
Solving Linear Algebra Problems on Distributed-Memory

Computers using Serial Codes

Francisco D. Igual Gregorio Quintana-Ort́ı

Depto. de Ingenieŕıa y Ciencia de Computadores

Universidad Jaume I

12.071–Castellón, Spain

{figual,gquintan}@icc.uji.es

Technical Report DICC 2010-07-01

Published: July 31, 2010

Abstract

Programming on distributed-memory architectures is a complex task. Designing and de-
veloping the solution to a problem on a distributed-memory multicomputer requires an effort
much higher than that of working on serial computers. Accumulated experience and new pro-
gramming methodologies do not reduce the burden of this task. In this paper we propose a
much easier method to generate programs for distributed-memory machines: we propose to
make usual serial algorithms run above a run-time that carries out all the communications.
This solution addresses the increasing necessity of porting problems that are to large for a single
shared-memory machine, but do not need the potential of a huge cluster, without the necessity
of dramatic changes in existing codes. In fact, our approach does not imply any change on
existing, thoroughly-tested serial codes. The experimental results show that performances ob-
tained by our new proposal are competitive with the top libraries on small distributed-memory
architectures.

1 Introduction

Programming distributed-memory architectures is a very complex task even for experienced pro-
grammers. The difficulty has not been reduced despite the many resources and years spent on
programming methodologies.

There exist some libraries for solving linear algebra problems on distributed-memory ma-
chines [3, 12]. Despite these projects started many years ago, they contain only a subset of the
problems solved in usual libraries for serial computers, mainly because of the intrinsic difficulty of
programming on those target architectures.

Recently, this programmability problem is becoming more important. Processor manufacturers
are packing more and more cores in a single chip in an almost endless race. Though a limit of the
number of cores in a single chip has not been defined, there exists a limit to the number of cores
that a memory system can support. When that limit is reached, distributed-memory machines will
be the main (and only) option. As the programming of those architectures is all but easy, this
problem will have to be addressed really soon, when the number of cores runs into the limit the

memory can handle. Recent architectures like the Intel SCC [8] processor might be reaching that
limit.

Serial algorithms for solving linear algebra problems have been designed and developed from the
very beginning of computer science. Goldstine and von Neumann in the 1950s [1] wrote codes for
computing the gaussian elimination, the inverse, and the eigenvalues of a matrix on their computer,
one of the first ones with electronic technology and stored program. They were able to solve all
those problems writing their codes in just machine language.

Many years afterwards, programming methodologies seem to have improved a lot: code reuse
seems to be one of the main achievements of modern programming methodology.

In this paper we propose to employ code reuse. We follow a different methodology to traditional
one: Use of usual serial codes running onto a run-time that takes care of all the communication
and low-level tasks. Hence, usual serial (and thoroughly tested) algorithms and codes are employed
without any modification, and thus programming difficulty is greatly reduced. We studied two
very different factorizations that are representative of dense matrix computations: Cholesky and
QR factorizations. The experimental study shows that our new approach gets performances sim-
ilar to those of traditional methods on small-size architectures. We think this approach may be
interesting when programming traditional and new distributed-memory architectures, such as the
SCC processor.

The method of using serial algorithms and an underlying run-time has been successfully em-
ployed in the programming of multi-core and many-core architectures [6, 11], the programming of
architectures with hardware accelerators [10], and the programming of out-of-core problems (large
matrices stored in disk) [9]. A similar approach has been adopted by the PLASMA project [5, 4].

In this work we propose to extend this technique to distributed-memory architectures, so that its
programming can be made easier. Problems that are too large for a single shared-memory machine
but do not need the full potential of a huge distributed-memory cluster are becoming more and more
popular nowadays. Our approach is of wide appealing for these type of problems, and reduces the
programming effort to the minimum to adapt existing serial codes to these particular architectures.

The rest of the paper is organized as follows. Section 2 contains a brief description of the main
libraries for programming distributed-memory computers. Section 3 describes our new approach
to programming distributed-memory machines with serial codes. Section 4 shows the experimental
study on several computers. Finally, Section 5 summarizes concluding remarks and future work.

2 Linear Algebra Libraries for Distributed-Memory Computers

A few libraries to solve linear algebra problems on distibuted-memory computers were designed
and implemented years ago. Because of the programming effort invested is so much higher than
when working on serial computers, the functionality of these libraries is not so complete: some
interesting linear algebra problems have remained unimplemented for years despite its importance.

The building of ScaLAPACK started in 1990s, and most of it was written in Fortran-77. The
design of this library tried to resemble LAPACK, but only a subset of LAPACK was implemented.

Comparing codes, barring blank lines and comments, of serial LAPACK and its counterpart
for distributed-memory ScaLAPACK, Choleksy factorization in LAPACK is 141 line long, while
in ScaLAPACK it is 270 line long. Codes for QR factorization consists of 108 lines in LAPACK,
and 203 lines in ScaLAPACK. Roughly, ScaLAPACK is twice longer than LAPACK. However,
the difficulty in programming ScaLAPACK is much higher, since ScaLAPACK requires concurrent
programming with message-passing communications.

2

PLAPACK is a rather different approach. It is a library infrastructure for coding parallel
linear algebra algorithms at a high level of abstraction on distributed-memory computers. This
infrastructure allows programmers to exploit a natural approach to encoding so-called blocked
algorithms, which achieve high performance by operating on submatrices and subvectors, withtout
working with indices. However, concurrent programming is also required in this approach.

3 Our New Approach: Serial Algorithms on a Run-Time

In this section, we describe the traditional serial algorithms we used and the new run-times devel-
oped in our implementations.

3.1 Serial Algorithms

First, we briefly describe the serial algorithms used in our implementations. These serial al-
gorithms using FLAME/C API are included in libflame library (it can be downloaded from
http://wwww.cs.utexas.edu/users/flame). These algorithms have been thoroughly tested on
different machines and even on different architectures.

3.1.1 Cholesky Factorization

Figure 1 shows the right-looking variants of both the unblocked and blocked algorithms for comput-
ing the Cholesky factorization of a symmetric positive definite matrix, specified using the FLAME
notation. Those algorithms only update the lower triangular part of the initial matrix. Both of
them are serial codes, but the blocked algorithm casts the bulk of the computation in terms of
matrix-matrix products in order to exploit the multi-layered structure of the memory system by
reusing data that are closer to the processor.

We have used the right-looking variant since it is usually the best one on parallel architectures.
Note that we have used the serial right-looking algorithm for computing the Cholesky factorization.

FLAME includes a variety of application programming interfaces (APIs) that allow an easy
transition from algorithm to code, reducing the possibility of introducing errors during this process.

We will use the blocked variant with no change at all, and we will run it above a run-time which
captures all the calls.

Figure 2 shows the unblocked codes (left), and blocked codes (right) corresponding to the
algorithmic right-looking variant of the Cholesky factorization of a lower triangular matrix using
the FLAME/C API [2]. These codes are just an easy translation of algorithms in Figure 1.

We briefly show how the blocked algorithm works on a matrix A partitioned as:

A =











T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33











.

At the beginning, ATL, ATR, and ABL are empty, and ABR contains all blocks (Tij). When the
first iteration of the loop starts, the repartitioning operation makes A11 become T00, A12 become
(T01, T02, T03), A21 become (T T

10
, T T

20
, T T

30
)T , and so on. After this repartitioning, the computing

code starts. The first task to do is to compute the Cholesky factorization of A11, which is T00 in
this iteration. The second task to do is to compute a triangular system solve: A21 := A21A

−T
11

,

3

Algorithm: A := Chol unb(A)

Partition A→

(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition

(

ATL ATR

ABL ABR

)

→







A00 a01 A02

aT

10 α11 aT

12

A20 a21 A22







where α11 is 1× 1

α11 :=
√
α11

a21 := a21/α11

A22 := A22 − a21a
T

21

Continue with
(

ATL ATR

ABL ABR

)

←







A00 a01 A02

aT

10 α11 aT

12

A20 a21 A22







endwhile

Algorithm: A := Chol blk(A)

Partition A→

(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

(

ATL ATR

ABL ABR

)

→







A00 A01 A02

A10 A11 A12

A20 A21 A22







where A11 is b× b

A11 := Chol unb(A11)

A21 := A21tril(A11)
−T (Trsm)

A22 := A22 −A21A
T

21 (Syrk)

Continue with
(

ATL ATR

ABL ABR

)

←







A00 A01 A02

A10 A11 A12

A20 A21 A22







endwhile

Figure 1: Rigth-looking variants of unblocked (left) and blocked (right) algorithms for computing
the Cholesky factorization. In the notation, m(A) stands for the number of rows of matrix A, and
tril(A) denotes the matrix consisting of the elements in the lower triangular part of A.

which results in the processing of blocks : T10, T20, and T30. The last computing operation of the
iteration is: A22 := A22 −A21A

T
21
, which results in the processing of blocks: T11, T12, T13, T21, T22,

T23, T31, T32, and T33. The final repartitioning operation of this first iteration reorganizes blocks
such that next iteration the algorithm will be processing the rest of the matrix. Figure 3 shows the
shape of blocks after first partitioning (and just before the execution of computing operations) of
first iteration, and the shape of blocks after first partitioning of second iteration. The figure shows
how blocks (views in fact, that is, references to sub-matrices inside the original matrix) are shifted
as the matrix is being processed. Second iteration will proceed in the same way as the first one,
but in this case A11 will become T11, etc. And so on.

3.1.2 QR Factorization

We have implemented incremental QR factorization since we already have serial thoroughly-tested
codes and because our run-times do not allow macroblocks (aggregations of blocks) yet. See [7] for
a detailed description of this factorization.

3.2 New Method

Many serial algorithms have been designed, developed, and intensively used in the field of linear
algebra since the development of the first computers. Some of them have been implemented in
many programming languages and have been thoroughly tested for decades.

In this paper we propose to use those usual serial algorithms running above an underlying run-
time that studies the data dependencies between tasks, and then carries out the transfers needed

4

FLA_Error FLA_Chol_unb_var1(FLA_Obj A)

{

FLA_Obj ATL, ATR, A00, a01, A02,

ABL, ABR, a10t, alpha11, a12t,

A20, a21, A22;

int b;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &a01, &A02,

/* ************* */ /* *************************** */

&a10t, /**/ &alpha11, &a12t,

ABL, /**/ ABR, &A20, /**/ &a21, &A22,

1, 1, FLA_BR);

/*---*/

FLA_Sqrt(alpha11);

FLA_Inv_scal(alpha11, a21);

FLA_Syr(FLA_LOWER_TRIANGULAR,

FLA_MINUS_ONE, a21

FLA_ONE, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, a01, /**/ A02,

a10t, alpha11, /**/ a12t,

/* *************** */ /* ************************* */

&ABL, /**/ &ABR, A20, a21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

FLA_Error FLA_Chol_blk_var1(FLA_Obj A, int nb_alg)

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

int b;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

b = min(FLA_Obj_length(ABR), nb_alg);

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

b, b, FLA_BR);

/*---*/

FLA_Chol_unb_var1(A11);

FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

FLA_ONE, A11,

A21);

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21,

FLA_ONE, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* *************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

Figure 2: FLAME/C implementations of the unblocked (left) and blocked (left) algorithms for
Variant 1 of the Cholesky factorization.

for the processes to perform the tasks. No change at all had to be made to the serial algorithms
we previously described.

Figure 4 shows the traditional approach to serial programming (left), the traditional approach
to parallel programming (center), and our new approach to program distributed-memory machines
with serial codes by using a run-time (right).

In our approach, the serial algorithm does not actually execute the tasks, but just generates a
list of tasks to be executed. This can be easily done by inserting a layer below the serial algorithms.

As we told above, the technique of using serial codes and a run-time has been successfully
employed in programming multi-core architectures, multi-GPU architectures, and solving problems
with data stored in disk.

However, the new run-time for distributed-memory machines is very different from the previous
ones.

The generation of the list of tasks is something different: Whereas in previous approaches
(multi-core architectures, multi-GPU architectures, and solving problems with data stored in disk)
the list of tasks were generated by only one thread, on distributed-memory machines the list of
tasks is generated by every process due to the distributed nature of the architecture. All processes
in the system generate the list of tasks, concurrently. This is not a true handicap because its cost
is similar to that when only one node generates the list of tasks. Then, once the list of tasks has
been generated in all processes, the execution of the algorithm may start.

The way of handling the tasks and its dependencies is also completely different in this case.
Whereas in previous approaches (multi-core architectures, multi-GPU architectures, and solving
problems with data stored in disk) each task was processed by only one thread, on distributed-
memory machines each task is processed by every process. In this case, one process will do the

5

ABR

A1211A

A21 A22

ATL

ABL ABR

ATR A01

A10

A00 A02

A11

A20 A21 A22

A12

a) After first partitioning of first iteration

b) After first partitioning of second iteration

Figure 3: Top, shape of views of A after first partitioning of first iteration. Bottom, shape of views
of A after first partitioning of second iteration. As it can be seen, blocks are shifted as the matrix
is being processed.

Serial
Architecture

Distributed−Memory
Architecture

Distributed−Memory
Architecture

Serial Code Parallel Code Serial Code

Run−time

Figure 4: Left, programming serial architectures with serial codes; center, programming distributed-
memory architectures with parallel codes; right, programming distributed-memory architectures
with serial codes by using a run-time.

processing and some other processes may do some communications.
As usual in programming on distributed-memory architectures, at the beginning of the applica-

tion data must be partitioned and distributed between processes. That means it must be defined
which data block will be stored in each node. In usual distributed-memory libraries, a 2D block

6

cyclic data distribution is commonly used, since it is more scalable and it is a generalization of 1D
row block cyclic and 1D column block cyclic (and it can be transformed into those by adjusting
some input parameters).

We used that same distribution: 2D block cyclic data distribution. In contrast to the traditional
libraries for distributed-memory architectures, where the data distribution strongly influences and
determines data structures, algorithms and codes, the data distribution in our approach does not
have so much influence, and it can be easily modified with no change at all in the serial code, and
with no major changes in the run-time.

This data distribution of blocks among processes makes that each data block can be viewed by
a process as either a own block (if it belongs to it) or an alien block (if it does not belong to it and
thus is stored into some other process).

When having a list of tasks and a set of processes, it must also be defined which process will
execute each task. We assume that the owner of the task is the process that owns the first output
operand since it rendered good results on other architectures. The method to execute the list of
tasks is rather simple: Every process processes all tasks, one by one. A detailed procedure is shown
next:

• If a process owns a task, that process will execute the task. To be able to do it, it must get
all the operands needed. To get all operands, it must received the alien operands (not owned
by it), since it has already got its own operands.

• If a process does not own a task, it will not execute it, but it must check whether that task
contains some operands owned by it. If so, it will send them to the owner of the task. If the
sent operand is an output operand, it must receive it back, since it has been modified by the
task.

• If a process does not own the task, and the task does not contain any operand belonging to
the process, the process will not do anything and will jump to next task.

As it can be seen in the above method, the way of handling dependencies is rather different to
the method used on multi-core computers. In fact, dependencies between tasks are not considered
at all.

When all processes have processed all tasks, the program finishes, and the results have been
obtained.

Let us illustrate the previous descriptions with one example. Let us suppose we want to compute
the right-looking variant of the Cholesky factorization a matrix of 4× 4 blocks on a 2× 2 mesh of
processes. If the mesh is column-wise numbered, process 0 (P0) will own blocks A00, A02, A20, and
A22; P1 will own blocks A10, A12, A30, and A32; P2 will own blocks A01, A03, A21, and A23; and P3

will own blocks A11, A13, A31, and A33.
Every process will execute the serial algorithm to generate the list of tasks shown in figure 5.

Once the list is generated in every process, all of them start processing the full list, task after task.
At the very beginning, all processes examine first task: A00 := Chol(A00). P0 checks that the

task belongs to it and then that it has got all the operands needed. Therefore, P0 starts computing
the Cholesky factorization of A00. At the same time, the rest of processes check that the task does
not belong to them, and no operand in it belong to them. Therefore, they must skip it (by doing
nothing), and jump to examine the task 2.

While P0 is factorizing block A00, the rest of processes start checking task 2. Process P1 checks
that it must execute task 2, and then it checks the status of the operands of this task. As A10

7

Output Input
Task Operands Operands

1 Chol A00 A00

2 Trsm A10 A10 A00

3 Trsm A20 A20 A00

4 Trsm A30 A30 A00

5 Syrk A11 A11 A10

6 Gemm A21 A21 A20 A10

7 Gemm A31 A31 A30 A10

8 Syrk A22 A22 A20

9 Gemm A32 A32 A30 A20

10 Syrk A33 A33 A30

11 Chol A11 A11

12 Trsm A21 A21

13 Trsm A31 A31

14 Syrk A22 A22 A21

15

Figure 5: List of first tasks needed to factorize a matrix partitioned in 4× 4 blocks.

belongs to itself, there is not any problem about it. But as the other block it needs, A00, belongs
to P0 (an alien block for P1), it must wait for it. Processes P2 and P3 check that they are not
involved at all with this task and then jump to next task.

When P0 finishes factorizing block A00, it jumps to task 2. When examining that task, it checks
that its own block A00 is needed by that task and therefore it must send it to P1, the owner of the
task. Once sent, process P1, which was waiting for it, receives it and then executes task 2. And so
on.

3.2.1 Implemented Run-Times

The technique of using serial codes and a run-time has been successfully employed in programming
multi-core architectures, multi-GPU architectures, and solving problems with data stored in disk.

The generation of the list of tasks is similar for all those approaches, with some differences: No
task dependencies are needed and the list of tasks must be generated by every process.

The run-time for distributed-memory machines is completely different, since the handling of de-
pendencies is very different: In this case, all processess must analyze all tasks, due to the distributed
nature of the architecture.

We implemented and evaluated two different run-times.
The first one is a very simple one. For each task, all alien blocks (not owned by task owner)

are transferred. Input alien blocks are only sent by their owners, and output alien blocks are sent
and then received by their owners, since they have been modified.

The second run-time tries to reduce the number of transfers between processes, by using a cache
of data blocks in every node, to store most recently used alien blocks. Before one block is sent by
its process owner, it is checked if the receiver (the task owner) has got it in its cache. If so, no
transfer is done. We employed a four-set associative cache with 16 blocks. This technique reduced
number of transfers between processes in a significant amount.

8

At the moment, both run-time versions only use point-to-point communications and thus they
are not fully scalable. We expect that including collective communication, as distributed-memory
architectures do, will overcome this in the future.

3.3 Comparison of Code Lengths

As it has been above mentioned, Choleksy factorization in LAPACK (serial library) is 141 line long,
while the same factorization in ScaLAPACK (distributed-memory library) is 270 line long. While
the former is a serial code, the latter is a concurrent code, and thus more complex. In our approach,
our Cholesky factorization is about 70 line long of serial code. That length is much shorter than
previous approaches. Therefore, in our new approach the programming task is much less complex
both in quantity (shorter codes) and in quality (reuse of serial programs and intensively tested
codes).

4 Experimental Results

We tested both ScaLAPACK codes and our codes on three very different machines, trying to
evaluate them on a wide range of systems:

• Ra is a distributed-memory machine equipped with Xeon processors. Each node is a 32-bit
Intel Xeon at 2.4 GHz with 512 GB of RAM. The peak speed of each processor is 4.8 GFlops
(109 flops per second). The interconnection network is a Fast Ethernet (with a peak speed
of 100 Megabits/s). Therefore, this machine consists of slow processors inteconnected with a
very slow network.

• Tesla2 is a shared-memory machine with two quad-cores Intel Xeon E5440 at 2.83 GHz (8
cores in total). The peak speed of each core is 22.64 GFlops. All communications are per-
formed through the shared memory. Therefore, this machine consists of very fast processors
inteconnected with a very fast network (shared memory).

• Peco is a distributed-memory machine with 4 nodes. Each node has two Intel Xeon E5520
at 2.27 GHz (8 cores in total per node). The peak speed of each core is 18.16 GFlops. The
interconnection network is a InfiniBand with a peak speed of 40 Gigabits/s.

We employed GNU compilers, GotoBLAS library, the MPICH implementation of the MPI
standard, and libflame r1737.

We tested all the implementations in 4 and 8 (or 9) processors/cores. For both ScaLAPACK
and our approach we tested most configurations. On 4 processors we tested the following mesh
configurations: 1×4, 2×2, and 4×1. On 8 processors we tested the following mesh configurations:
1× 8, 2× 4, 4× 2, and 8× 1. On 9 processors we tested the following mesh configurations: 1× 9,
3× 3, and 9× 1. Only results for best mesh configurations are shown in the figures.

Block sizes employed in ScaLAPACK implementations were: 32, 48, 64, 96, 128, 192, and 256.
Block sizes employed in our new codes were: 64, 96, 128, 160, 192, 224, 256, and 288. Only results
for best block sizes are shown in the figures.

Figure 6 contains the experimentals results obtained for the factorization of Cholesky. Fig-
ure 7 contains the experimentals results obtained for the QR factorization. Both figures show
performances in GFlops against matrix size.

9

0

1

2

0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on ra (4 processors)

ScaLAPACK on 4p - 4x1
DRT on 4p - 4x1

0

1

2

3

4

5

0 2000 4000 6000 8000 10000 12000 14000 16000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on ra (9 processors)

ScaLAPACK on 9p - 9x1
DRT on 9p - 9x1

0

10

20

30

0 2000 4000 6000 8000 10000 12000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on tesla2 (4 processors)

ScaLAPACK on 4p - 1x4
DRT on 4p - 4x1

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000 16000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on tesla2 (8 processors)

ScaLAPACK on 8p - 4x2
DRT on 8p - 4x2

0

10

20

30

0 2000 4000 6000 8000 10000 12000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on peco (4 processors)

ScaLAPACK on 4p - 2x2
DRT on 4p - 4x1

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000 16000

G
F

LO
P

S

Matrix size

Performance of Cholesky factorization on peco (8 processors)

ScaLAPACK on 8p - 4x2
DRT on 8p - 4x2

Figure 6: Performances of ScaLAPACK codes and the new codes (DRT) for computing the Cholesky
factorization on three different systems. Only results for best mesh configurations and best block-
sizes are shown.

In both figures, DRT means Distributed Run-Time and refers to our combination of serial
algorithms running onto a distributed run-time.

10

0

1

2

3

0 2000 4000 6000 8000

G
F

LO
P

S

Matrix size

Performance of QR factorization on ra (4 processors)

ScaLAPACK on 4p - 2x2
DRT on 4p - 1x4

0

1

2

3

4

5

0 2000 4000 6000 8000 10000 12000

G
F

LO
P

S

Matrix size

Performance of QR factorization on ra (9 processors)

ScaLAPACK on 9p - 3x3
DRT on 9p - 1x9

0

10

20

30

0 2000 4000 6000 8000

G
F

LO
P

S

Matrix size

Performance of QR factorization on tesla2 (4 processors)

ScaLAPACK on 4p - 2x2
DRT on 4p - 1x4

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

G
F

LO
P

S

Matrix size

Performance of QR factorization on tesla2 (8 processors)

ScaLAPACK on 8p - 4x2
DRT on 8p - 1x8

0

10

20

0 2000 4000 6000 8000

G
F

LO
P

S

Matrix size

Performance of QR factorization on peco (4 processors)

ScaLAPACK on 4p - 2x2
DRT on 4p - 1x4

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

G
F

LO
P

S

Matrix size

Performance of QR factorization on peco (8 processors)

ScaLAPACK on 8p - 2x4
DRT on 8p - 1x8

Figure 7: Performances of ScaLAPACK codes and the new codes (DRT) for computing the QR
factorization on three different systems. Only results for best mesh configurations and best block-
sizes are shown. Note that ScaLAPACK computes the traditional QR factorization, whereas our
new approach computes the incremental QR factorization.

The above figures show that performances of our new codes are competitive to those of well-
known libraries. However, the developing time is neither the same nor similar, but much shorter.

11

We believe the above results to be representative of other linear algebra problems. The improvement
of performances could have been even larger if we had used a full-scalable run-time.

5 Conclusion

We have demonstrated how with a relatively little effort, programmers can get similar performance
to those of well-known libraries on distributed-memory machines. The attained results are of
wide appealing for small to medium sized clusters. The building of traditional distributed-memory
libraries took many man-years, while our project has been much much shorter: The programs we
wrote for this paper required only a few afternoons.

Our approach is of special appeal given the increasing interest in porting existing applications
for which current single shared-memory machines are not enough from the memory perspective, and
small clusters become the only realistic solution. By relying on a run-time system, this transition
becomes straightforward for the programmer.

Once the run-time has been developed, porting another variants of the above factorizations (left-
looking Cholesky, lazy Cholesky, left-looking QR factorization, etc.) or even new factorizations is
much easier than with traditional libraries.

We are working now in rewriting the run-time to increase its scalability. Though a rewriting of
some aspects of the run-time will be needed, the clear advantage is that the basic serial algorithms
will not have to be modified at all. Another interesting improvement is to use macroblocks or
aggregations of blocks to be able to use non-tiled factorizations.

We think our work can give insight into how processors with very large number of cores, like
the SCC processor, may be programmed in the future.

Acknowledgements

This research is sponsored by Microsoft Corporation.

References

[1] W. Aspray. John von Neumann and the Origins of Modern Computing. The MIT Press, 1990.

[2] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans.
Math. Soft., 31(1):27–59, March 2005.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. SIAM, 1997.

[4] Alfredo Buttari, Julien Langou, Jakub Kurzak, , and Jack Dongarra. A class of parallel tiled
linear algebra algorithms for multicore architectures. LAPACK Working Note 191 UT-CS-07-
600, University of Tennessee, September 2007.

[5] Alfredo Buttari, Julien Langou, Jakub Kurzak, , and Jack Dongarra. Parallel tiled QR factor-
ization for multicore architectures. LAPACK Working Note 190 UT-CS-07-598, University of
Tennessee, July 2007.

12

[6] Ernie Chan, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de Geijn. Su-
perMatrix out-of-order scheduling of matrix operations for SMP and multi-core architectures.
In SPAA ’07: Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms
and Architectures, pages 116–125, San Diego, CA, USA, June 9-11 2007a. ACM.

[7] Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation and updating
the QR factorization. ACM Transactions on Mathematical Software, 31(1):60–78, March 2005.

[8] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De1, R. Van Der Wijngaart, and T. Mattson. A
48-core IA-32 message-passing processor with DVFS in 45nm CMOS. In Proceedings of the
International Solid-State Circuits Conference, February 2010.

[9] Gregorio Quintana-Ort́ı, Francisco D. Igual, Mercedes Marqués, Enrique S. Quintana-Ort́ı, and
Robert van de Geijn. A run-time system for programming out-of-core algorithms-by-tiles on
multithreaded architectures. ACM Transactions on Mathematical Software, submitted, 2010.

[10] Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, and Robert van de
Geijn. Solving dense linear algebra problems on platforms with multiple hardware accelera-
tors. In ACM SIGPLAN 2009 symposium on Principles and practices of parallel programming
(PPoPP’09), pages 121–129, 2009.

[11] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee,
and Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM
Transactions on Mathematical Software, 36(3):14:1–14:26, July 2009.

[12] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

13

