coherency concerns apply, besides a final flush (write back) of
data from local caches to DDR RAM.

A more scalable approach [12], which also avoids some
duplicate packing of data in B, is beyond the scope of this
initial study.

B. Runtime-based BLAS

Task parallelism has demonstrated its suitability for ex-
tracting parallelism for multi-threaded dense linear algebra li-
braries [15], [1] or other types of codes [14] and architectures.
We combine several related concepts to automatically extract
parallelism and effectively parallelize sequential codes. First,
we store matrices by blocks, instead of using a column-wise
or row-wise storage scheme; we consider a block as the basic
unit of data. Second, we derive and implement algorithms-
by-blocks. An algorithm-by-blocks executes a sequential algo-
rithm on blocks, being a single operation with a block the basic
unit of computation. The algorithm evolves by performing
smaller sub-problems on sub-matrices (blocks) of the original
matrix. Third, we consider the data dependencies between
tasks to automatically keep track of ready tasks and map
them to available execution resources, much in the line of
a superscalar processor.

The libflame library integrates a mechanism, called
SuperMatrix, that leverages algorithms-by-blocks to automati-
cally parallelize sequential codes and schedule sub-operations
(or tasks) to a multi-threaded architecture. This runtime system
operates by extracting and maintaining a directed acyclic graph
(DAG) of tasks, that includes information about tasks that



void sgemmKernel(const float *pA, const float *pB,
float *pC, const float a, const int k,
const int stepC)

{
__float2_t s0, s1, s2, s3, s4, s5, s6, s7;
__float2_t s8, s9, sa, sb, sc, sd, se, sf;
__float2_t * restrict ptrB = (__float2_t *) pB;
// Twin addresses defined volatile so the compiler
// use load instructions for both registers;
// If not, it optimizes out one address thereby reducing
// the usage of D units at the expense of an LS unit;
volatile __float2_t * restrict ptrA

= (__float2_t *) pA;
volatile __float2_t * restrict ptrATwin

= (__float2_t *) pA;

s0 = 0.0; s1 = 0.0; ... se = 0.0; sf = 0.0;

for (index = 0; index < k; index++)
{ // Loop over k; Each iteration performs rank-1 update

__float2_t b01, b23, b45, b67, a01, a23,
a01Twin, a23Twin;

__x128_t reg128;

a01 = *ptrA++; a23 = *ptrA++;
// compiler is using LS units to create
// a twin register
// D units are available;
// force a load (that is, a D unit)
// to use twin register;
a01Twin = *ptrATwin++; a23Twin = *ptrATwin++;

b01 = *ptrB++; b23 = *ptrB++;
b45 = *ptrB++; b67 = *ptrB++;

reg128 = _cmpysp(b01, a01);
// Accumulate b[0]*a[1] and -b[0]*a[0]
s0 = _daddsp(s0, _lof2_128(reg128));
// Accumulate b[1]*a[0] and b[1]*a[1]
s1 = _daddsp(s1, _hif2_128(reg128));

reg128 = _cmpysp(b23, a01);
// Accumulate b[2]*a[1] and -b[2]*a[0]
s2 = _daddsp(s2, _lof2_128(reg128));
// Accumulate b[3]*a[0] and b[3]*a[1]
s3 = _daddsp(s3, _hif2_128(reg128));

reg128 = _cmpysp(b45, a01Twin);
// Accumulate b[4]*a[1] and -b[4]*a[0]
s4 = _daddsp(s4, _lof2_128(reg128));
// Accumulate b[5]*a[0] and b[5]*a[1]
s5 = _daddsp(s5, _hif2_128(reg128));

reg128 = _cmpysp(b67, a01Twin);
// Accumulate b[6]*a[1] and -b[6]*a[0]
s6 = _daddsp(s6, _lof2_128(reg128));
// Accumulate b[7]*a[0] and b[7]*a[1]
s7 = _daddsp(s7, _hif2_128(reg128));

// Proceed similarly with a23 and a23Twin
// to get s0...sf
...

}
// Copy accumulators to output matrix
...

}

Fig. 5. Code for the inner kernel used in GEBP.

compose a dense linear algebra operation and data depen-
dencies between them. At runtime, only when a task sees
all its input data dependencies satisfied, can be scheduled for
execution to a free computational unit. After the execution of
a task, the coresponding dependency information is updated
in the DAG if necessary, releasing new tasks that become
ready for execution. The existence of a set of worker threads
waiting for ready tasks makes it possible to execute many data-
independent tasks in parallel, and thus to exploit the inherent

task parallelism in a given dense linear algebra algorithm.
What is more important, this parallelization is carried out
without any changes in the existing sequential algorithm-
by-blocks. Besides performance, the main advantage of this
approach is programmability, as existing, thoroughly tested
sequential codes are automatically mapped to multi-threaded
architectures.

We note that PLASMA [1] provides a similar runtime
system which, more recently, now includes the kind of out-
of-order scheduling that SuperMatrix has supported since its
inception.

C. Previous SuperMatrix implementations

The SuperMatrix runtime was originally designed and de-
veloped for SMP architectures, using OpenMP or pthreads
as the underlying thread support [3]. In the original de-
sign, a pool of threads maintains a common list of ready
tasks in a producer-consumer fashion, executing tasks as
they become ready. Work-stealing, data-affinity and cache-
affinity techniques have been developed to increase both load
balancing and data locality, with excellent performance and
scalability [2].

Flexibility is at the heart of the libflame library in
general, and the SuperMatrix runtime in particular. The full
funcionality of the library has been successfully ported to
a wide variety of commercial or experimental architectures.
They include the Intel SCC experimental platform, with 48 x86
cores [10], or platforms with multiple Nvidia GPUs [15],
[9]. In this accelerator-based architecture, we deploy as many
host threads (running on the host, or CPU) as accelerators
exist in the system, and consider each accelerator as a unique
computation unit. Thus, each time a task eligible for execution
on the accelerator is found, necessary input data is transferred
to the corresponding memory space (usually through the PCIe
bus), the task is executed on the corresponding accelerator
using an optimized parallel library (in the case of Nvidia,
invoking CUBLAS kernels), and data is retreived back to host
memory as necessary, where the hybrid execution continues.
libflame was the first dense linear algebra library to port
all its functionality to systems with multiple GPUs.

D. Retargeting SuperMatrix to multi-core DSPs

Although an accelerator-based implementation as that de-
veloped for multi-GPU architectures will be possible for
future systems with multiple DSPs attached to a host system
through the PCIe bus, we advocate here for an alternative
implementation in which the whole runtime is running inside
the DSP cores, without a host. This way, the DSP architecture
and runtime system acts as a fully standalone linear-algebra
embedded system, exploiting all the benefits of this type of
hardware from the point of view of the ubiquity and power
efficiency.

The main problem when porting the SuperMatrix runtime to
the multi-core DSP is the lack of hardware support for cache
coherency between caches from different cores. While cache
coherency has been managed by software in other SuperMatrix



implementations [4], the total absence of cache coherency in
the TI DSP adds a new burden considering the whole runtime
logic is run in the DSP, without a cache-coherent host attached
to it. As a result, in the OpenMP implementation provided by
TI, the user is in charge of managing coherence of shared data.

We can define two different types of shared data in the
internals of libflame: control data (lists of pending and
ready tasks, dependency information, etc.) and matrix data
(the actual matrix data). The dynamic nature of the runtime
system makes it necessary to heavily use dynamic memory
allocation for these types of data structures. While matrix
data coherency can be managed by software in a relatively
easy way, the complexity of handling control data coherency
becomes a real burden and translates into a dramatic increase
in the complexity of SuperMatrix internals.

The TI software stack provides an elegant and flexible
workaround for this problem: as we show with statically
allocated arrays, it is also possible to define different heaps to
store dynamically allocated memory, and to map these heaps
to different memory sections. In addition, mechanisms for
enabling or disabling caching on given memory pages allow
us to create heaps in cached or non-cached memory. Following
the workflow illustrated for a single core:

1) Definition of the architecture. In this case, we cre-
ate two different memory sections in our architecture,
both mapped on physical DDR3 memory, with names
DDR3_NOCACHE and DDR3, to allocate the uncached
and cached heaps, respectively.

2) Linker configuration. Consider the following extract of
configuration file:

/* Create a Default Heap on MSMCSRAM. */
BIOS.heapSize = 0x40000;
BIOS.heapSection = "systemHeap";
Program.sectMap["systemHeap"] = "MSMCSRAM";

/* Create a Non-cached Heap on DDR3. */
var UnCached =

new HeapMem.Params();
UnCached.size = 0x1000000;
UnCached.sectionName = "UnCached_heap";
Program.global.UnCached_heap =

HeapMem.create(UnCached);
Program.sectMap["UnCached_heap"] = "DDR3_NOCACHE";

/* Create a Cached Heap on DDR3. */
var Cached =

new HeapMem.Params();
Cached.size = 0x10000000;
Cached.sectionName = "Cached_heap";
Program.global.Cached_heap =

HeapMem.create(Cached);
Program.sectMap["Cached_heap"] = "DDR3";

/* Set DDR uncached section */
Cache.setMarMeta(0x80000000, 0x8000000, 0);

With this configuration, we define three different heaps,
each one with its own properties: in the default heap,
with a size of 256 Kb, will be allocated that memory
reserved with classic malloc calls. The second and
third ones are special heaps, and must be managed
through special routines provided by the TI software
stack that allow the management of dynamic memory
on specific heaps. We define two different ad-hoc heaps
with 16 Mb and 256 Mb, respectively, and map them

to the memory sections named as DDR3_NOCACHE and
DDR_CACHE. If we consider that the section named as
DDR3_NOCACHE starts at adress 0x8000000, the in-
struction Cache.setMarMeta disables the cacheabil-
ity of the memory pages comprised in its address range.
Proceeding this way, we have defined a heap mapped
on DDR3 memory whose memory transactions bypass
the cache subsystem, and thus cache coherency does not
become a problem.

3) Code. With this configuration, the modifications in the
runtime code are limited to the memory management
module in libflame. We provide routines for allocat-
ing/deallocating memory from different heaps depending
on the type of data we are managing (non-cached control
data, or cached matrix data).

To avoid the performance penalty due to the use of non-
cached DDR memory, in practice we map the non-cached
heap to MSMC on-chip memory instead of DDR3. Thus, the
SuperMatrix runtime allocates control data in non-cached fast
on-chip memory (MSMC), and matrix data in cached slow
memory (DDR).

Proceeding this way, the runtime system only deals with
cache coherency issues related to matrix data. Consider the
usual runtime operation. Whenever a new ready task is ex-
tracted from the DAG, the corresponding kernel is assigned to
a worker thread and executed in the corresponding core (e.g.
in the case of a GEMM task, the optimized kernel described
in Section III is executed). Upon the execution of the task,
the runtime system must invalidate the copies of input matrix
blocks that would remain in cache (blocks of A and B in the
case of GEMM), and write-back and invalidate the copies of
output matrices that have just been written (blocks of C in the
case of GEMM). Proceeding this way, future tasks working on
the same blocks on the same or a different core will always
encounter consistent versions of the corresponding operands.

With only these considerations, not only GEMM but the full
functionality of libflame has been ported to the multi-core
TI DSP without major code changes. This includes algorithms-
by-blocks and different algorithmic variants for Level-3 BLAS
and LAPACK functionality (Cholesky, LU factorization with
incremental pivoting, QR factorization, eigenvalue solvers,
. . . ) [9]. What is more important, the usage of a DSP is
transparent to both the library developer of new linear algebra
routines and the user codes that make use of them. The full
performance benefits of this full functionality will not be
reaped until more single-core BLAS functionality is available.

This design permits the utilization of the C6678 DSP as
a purely standalone system, without the need of an external
host orchestrating the parallel execution. The benefits are
clear: lower acquisition cost, lower power consumption, the
possibility of running HPC applications on fully embedded
architectures, no data transfer penalties, and code reutiliza-
tion from existing SMP software solutions. However, if an
accelerator-based system (like a multi-GPU architecture) is
desired, the SuperMatrix runtime supports that model ully by
implementing the same software architecture as was designed



for multi-accelerator systems [9].

V. EXPERIMENTAL RESULTS

A. Hardware setup

All the experimental evaluation was carried out using a
TMDXEVM6678LE evaluation module (EVM). This EVM
includes an on-board C6678 processor running at 1 GHz,
equipped with 512 MB of DDR3 RAM memory. To improve
the programming productivity and reduce the development
time, we employed a XDS560V2 emulation board, which
greatly reduces the time for loading code. On the software side,
Code Composer Studio version 5.1 was used. This includes
SYS/BIOS version 6.32 as the RTOS operating system, Code
Generation Tools version 7.3.0 (C/C++ compiler), MCSDK
version 2.1, and TI’s prototype implementation of the OpenMP
runtime in an internal pre-release version. We used single
precision in all our experiments. Peak for double precision
computation on the current architecture is roughly 1/4 that
of single precision computation. It is expected that a future
version of this architecture will deliver peak double precision
performance that is half that of single precision performance.

B. GEMM performance on one core

Figure 7 reports the performance attained by our optimized
GEMM implementation on one C66x core. Results are reported
for square matrices in terms of GFLOPS. The y-axis is
adjusted so that the top of the graph represents the theoretical
peak performance of one C66x core (16 GFLOPS). We show
the performance for C = AB (NN), C = ABT (NT),
C = ATBT (TT), and C = ATB (TN). The maximum perfor-
mance attained is 9.84 GFLOPs, for the case in which both A
and B are not transposed. The slightly lower performance for
the other cases is mainly due to different packing procedures
depending on the exact layout of the original matrices in
DDR3 memory. These numbers suggest an actual utilization
of the core of around a 61%, much in line of modern,
tuned BLAS implementations for GPUs, although still far
from the 95+% attained by general-purpose CPUs. Asymptotic
performance is attained for relatively small matrices (around
n = 512).

Four sources of inefficiency exists in our inner kernel code,
many of them directly related to architectural issues:

• L1 cache bank conflicts occur at every iteration in our
main kernel. An increase in the number of L1 cache banks
would reduce this issue.

• Loop overhead and load of C to memory: we have
observed some corner cases where the cache for matrix C
evicts the cache for the stack. Looping over larger panel
would help, but this is directly limited by the amount of
L1 memory.

• Cache misses occur at the loading stage of each panel
of A into cache memory which happens for every GEBP
kernel call.

• Additional cache misses also occur related to data move-
ment between memory layers. The number of misses is
directly dependent on the specific SGEMM case and data
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Fig. 7. Matrix-matrix multiplication performance on one C66x core for
square matrices.

size, and it is directly related to the size of L2 and MSMC
memory.

Further refinement of the described techniques may over-
come some or all of these inefficiencies.

C. GEMM performance on multiple cores

Figure 8 reports the multi-core performance results attained
by our two alternative multi-threaded implementations of
GEMM. On the left, we show the performance attained by a
manually parallelized OpenMP code. On the right, we show
the performance attained by our SuperMatrix port. Both plots
are adjusted to the theoretical peak performance of GEMM
on 8 cores based on the single-core implementation. Results
are given in terms of GFLOPS for an increasing number
of cores (from 1 to 8), for the GEMM case in which both
A and B are square matrices and are not transposed. For
the SuperMatrix evaluation, we have carried out a thorough
evaluation of performance varying the block size used by the
algorithm-by-blocks. In the figure, we only report performance
for the optimal one.

The usage of MSMC memory to store the runtime con-
trol data limits the amount of on-chip memory that can be
effectively used as part of the inner kernel. While in the
manually parallelized implementation all MSMC memory can
be devoted to actual computation data, in the runtime-based
implementation this amount of memory must be reduced to
allow the runtime logic to fit in on-chip memory. This fact
limits the performance of the inner kernel and, thus, the overall
performance of the parallel implementation. As a reference, in
Figure 8 we add the performance of the manually parallelized
GEMM on 8 cores using the exact kernel and memory setup as
utilized in the runtime-based implementation, labelled as 8c
- Manual.

Peak performance on 8 cores is 74.4 GFLOPS for the manu-
ally parallelized GEMM. For this implementation, the attained
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speedups for the largest tested matrices are 1.99, 3.93, and
7.59 for 2, 4, and 8 cores compared with the optimal sequential
implementation, respectively; for the runtime-based GEMM,
the attained speedups for the largest tested matrices are 1.92,
3.82, and 7.25. These results demonstrate the scalability of
both software solutions towards multi-threaded dense linear al-
gebra implementations on the multi-core DSP. The differences
in raw performance between both approaches are justified by
the different memory setups used for each implementation.
The overhead of using a runtime system orchestrating the
automatic parallelization can be observed for relatively small
matrices, for which the manual approach is clearly more
efficient. For larger matrix sizes, the runtime system is fairly
competitive and achieves similar peak performance.

D. Power efficiency

Table 9 reports a summary of the power efficiency of
common current HPC architectures, both of general purpose

Architecture GFLOPS GFLOPS
W

Utilization

Core i7-960 96 1.2 95%
Nvidia GTX280 410 2.6 66%
Cell 200 5.0 88%
Nvidia GTX480 940 5.4 70%
Stratix IV 200 7.0 90%
TI C66x DSP 74 7.4 57%

Fig. 9. Performance of commercial HPC architectures running SGEMM.
Source: [13]

(Intel multi-core) or specific purpose (Nvidia GPUs, Cell B.E.
or FPGAs) in terms of GFLOPS/Watt. We take the maximum
performance for single precision GEMM found in the literature
for each architecture as a reference [13]. In the case of the
DSP, we report numbers for our best parallel implementation,
and consider the peak performance of the architecture as 128
GFLOPS to obtain the utilization ratio.

With these results, the TI DSP exhibits the best GFLOP-
S/Watt ratio for our implementation of SGEMM, improving
on that attained by the last generation of Nvidia GPUs, Intel
multi-cores and even FPGAs. Moreover, many of the architec-
tures listed in the table are merely hardware accelerators, hence
they need additional hardware support to work as a functional
system. Our DSP-based implementation is a purely standalone
system, with no need of an external host and therefore with
no extra power requirements.

VI. CONCLUSIONS

We have introduced the new TI C66x multi-core DSP as a
novel architecture that fits the demands of today’s HPC. We
have discussed its strengths (common programming models for
sequential and parallel codes, control over memory allocations,
flexibility of the architecture, powerful compiler, . . . ) and
weaknesses (lack of cache coherency between cores) of the
architecture. We have demonstrated how it can be efficiently
and easily programmed by adopting successful ideas from
general-purpose CPUs in the dense linear algebra arena, and
illustrated some common optimization techniques with actual
pieces of code.

We have described an efficient implementation of GEMM on
one DSP core and two different strategies for exploiting the
multiple cores in the DSP. On one core, the GotoBLAS-like
approach illustrated for GEMM has been recently applied to the
rest of the BLAS-3 routines to obtain the first complete high-
performance BLAS-3 implementation on a DSP. On multiple
cores, the runtime-based option allows an easy adaptation of
existing algorithms-by-blocks to this novel parallel architec-
ture. As far as we know, this is the first runtime system aiming
at automatically parallelize sequential codes fully ported to a
DSP. Performance results are impressive, as is scalability and
power efficiency. This makes the TI DSP one of the most
efficient current solutions, competitive even with the excellent
GFLOPS/Watt ratio of modern Nvidia Fermi GPUs.
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