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Abstract

In this article, we continue exploring the topic of so-called induced methods for implementing complex
matrix multiplication. Previous work investigated two approaches and demonstrated various algorithms
for each method that compute matrix products in the complex domain using only a real matrix multipli-
cation kernel. However, algorithms based on the more generally applicable of the two methods—the 4m
method—lead to implementations that, for various reasons, often underperform their real domain bench-
marks. To overcome these limitations, we derive a superior 1m method for expressing complex matrix
multiplication, one which addresses virtually all of the shortcomings inherent in 4m. Our derivation also
naturally exposes a symmetry that allows the method to perform well when updating either column- or
row-stored matrices. Applying the method to two general algorithms for matrix multiplication yields
a family of algorithmic variants, each with a unique set of circumstantial affinities. Further analysis
suggests 1m will match or exceed the performance of a real matrix multiplication based on the same
kernel, especially for certain rank-k updates. We also show that the method is actually a special case of
a larger family of algorithms based on a 2m method, which is generally well-suited for storage formats
that separate real and imaginary parts into separate matrices. Implementations are developed within
the BLIS framework, which facilitates their extension to all level-3 operations. Testing on a recent Intel
microarchitecture confirms that the 1m method yields performance that is competitive with solutions
based on conventionally implemented complex kernels.

1 Introduction

Dense matrix multiplication—the foundation of many dense linear algebra operations—is now ubiquitous
within scientific and numerical computing applications. For three decades, libraries that provide the Basic
Linear Algebra Subprograms (BLAS) [1] have exported common interfaces to specific implementations of
matrix multiplication and related functionality. However, before a user can employ these highly-tuned
functions, a library developer with knowledge of the target hardware must first implement the operations in
question.

Some projects seek to provide ready-made solutions while others focus on streamlining the development
process so that third parties may rapidly instantiate dense linear algebra functionality on existing and new
hardware [6, 11, 10]. In either case, the basic formula is the same: a developer carefully writes a small
computational kernel, usually in assembly (or a low-level, assembly-like) language, which is then inserted
into a larger infrastructure of portable code. Within dense linear algebra (DLA) library development circles,
it is taken for granted that one matrix multiplication kernel is needed for each floating-point precision and
domain to be supported. Thus, to support all four combinations of the single- and double-precision in the
real and complex domains, four kernels must be authored to enable a complete set of matrix multiplication
implementations.
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Many real-world applications, high-performance benchmarks, and pedagogical settings rely only on com-
putation in the real domain. Thus, providing support for real matrix multiplication is understandably a
priority. However, DLA—and by proxy, matrix multiplication—in the complex domain is essential for many
fields and applications, in part because of complex numbers’ unique ability to encode both the phase and
magnitude of a wave.

Unfortunately, those who seek to provide support for complex matrix operations must wrestle with
additional challenges. Namely, most modern hardware lacks machine instructions for directly computing
complex arithmetic on complex numbers. Instead, the library developer, or kernel author, must orchestrate
computation on the real and imaginary components explicitly in order to implement multiplication and
addition on complex scalars, which in many cases proves to be a more difficult programming task than in
the real domain. Futhermore, for maintainers of BLAS, and BLAS-like library frameworks such as BLIS,
supporting complex matrix multiplication doubles the number of assembly-coded matrix kernels that must be
maintained. In other words, life would be simpler for DLA library developers if complex matrix multiplication
was not necessary.

Of course, complex matrix multiplication will always be necessary. But what if complex matrix multipli-
cation kernels were found to be unnecessary? To certain actors, particularly DLA library developers, such a
finding would carry non-trivial consequence.

Recent work investigates whether (and to what degree of effectiveness) real domain matrix multiplication
kernels can be repurposed and leveraged toward the implementation of complex matrix multiplication [9].

The authors develop a new class of algorithms that implement these so-called “induced methods” for
matrix multiplication in the complex domain. Instead of relying on an assembly-coded complex kernel, as a
conventional implementation would, these algorithms express complex matrix multiplication only in terms
of real domain primitives.1

We consider this article a companion and follow-up to this previous work, to which we will often refer [9].
For this reason, and for the sake of brevity, we omit much of the typical review of the literature on dense
matrix multiplication, which we provide in aforementioned article. We also assume the reader has a basic
understanding of the background provided by this previous article, either because he or she has already read
the piece, or because he or she naturally possesses this familiarity independent of our work. Of course, we
will review and summarize a reasonable amount of content specific to that article here, as needed, in order
to properly set the stage for our present discussion.

1.1 Contributions

This article makes the following contributions:

• It introduces a new induced method—the 1m method—that relies upon only a single real matrix
multiplication. As with the previous article, we introduce a family of algorithms and analyize issues
germane to their high-performance implementations, including workspace, packing formats, cache be-
havior, multithreadability, and programming effort. A detailed review shows how 1m avoids virtually
all of the challenges observed of the 4m method.

• It promotes code reuse and portability by continuing the previous article’s focus on solutions which
may be cast in terms of real matrix multiplication kernels. Such solutions have clear implications for
developer productivity, as they allow kernel programmers to focus their efforts on fewer and simpler
kernels.

• It builds on the theme of the BLIS framework as a productivity multiplier [10], further demonstrating
how complex matrix multiplication may be implemented with relatively minor modifications to the
source code, and in such a way that results in immediate instantiation of complex implementations for
all level-3 BLAS-like operations.

1In [9], the authors use the term “primitive” to refer to a functional abstraction that implements a single real matrix
multiplication. Such primitives are often not general purpose, and may come with significant prerequisites to facilitate their
use.
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• It demonstrates performance of 1m implementations that is not only superior to the previous effort
based on the 4m method, but also competitive with solutions based on complex matrix kernels.

• It serves as a reference guide to the 1m implementations for complex matrix multiplication found within
the BLIS framework, which is available to the community under an open source software license.2

We belive that these contributions are consequential because the 1m method effectively obviates the
previous state-of-the-art established via the 4m method. Furthermore, we believe the thorough treatment of
induced methods encompassed by the present article and its predecessor will have lasting archival as well as
pedagogical value, to say nothing of the potential impact on developer productivity.

1.2 Notation

In this article, we continue the notation established in [9]. Specifically, we use uppercase Roman letters
(e.g. A, B, and C) to refer to matrices, lowercase Roman letters (e.g. x, y, and z) to refer to vectors,
and lowercase Greek letters (e.g. χ, ψ, and ζ) to refer to scalars. Subscripts are used typically to denote
sub-matrices within a larger matrix (e.g. A =

(
A0 A1 · · · An−1

)
) or scalars within a larger matrix

or vector.
We also make extensive use of superscripts to denote the real and imaginary components of a scalar,

vector, or (sub-)matrix. For example, αr, αi ∈ R denote the real and imaginary parts, respectively, of a
scalar α ∈ C. Similarly, Ar and Ai refer to the real and imaginary parts of a complex matrix A, where
Ar and Ai are themselves matrices with dimensions identical to A. Note that while this notation for real,
imaginary, and complex matrices encodes information about content and origin, it does not encode how the
matrices are actually stored. We will explicitly address storage details as implementation issues are discussed.

Also, at times we find it useful to refer to the real and imaginary elements of a complex object indis-
tinguishably as fundamental elements (or f.e.). We also abbreviate floating-point operations as “flops” and
memory operations as “memops”. We define the former to be a Multiply or Add (or Subtract) oper-
ation whose operands are fundamental elements and the latter to be a load or store operation on a single
fundamental element. These definitions allow for a consistent accounting of complex computation relative
to the real domain.

We also discuss cache and register blocksizes that are key features of the matrix multiplication algorithm
discussed elsewhere [10, 8, 9]. Unless otherwise noted, blocksizes nC , mC , kC , mR, and nR refer to those ap-
propriate for computation in the real domain. Complex domain blocksizes will be denoted with a superscript
z.

This article also discusses and references several hypothetical algorithms and functions. Unless otherwise
noted, a call to function func that implements C := C +AB appears as [ C ] := func( A, B, C ). We will
also reference functions that access properties of matrices. For example, m(A) and n(A) would return the
m and n dimensions of a matrix A, while rs(B) and cs(B) would return the row and column strides of B.

2 Background and review

2.1 Motivation

In [9], the authors list three primary motivating factors behind their effort to seek out methods for inducing
complex matrix multiplication via real domain kernels:

• Productivity. By inducing complex matrix multiplication from real domain kernels, the number of
kernels that must be supported would be halved. This allows the DLA library developers to focus on
a smaller and simpler set of real domain kernels. This benefit would manifest most obviously when
instantiating BLAS-like functionality on new hardware [8]

2The BLIS framework is available under the so-called “new” or “modified” or “3-clause” BSD license.
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• Portability. Induced methods avoid dependence on complex domain kernels because they encode the
idea of complex matrix product a higher level. This would naturally allow us to encode such methods
portably within a framework such as BLIS [10]. Once integrated into the framework, developers and
users would benefit from the immediate availability of complex matrix multiplication implementations
whenever real matrix kernels were present.

• Performance. Implementations of complex matrix multiplication that rely on real domain kernels
would likely inherit the high-performance properties of those kernels. Any improvement to the real
kernels would benefit both real and complex domains.

Thus, it is clear that finding a suitable induced method would carry significant benefit to DLA library
and kernel developers.

2.2 The 3m and 4m methods

The authors of [9] presented two general ways of inducing complex matrix multiplication: the 3m method
and the 4m method. These methods are then contrasted to the conventional approach, whereby a blocked
matrix multiplication algorithm is executed with a complex domain kernel—one that implements complex
arithmetic at the scalar level, in assembly language.

The 4m method begins with the classic definition of complex scalar multiplication and addition in terms
of real and imaginary components of χ, ψ, ζ ∈ C:

ζr := ζr + χrψr − χiψi

ζi := ζi + χrψi + χiψr (1)

We then observe that we can apply such a definition to complex matrices A ∈ Cm×k, B ∈ Ck×n, and
C ∈ Cm×n, provided that we can reference the real and imaginary parts as logically separate submatrices:

Cr := Cr +ArBr −AiBi

Ci := Ci +ArBi −AiBr (2)

This definition expresses complex matrix multiplication in terms of four matrix products (hence the name
4m) and four matrix accumulations (ie: additions or subtractions).

The 3m method relies on an algebraic equivalent of Eq. 2:

Cr := Cr +ArBr −AiBi

Ci := Ci +
(
Ar +Ai

)(
Br +Bi

)
−ArBr −AiBi

This reexpression reduces the number of matrix products to three, at the expense of increasing the number
of accumulations from four to seven. However, when the cost of a matrix product greatly exceeds that of an
accumulation, this trade-off can result in a net reduction in computational runtime.

The authors of [9] observe that both methods may be applied to any particular level of a blocked matrix
multiplication algorithm, resulting in several algorithms, each exhibiting somewhat different properties. The
blocked algorithm used in that article is shown in Figure 1 (left) and explained in detail in Section 2.1 of [9]
and revisited in Section 2.4 of the present article.

Algorithms that implement the 3m method were found to yield “effective flops per second” performance
that not only exceeded that of 4m, but also approached or exceeded the theoretical peak rate of the hardware.
Unfortunately, these compelling results come at a cost: the numerical properties of implementations based on
3m are slightly less robust than that of algorithms based on the conventional approach or 4m. And although
the author of [3] found that 3m was stable enough for most practical purposes, many applications will simply
not be willing to stray from the numerical expectations implicit in conventional matrix multiplication. Thus,
going forward, we will turn our attention away from 3m, and instead focus on the 4m as the standard
reference method against which we will compare.
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2.3 Previous findings

For the reader’s convenience, we will now summarize the key findings, observations, and other highlights
from the previous article regarding algorithms and implementations based on the 4m method.

• Since the algorithms in the 4m family execute the same number of flops, the algorithms’ relative
performance depends entirely on the (1) the number of memops executed and (2) the level of cache
from which fundamental elements of matrices A and B (or rather, f.e. of the packed copies of these
matrices, Ãi and B̃p) are reused3. The number of memops is affected only by a halving of certain cache

blocksize needed in order to leave cache footprints of Ãi and B̃p unchanged. The level from which f.e.
are reused is determined by the level of the matrix multiplication algorithm to which the 4m method
was originally applied. The lower the 4m method is applied, the higher the efficiency of data reuse
from and movement through the cache hierarchy.

• The lowest level application, algorithm 4m 1a, efficiently moves f.e. of A, B, and C from main memory
to the L1 cache only once per rank-kC update, with virtually no excess movement due to incidental
cache line proximity, and reuses f.e. from the L1 cache. It relies on a relatively simple packing format
in which complex micro-panels are stored with real and imaginary f.e. separated into two consecutive
real micro-panels, each with identical register blocksize and k dimensions. Algorithm 4m 1a requires
negligible workspace (approximately equal to the storage capacity of the vector register set), is well-
suited for multithreading, and is minimally disruptive to the encoding within the BLIS framework.
And while algorithm 4m 1b—a slightly higher-level application—very narrowly outperforms 4m 1a
by trading away the most optimal cache reuse behavior for an unreduced kC cache blocksize, 4m 1a
proves to be more versatile and can be extended relatively easily to all other level-3 operations.

• The conventional approach can be viewed as a special case of 4m in which f.e. are reused from registers,
rather than cache. In this way, a conventional implementation embodies the lowest-level application
of 4m possible, in which the method is applied to individual scalars (and, typically, then optimally
encoded via vector instructions).

• The way complex numbers are stored has a significant effect on performance. Interleaved pair-wise
storage of real and imaginary values naturally favors implementations that reuse f.e. from registers, as
is common with conventional implementations. However, this storage is awkward for algorithms based
on 4m (and 3m for that matter), largely because it prevents the use of vector instructions for loading
and storing f.e. of C4, as these instructions implicitly must load or store several consecutive values.
Indeed, 4m 1a suffers from a quadrupling5 of the number of memops on C, in addition to being forced
to access these f.e. in a non-contiguous manner. If, however, applications stored complex matrices
with real and imaginary parts separated, the penalty paid by induced methods would be partially
mitigated.

• While observed performance of low-level applications of 4m is decent, far exceeding an unoptimized
reference implementation, it not only falls short of a comparable conventional solution based on a
complex kernel, it appears to fall short of its real domain “benchmark”—that is, the performance of a
similar problem size in the real domain computed by an optimized algorithm using the same real domain
kernel. This level of performance may be disappointing for some, even if it achieves 90-95% of what is
possible with a complex kernel. The authors conclude that its somewhat attenuated performance would
relegate 4m, in practice, to serving mostly as a placeholder, to be used when complex kernels have not
yet been written, rather than a competitive replacement that makes complex kernels unnecessary.

3Here, the term “reuse” refers to the reuse of f.e. that corresponds to the recurrence of Ar, Ai, Br, and Bi in Eq. 2, not
the reuse of whole (complex) elements that naturally occurs in the execution of the matrix multiplication algorithm in Figure 1
(left).

4The traditional pair-wise storage is also awkward for 4m algorithms during the packing of data from A and B, but this
effect is not nearly as dramatic.

5A factor of two comes from the fact that, as shown in Eq. 2, 4m touches Cr and Ci twice each, while another factor of two
comes from the cache blocksize scaling required on kC in order to maintain the cache footprints of micro-panels of Ãi and B̃p.
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Figure 1: Left: An illustration of the algorithm for computing high-performance matrix multiplication, taken
from [9], which expresses computation in terms of a so-called “block-panel” subproblem (macro-kernel).
Right: An alternate algorithm that expresses the operation in terms of “panel-block” matrix multiplication.

2.4 Revisiting the matrix multiplication algorithm

In this section, we review a common algorithm for high-performance matrix multiplication on conventional
microprocessor architectures. This algorithm was first reported on in [2] and further refined in [10]. Figure 1
(left) illustrates the key features of this algorithm.

The current state-of-the-art formulation of the matrix multiplication algorithm consists of six loops, the
last of which resides within a micro-kernel that is typically highly optimized for the target hardware. These
loops partition the matrix operands using carefully chosen cache (nC , kC , and mC) and register (mR and
nR) blocksizes that result in submatrices residing favorably at various levels of the cache hierarchy, so as to
allow data to be reused many times. In addition, submatrices of A and B are copied (“packed”) to temporary
workspace matrices (Ãi and B̃p, respectively) in such a way that allows the micro-kernel to subsequently
access matrix elements contiguously in memory, which improves cache and TLB performance. The cost of
this packing is amortized over enough computation that its impact on overall performance is negligible for
all but the smallest problems. At the lowest level, within the micro-kernel loop, an mR × 1 micro-column
vector and a 1×nR micro-row vector are loaded from the current micro-panels of Ãi and B̃p, respectively, so
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that the outer product of these vectors may be computed to update the corresponding mR × nR submatrix,
or “micro-tile” of C. The individual floating-point operations that constitute these tiny rank-1 updates
are oftentimes executed via vector instructions (if the architecture supports them) in order to maximize
utilization of the floating-point unit(s).

The algorithm captured by Figure 1 (left) forms the basis for all level-3 implementations found in the BLIS
framework (as of this writing). This algorithm is based on a so-called block-panel matrix multiplication.6

The register (mR, nR) and cache (mC , kC , nC) blocksizes labeled in the algorithmic diagram are typically
chosen by the kernel developer as a function of hardware characteristics, such as the vector register set, cache
sizes, and cache associativity. The authors of [5] present an analytical model for identifying suitable (if not
optimal) values for these blocksizes.

Later in this article, we will observe that it may be desirable in some situations to have access to a
companion algorithm that casts its largest cache-bound subproblem (computed by the macro-kernel) in terms
of panel-block multiplication. This alternative algorithm is depicted in Figure 1 (right).7 Either algorithm
can be used to implement all of the level-3 operations defined by the original BLAS or the BLIS framework,
including the most popular and general-purpose operation, general matrix multiplication (gemm).8

3 1m method

The primary motivation for seeking a better induced method comes from the observation that 4m inherently
must update real and imaginary f.e. of C individually and in separate steps (due to traditional pair-wise
storage), and, in the case of 4m 1a, twice as frequently (due to the algorithm’s half-of-optimal cache blocksize
kC). As reviewed in Section 2.3, this imposes a significant drag on performance. If there existed an induced
method that could update real and imaginary elements in one step, it may conveniently avoid both issues.

3.1 Derivation

Consider the classic definition of complex scalar multiplication and accumulation, shown in Eq. 1, refactored
and expressed in terms of matrix and vector notation, where we use + = operator to concisely denote
element-wise accumulation: (

ζr

ζi

)
+=

(
χr −χi

χi χr

)(
ψr

ψi

)
(3)

Here, we have a singleton complex matrix multiplication problem that can naturally be expressed as a tiny
real matrix multiplication where m = k = 2 and n = 1.

From this, we make the following key observation: If we pack χ to Ãi in such a way that duplicates χr

and χi to the second column of the micro-panel (while also swapping their order and negating χi), and if
we pack ψ to B̃p such that ψi is stored to the second row of the micro-panel (which, granted, only has one
column), then a real domain gemm micro-kernel executed on those micro-panels will compute the correct
result in the complex domain, and do so with a single invocation of that micro-kernel.

Thus, Eq. 3 serves as a packing template that hints at how the data must be stored, which we may
generalize. We replace χ, ψ, ζ with α, β, γ so as to more intuitively denote complex elements of matrices A,
B, and C, respectively. Also, let us apply the Eq. 3 to the special case of m = 3, n = 4, and k = 2 to better

6This terminology describes the shape of the typical problem computed by the macro-kernel, i.e. the second loop around
the micro-kernel.

7We renamed the matrices (and indices) in the panel-block algorithm in Figure 1 (right) so that B is the left-hand matrix
product operand while A appears on the right. This allows Ãi and B̃p to remain the matrices that reside in the L2 and L3
caches, respectively.

8Throughout this document, we will sometimes interchangeably use the term gemm to refer to matrix multiplication.
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observe the general pattern.

γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
γi20 γi21 γi22 γi23


+=



αr
00 −αi

00 αr
01 −αi

01

αi
00 αr

00 αi
01 αr

01

αr
10 −αi

10 αr
11 −αi

11

αi
10 αr

10 αi
11 αr

11

αr
20 −αi

20 αr
21 −αi

21

αi
20 αr

20 αi
21 αr

21




βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

 (4)

From this, we can make the following observations:

• The complex matrix multiplication C := C +AB with m = 3, n = 4, and k = 2 becomes a real matrix
multiplication with m = 6, n = 4, and k = 4. In other words, the m and k dimensions are doubled for
the purposes of the real gemm primitive.

• If the primitive is the real gemm micro-kernel, and we assume that matrices A and B above represent
column-stored and row-stored micro-panels from Ãi and B̃p, respectively, and also that the dimensions
are conformal to the register blocksizes of this micro-kernel (i.e., m = mR and n = nR) then the
micro-panels of Ãi are packed from a 1

2mR× 1
2kC submatrix of A, which, when expanded in the special

packing format, appears as the mR × kC micro-panel that the real gemm micro-kernel expects.

• Similarly, the micro-panels of B̃p are packed from a 1
2kC × nR submatrix of B, which, when reordered

into a second special packing format, appears as the kC × nR micro-panel that the real gemm micro-
kernel expects.

It is easy to see by inspection that the real matrix multiplication implied by Eq. 4 induces the desired
complex matrix multiplication, provided the computation is executed on matrices A and B that have been
packed into special formats. We will refer to the packing format used on matrix A above as the 1e format,
since the f.e. are expanded (i.e., duplicated to the next column and then swapped, with the imaginary
component negated). Similarly, we will refer to the packing format used on matrix B above as the 1r
format, since the f.e. are merely reordered (i.e., imaginary elements moved to the next row).

3.2 Two variants

Notice that implicit in the 1m method suggested by Eq. 4 is the fact that matrix C is stored by columns.
This assumption is important; C must be stored by columns in order to allow the real domain micro-kernel
to correctly update f.e. of C with the corresponding f.e. from the matrix product AB.

Suppose, for a moment, that we instead refactored and expressed Eq. 1 as follows:(
ζr ζi

)
+=

(
χr χi

)( ψr ψi

−ψi ψr

)
(5)

This gives us a different template, one that implies different packing formats for matrices A and B. Applying
Eq. 5 to the special case of m = 4, n = 3, and k = 2, yields:

γr00 γi00 γr01 γi01 γr02 γi02
γr10 γi10 γr11 γi11 γr12 γi12
γr20 γi20 γr21 γi21 γr22 γi22
γr30 γi30 γr31 γi31 γr32 γi32

+=


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01
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10 αi
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11

αr
20 αi

20 αr
21 αi

21

αr
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30 αr
31 αi
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


βr
00 βi

00 βr
01 βi

01 βr
02 βi

02

−βi
00 βr

00 −βi
01 βr

01 −βi
02 βr

02

βr
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10 βr
11 βi

11 βr
12 βi

12

−βi
10 βr

10 −βi
11 βr

11 −βi
12 βr

12

 (6)

In this variant, we see that matrix B, not A, is stored according to the 1e format (where columns become
rows), while matrix A is stored according to 1r (where rows become columns). Also, we can see that matrix
C must be stored by rows in order to allow the real gemm micro-kernel to correctly update its f.e. with the
corresponding values from the matrix product.

Henceforth, we will refer to the 1m variant exemplified in Eq. 4 as 1m c, since it is predicated on column
storage on the output matrix. Similarly, we will refer to the variant depicted in Eq. 6 as 1m r, since it
assumes the output matrix is stored by rows.
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Variant

Blocksizes, in terms of real domain val-
ues, required for . . .

kzC mz
C nzC mz

R mz
P nzR nzP

1m c 1
2kC

1
2mC nC

1
2mR mP nR nP

1m r 1
2kC mC

1
2nC mR mP

1
2nR nP

Table 1: 1m complex domain blocksizes as a function
of real domain blocksizes. Note: Blocksizes mP and
nP represent the so-called “packing dimensions” for
the micro-panels of Ãi and B̃p, respectively. These
values are analagous to the leading dimensions of ma-
trices stored by columns or rows. In BLIS micro-
kernels, typically mR = mP and nR = nP , but
sometimes the kernel author may find it useful for
mR < mP or nR < nP .

3.3 Determining complex blocksizes

As we alluded in Section 3.1, the appropriate blocksizes to use with 1m are a function of the real domain
blocksizes. This makes sense, since the idea is to fool the real gemm micro-kernel, and the various loops for
register and cache blocking around the micro-kernel, into thinking that it is computing a real domain matrix
multiplication. Which blocksizes must be modified (halved) and which are used unchanged depends on the
variant of 1m being executed (and specifically, which matrix is packed according to the 1e format).

Table 1 summarizes the complex domain blocksizes prescribed for 1m c and 1m r as a function of the
real domain values. This is somewhat analagous to the blocksize scaling described in Tables II and III in [9].
However, there the scaling was optional in the sense that different scaling factors would still work, albeit
perhaps with a performance penalty. Here, in the case of Table 1, some scaling factors (namely, on mR or
nR) are required in order for the 1m algorithm to function properly.

Those familiar with the matrix multiplication algorithm implemented by the BLIS framework, as depicted
in Figure 1 (left), may be unfamiliar with mP and nP , the so-called packing dimensions. These values are,
effectively, the leading dimensions of the micro-panels. For most architectures, these values are almost
always equal to mR and nR, respectively. However, in some situations, it may be convenient (or necessary)
to use mR < mP or nR < nP . In any case, these packing dimensions are never scaled, even when their
corresponding register blocksizes are scaled to accommodate the 1e format, because the halving that would
otherwise be called for is cancelled out by the doubling of f.e. that manifests in 1e.

3.4 Numerical stability

As with the 3m and 4m methods of [9], a formal analysis of numerical stability is beyond the scope of this
article. However, by inspection we can see that the accumulation of intermediate terms occurs in the same
order as would a conventional assembly-based implementation based on the so-called broadcast method,
which is quite common.9 The only other factor that would affect stability is the cache blocksize in the k
dimension, kC . However, this blocksize value already varies across architectures, and also sometimes between

9The broadcast method of implementing a complex rank-1 update involves loading a few consecutive f.e. from the current
column of the micro-panel of Ãi into a vector register x, and then broadcasting the real part of an element from the current
row of the micro-panel of B̃p to every element within a vector register y0. Element-wise multiplication xy0 then yields the
terms corresponding to χrψr and χiψr from Eq. 3. These terms are accumulated into γr and γi. Then, the imaginary part of
the same element of the current row of the micro-panel of B̃p is broadcast to a vector register y1, facilitating the element-wise
product xy1, which computes the terms −χiψi and χrψi, which are once again accumulated into γr and γi. The process is
repeated until the rank-1 update is complete. A row-oriented broadcast method is also possible, in which real and imaginary
f.e. are broadcast from B̃p instead of Ãi.
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Algorithm: [ C ] := rmmbp( A, B, C ) Algorithm: [ C ] := rmmpb( B, A, C )

for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C

for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

Pack Bjp → B̃p

for ( i = 0 : m− 1 : mC )

Identify Api, Cji from Ap, Cj

Pack Api → Ãi

for ( h = 0 : nC − 1 : nR )

Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )

Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := rkern( Ãil, B̃ph, Cjihl )

for ( j = 0 : m− 1 : nC )

Identify Bj , Cj from B,C

for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

Pack Bjp → B̃p

for ( i = 0 : n− 1 : mC )

Identify Api, Cji from Ap, Cj

Pack Api → Ãi

for ( h = 0 : nC − 1 : nR )

Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )

Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := rkern( Ãil, B̃ph, Cjihl )

Figure 2: Abbreviated pseudo-codes for implementing the general matrix multiplication algorithms depicted
in Figure 1. Here, rkern calls a real domain gemm micro-kernel. Note that the only difference between
the algorithms is that the loop bounds on the 5th and 3rd loops around the micro-kernel are swapped.
Also, rmmpb labels the matrix product operands differently, with B referring to the left-hand matrix and
A referring to the right-hand matrix.

real and complex micro-kernels on the same architecture, so this factor is not new. Therefore, we would
expect the 1m method (both in its 1m r and 1m c forms) to exhibit the numerical properties that were
virtually identical to a solution based on complex micro-kernels.

3.5 Algorithms

3.5.1 General algorithm

Before investigating 1m method algorithms, we will first provide algorithms for computing real matrix
multiplication to serve as a reference for the reader. Specifically, we provide pseudo-code, targeting the real
domain, for the two algorithms depicited in Figure 1. These algorithms are shown as rmmbp and rmmpb
in Figure 2.

Notice that in the context of rmmpb, the 5th and 3rd loops around the micro-kernel (rkern) iterate
over different dimensions, relative to those loops in rmmbp, but the blocksizes used in those loops are the
same. Thus, nC is used to partition in the m dimension while mC is used to partition in the n dimension.
The authors of [10] initially studied matrix multiplication only in the context of an algorithm based on
block-panel subproblems, which led them to name the blocksizes after the dimensions along which they
partitioned. When generalized to support the panel-block algorithm, these blocksizes refer not to a specific
dimension but rather to a specific level of cache being targeted. That is, mC targets the L2 cache while
nC blocks for the L3 cache. However, for historical purposes, we will continue to use the original names
throughout this article. We also choose to label the matrix product operands differently in the panel-block
setting; the left-hand matrix is named B while the right-hand matrix is named A.10
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Algorithm: [ C ] := 1m [cr] bp( A, B, C ) [ C ] := vk1m( A, B, C )

Set bool colStore if rs( C ) = 1

for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C

for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

if colStore Pack1r Bjp → B̃p

else Pack1e Bjp → B̃p

for ( i = 0 : m− 1 : mC )

Identify Api, Cji from Ap, Cj

if colStore Pack1e Api → Ãi

else Pack1r Api → Ãi

for ( h = 0 : nC − 1 : nR )

Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )

Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := vk1m( Ãil, B̃ph, Cjihl )

Acquire workspace W

Determine if using W ; set usew

if ( usew )

Alias Cuse ←W , Cin ← 0

else

Alias Cuse ← C, Cin ← C

Set bool colStore if rs(Cuse) = 1

if ( colStore ) cs(Cuse)×= 2

else rs(Cuse)×= 2

n(A)×= 2; m(B)×= 2

Cuse := rkern( A, B, Cin )
if ( usew )

C := W

Figure 3: Left: Pseudo-code for Algorithms 1m c bp and 1m r bp, which result from applying 1m c and
1m r algorithmic variants to the block-panel algorithm depicted in Figure 1 (left). Here, Pack1e and
Pack1r pack matrices into the 1e and 1r formats, respectively. Right: Pseudo-code for a virtual micro-
kernel used by all 1m algorithms.

3.5.2 1m-specific algorithm

When applied to the block-panel algorithm depicted in Figure 1 (left), 1m c and 1m r yield nearly identical
algorithms whose differences can be encoded within a few conditional statements within key parts of the
high and low levels of code. We will refer to these specific algorithms as 1m c bp and 1m r bp, respectively.
Figure 3 shows a hybrid algorithm that encompasses both, supporting row- and column-stored matrices C.

As with the 3m and 4m algorithms in [9], we have separated the so-called virtual micro-kernel into a
separate function, shown in Figure 3 (right). This 1m-specific virtual micro-kernel, vk1m, largely consists
of a call to the real domain micro-kernel rkern, with some added special case handling and book-keeping
needed to properly induce complex matrix multiplication. Some of the details of the virtual micro-kernel
will be addressed shortly.

Note that 1m c and 1m r can also be applied to the panel-block algorithm depicted in Figure 1 (right),
yielding 1m c pb and 1m r pb. We omit pseudo-code for these algorithms for the sake of brevity.

3.6 Performance properties and algorithmic pairs

Table 2 tallies the total number of f.e. memops required by the block-panel and panel-block algorithms of
both variants of 1m (1m c and 1m r). For comparison, we also include the corresponding memop counts for
a selection of 4m algorithms as well as a conventional assembly-based solution, as first published in Table
III in [9].

We can hypothesize that the observed performance signatures of 1m c bp and 1m r bp may be slightly
different, because each places the additional memop overhead unique to 1m on different parts of the com-
putation. This stems from the fact that there exists an asymmetry in the assignment of packing formats

10It is important to note that the renaming in panel-block algorithms such as rmmpb does not necessarily represent a swapping
of the operands, as would happen if the entire operation were transposed to CT += BTAT , nor does it represent a change to the
operation’s interface. rmmbp and rmmpb simply use different names for the left- and right-hand matrices within the algorithm
descriptions. This renaming allows us to reference the L2-bound block and L3-bound panel as Ãi and B̃p, respectively, in both
algorithms.
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Algorithm

f.e. memops required to . . . a

update
micro-tilesb

Cr, Ci

pack
Ãi

move Ãi

from L2 to
L1 cache

pack
B̃p

move B̃p

from L3 to
L1 cache

4m h 8mn k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

4m 1b 8mn k
kC

8mk 2n
nC

4mk n
nR

8kn 4kn 2m
mC

4m 1a 8mn 2k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

assembly 4mn k
kC

4mk n
nC

2mk n
nR

4kn 2kn m
mC

1m c bp

2mn 2k
kC

6mk n
nC

4mk n
nR

4kn 2kn 2m
mC

1m r pb 6kn m
nC

4kn m
nR

4mk 2mk 2n
mC

1m r bp 4mk n
nC

2mk 2n
nR

6kn 4kn m
mC

1m c pb 4kn m
nC

2kn 2m
nR

6mk 4mk n
mC

Table 2: f.e. memops incurred by various algorithms, broken down by
stage of computation.

a

We express the number of iterations executed in the 5th, 4th, 3rd, and 2nd loops as
n
nC

, k
kC

, m
mC

, and n
nR

(with m and n swapped for panel-block algorithms 1m c pb

and 1m r pb). The precise number of iterations along a dimension x using a cache

blocksize xC would actually be d x
xC
e. Simlarly, when blocksize scaling of 1

2
is re-

quired, the precise value
⌈

x
xC/2

⌉
is expressed as 2x

xC
. These simplifications allow

easier comparison between algorithms while still providing meaningful approxima-

tions.
b

As described in Section 3.8.1, mR × nR workspace sometimes becomes mandatory,

such as when βi 6= 0. When workspace is employed in a 4m-based algorithm, the

number of f.e. memops incurred updating the micro-tile typically doubles.

to matrices in each 1m variant. Specifically, additional memops are required during the initial packing and
the movement between caches for the matrix packed according to 1e, since that format writes four f.e. for
ever two that it reads from the source operand. Also, if 1m c bp and 1m r bp use real micro-kernels with
different micro-tile shapes (i.e., difference values of mR and nR), those micro-kernels’ differing performance
properties will likely cause the performance signatures of 1m c bp and 1m r bp to deviate further.

Notice that the only difference between the rows for 1m c bp and 1m r pb is the swapping of the m
and n dimensions. This stems from the fact that the block-panel and panel-block algorithms iterate over
different dimensions in the 5th and 3rd loops, but are otherwise identical. Indeed, for large enough problems,
we expect 1m r bp and 1m c pb to have the same performance properties because in each algorithm the L2-
bound packed matrix Ãi is formatted with 1r and the L3-bound B̃p is formatted with 1e. These algorithms’
similaries sometimes make it convenient to refer to them simultaneously as an algorithmic pair. The 1m r bp
and 1m c pb form a second such pair, as they share properties that are distinct from the first.

Table 3 summarizes Table 2 and also lists the level of the memory hierarchy from which each matrix
operand is reused as well as a measure of memory movement efficiency. The information listed for 4m and
assembly algorithms is reproduced from Table IV of the previous article.

Notice that transposing the entire operation, and using 1m r pb to compute CT += BTAT would cause
the algorithm’s performance properties listed in Table 3 to align indistinguishably with that of 1m c bp. A
similar symmetry would be observed with 1m c pb and 1m r bp.
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A
lg

o
ri

th
m

Total f.e. memops required
(Sum of columns of Table 2)

Level from which f.e. of matrix X
are reused, and lL1: # of times each
cache line is moved into the L1 cache
(per rank-kC update).

C lCL1 A lAL1 B lBL1

4m h 8mn
(

k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
Mem 4 Mem 4 Mem 4

4m 1b 8mn
(

k
kC

)
+ 4mk

(
4n
nC

+ n
nR

)
+ 2kn

(
4 + 4m

mC

)
L2 2a L2 1 L1 1

4m 1a 8mn
(

2k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
L1 1a L1 1 L1 1

assembly 4mn
(

k
kC

)
+ 2mk

(
2n
nC

+ n
nR

)
+ 2kn

(
2 + m

mC

)
Reg 1 Reg 1 Reg 1

1m c bp 2mn
(

2k
kC

)
+ 2mk

(
3n
nC

+ 2n
nR

)
+ 2kn

(
2 + 2m

mC

)
Reg 1 L2b 1 Reg 1

1m r pb 2mn
(

2k
kC

)
+ 2kn

(
3m
nC

+ 2m
nR

)
+ 2mk

(
2 + 2n

mC

)
Reg 1 L2b 1 Reg 1

1m r bp 2mn
(

2k
kC

)
+ 2mk

(
2n
nC

+ 2n
nR

)
+ 2kn

(
3 + 2m

mC

)
Reg 1 Reg 1 L1b 1

1m c pb 2mn
(

2k
kC

)
+ 2kn

(
2m
nC

+ 2m
nR

)
+ 2mk

(
3 + 2n

mC

)
Reg 1 Reg 1 L1b 1

Table 3: Performance properties of various algorithms.
a

This assumes that the micro-tile is not evicted from the L1 cache during the next call to rkern.
b

In the case of 1m algorithms, we consider f.e. of A and B to be “reused” from the level of cache in which the

1e-formatted matrix resides.

3.7 Algorithm-sensitive details

3.7.1 Micro-kernel storage preference

Within the BLIS framework, micro-kernels are registered with a property that describes their output
preference—that is, the semantic row or column orientation of the vector registers that load and store C.11

Whenever possible, the BLIS framework will perform logical transpositions12 so that the apparent storage
of C matches the preference property of the micro-kernel being used. This guarantees that the micro-kernel
will be able to load and store f.e. of C using vector instructions.

This preference property is merely an interesting performance detail for conventional implementations
(real and complex). However, in the case of 1m, it becomes rather important for constructing a correctly-
functioning implementation. Specifically, the micro-kernel’s storage preference determines whether the 1m c
or 1m r algorithm is prescribed. Generally speaking, a 1m c algorithmic variant must employ a micro-kernel
that prefers to access C by columns, while a 1m r algorithmic variant must use a micro-kernel that prefers
to access C by rows. An exception (or at least a caveat) to this rule is discussed in Section 3.7.3.

3.7.2 The panel-block algorithm

Now that we have established two algorithmic pairs—1m c bp/1m r pb and 1m r bp/1m c pb—the ques-
tion becomes, why choose one algorithm over another within the same pair? It turns out that, at least in the
context of 1m, we suspect that the reasons apply to limited scenarios, and that otherwise the two algorithms
are interchangeable.

11Even though micro-kernels are always registered as having a row or column preference for the purposes of accessing C,
these kernels still support matrices stored with general stride. However, 1m will never exercise the real micro-kernel’s built-in
support for general stride. This topic is discussed in Section 3.8.1.

12This amounts to a swapping of the row and column strides, and a swapping of the m and n dimensions.
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m Packing format /

Level from which f.e.
are reused

Requires µ-
kernel with
preference
for . . .

Tolerates
µ-kernel
with
odd . . .

Small
dimen-
sion
affinityA B

1m c bp 1e / L2 1r / Reg columns nR n

1m r pba 1e / L2 1r / Reg rows nR m

1m r bp 1r / Reg 1e / L1 rows mR n

1m c pba 1r / Reg 1e / L1 columns mR m

Table 4: Summary of key properties of 1m algorithms.
a

Recall that panel-block algorithms 1m r pb and 1m c pb compute C += BA, with

matrix A being multiplied by matrix B from the right.

• Small m or n dimensions. One reason to consider the panel-block algorithm is that it is somewhat
more forgiving of problems where the m dimension is relatively small. To understand this phenomenon,
let us instead begin by explaining why the block-panel algorithm can tolerate small n somewhat better
than small m.

Notice that, according to Figure 1 (left), micro-panels of B̃p typically reside in the L3 cache. Those

micro-panels are therefore reused from the L3 cache as they are multiplied against different blocks Ãi.
That is, they are reused from the L3 cache across iterations of the 3rd loop. However, if n is very
small, such that B̃p consists of only a few micro-panels, then B̃p may not fall back to the L3 cache, but

rather linger in the portion of the L2 cache that is not occupied by Ãi. This tends to result in a small
performance improvement when the micro-kernel accesses those micro-panels of B̃p after computation

has proceeded to the next block of Ãi (i.e., with the next iteration of the 3rd loop).

Now, let us consider what happens if m is very small, such that Ãi consists of only a few micro-panels.
Note that the algorithm is already predisposed to keeping those micro-panels in the L2 cache, and the
L1 cache is usually too small to hold even one additional micro-panel of Ãi. Thus, there exists no
cache benefit to small values of m for block-panel algorithms.

The corresponding small dimension affinity for the panel-block algorithm is reversed. That algorithm
tolerates small m somewhat better for the same reason that the block-panel algorithm tolerates small
n dimensions—that is, because m is the dimension along which the nC blocksize is applied, which
determines the number of micro-panels in B̃p.

• Odd register blocksizes. Usually, mR and nR are both even numbers. However, sometimes one or
the other is odd.13 In this case, the variant of 1m is pre-determined. That is, if nR is odd, then only
1m c may be used. This stems from the fact that, as shown in Table 1, the complex register blocksize
nzR used during packing of 1m r must be equal to 1

2nR. Obviously, nzR = 1
2nR cannot be computed as

a whole number if nR is odd. Simlarly, if mR is odd, then only 1m r may be used.

Figure 4 illustrates distinguishing details of the four 1m algorithms at the level of the macro-kernel, while
Table 4 summarizes key properties of each 1m algorithm.

13The authors have never observed or heard of an optimal or near-optimal case where both register blocksizes were odd.
This can be attributed to the fact that the register blocksizes capture the orientation and layout of the vector registers used
to accumulate the micro-kernel’s matrix product. Since vector register lengths are (so far) universally powers of two, they are
also even numbers, and we cannot imagine any benefits to forgoing use of some vector register elements. In fact, the analytical
model proposed in [5] explicitly constrains the space of possible register allocations to those where vector registers are fully
populated. For these reasons, we anticipate that all reasonable register allocations will have at least one even register blocksize.
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Figure 4: Illustrations that depict key details of the four 1m algorithms at the level of the macro-kernel,
including the 1e/1r packing formats of Ãi and B̃p, whether each packed matrix is a left- or right-hand
operand to the matrix product, and the corresponding relationship between the m and n dimensions and
the cache and register blocksizes mC , mR, nC , and nR. In each diagram, the storage of the output matrix
prescribed by the 1m c/1m r variant is shown as vertical (column-stored) or horizontal (row-stored) lines.
The algorithms represented by the diagrams on the left will exhibit similar performance properties when the
matrices are large. A similar relationship holds between the pair of algorithms on the right.

3.7.3 Implementing the panel-block algorithm

At first glance, it may seem that implementing the panel-block algorithms 1m c pb and 1m r pb would
require a significant effort. After all, panel-block algorithms partition the matrix dimensions in a different
order, result in a different macro-kernel, and produce different micro-kernel subproblems that multiply
nR × kC micro-panels of B̃p by kC ×mR micro-panels of Ãi. In fact, this would seem to call for a different
micro-kernel altogether.

As it turns out, the panel-block algorithm can be implemented by recycling existing code and leveraging
the similarities within algorithmic pairs. Let us consider the pair 1m c bp and 1m r pb. Note that the
micro-kernel for 1m c bp as well as higher-level code (including the block-panel macro-kernel) already exist
within the BLIS framework. The higher-level code for 1m r pb can be implemented in BLIS by building
an alternate control tree structure that steps through the loop partitioning functions in a different order.14

Furthermore, it is possible to implement the panel-block macro-kernel needed by 1m r pb in terms of the
existing block-panel macro-kernel used by 1m c bp. Upon calling the panel-block macro-kernel function,
we simply apply a logical transposition of the matrix operands, and swap B̃p and Ãi. This transformation
orients C and the micro-panels of the packed matrices into a format and sequence expected by 1m c bp’s
macro-kernel and its column-preferential micro-kernel.

In a similar manner, 1m c pb can be implemented by recycling the code and row-preferential micro-kernel
used by 1m r bp.

Note that in Section 4 (specifically in Figures 7 and 8), we will report performance results in which we
refer to panel-block algorithms 1m c pb and 1m r pb as employing row-preferring and column-preferring
micro-kernels, respectively. This reversal comes from the fact that we implement each panel-block macro-

14A control tree is a data structure used internally by BLIS to encode the basic properties of level-3 algorithms. It specifies,
for example, which dimension to partition, the blocksize to use in that partitioning, and a reference to the next node in the
tree, which is processed in the body of the next loop. In general, control trees allow a library developer to factor out certain
parameters from the code local to any given loop. These codes become generic and, when stored as separate functions, can
then be composed together at runtime into arbitrary compound algorithms.
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kernel in terms of its block-panel counterpart, which, in our present discussion, uses a micro-kernel of opposite
preference.

3.8 Algorithm-agnostic details

3.8.1 Workspace

In some cases, a small amount of mR × nR workspace is needed. These cases fall into one of four scenarios:
(1) C is row-stored and the real micro-kernel rkern has a column preference; (2) C is column-stored and
rkern has a row preference; (3) C is general-stored (i.e., neither rs(C) nor cs(C) is unit); and (4) β has a
non-zero imaginary component. If any of these situations apply, then the 1m virtual micro-kernel will need
to use workspace. This corresponds to the setting of usew in vk1m. The idea is simply that rkern will be
called to compute the micro-panel product and store it to the workspace W . Subsequently, the result in W
can be accumulated back to C.

Cases (1) and (2), while supported, actually never occur in practice because BLIS will perform (at a high
level within the framework) a logical transposition whenever necessary. The net effect is that the storage of
C will always appear to match the preference of the micro-kernel.

Case (3) is needed because the real micro-kernel is programmed to support the updating of real matrices
stored with general stride, which cannot be spoofed to match the updating of complex matrices stored with
general stride. The reason is even when stored with general stride, complex matrices store real and imaginary
f.e. in contiguous pairs. There is no way to coax this pattern of data access from a real domain micro-kernel.
Thus, general stride support must be implemented outside rkern, within vk1m.

Case (4) is needed because real domain micro-kernels are not semantically equipped to scale C by complex
scalars β (that is, β such that βi 6= 0).

3.8.2 Handling alpha and beta scalars

As in the previous article, we have simplified the general matrix multiplication to C := C+AB. In practice,
the operation is implemented as C := βC + αAB, where α, β ∈ C. Let us use Algorithms 1m c bp and
1m r bp in Figure 3 as an examle of how to support arbitrary values of α and β.

If no workspace is needed (because none of the four situations described in Section 3.8.1 apply), we can
simply pass βr into the rkern call. However, if β is complex, or (regardless of whether β is real or complex)
if any of the other three workspace cases apply, then we must pass in a local βuse = 0 to rkern, compute
to local workspace W , and then apply β at the end of vk1m, when W is accumulated to C.

When α is real, the scaling may be performed directly by rkern. This situation is ideal since it almost
always incurs no additional costs (since many micro-kernels multiply their intermediate AB product by
α unconditionally). Scaling by α with non-zero imaginary components can be performed by the packing
function when either Ãi or B̃p are packed. Though somewhat less than ideal, the overhead incurred by this
treatment of α is minimal since packing is a memory-bound operation.

3.8.3 Multithreading

As with Algorithm 4m 1a in the previous article, 1m c bp and 1m r bp parallelize in a straightforward
manner for multicore and many-core environments. Because those algorithms encode the 1m method entirely
within the packing functions and the virtual micro-kernel, all other levels of code are completely oblivious
to, and therefore unaffected by, the specifics of the new algorithms. Therefore, we expect that 1m c bp and
1m r bp will yield multithreaded performance that is on-par with that of the corresponding real domain
matrix multiplication function, rmmbp.

A similar analysis holds for panel-block algorithmic variants 1m c pb and 1m r pb.

3.8.4 Bypassing the virtual micro-kernel

Because the 1m virtual micro-kernel serves as a wrapper to the real domain micro-kernel, it would seem at
first glance that there exists the potential for additional overhead in 1m algorithms, particularly from the
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extra function calls. However, there are a few things to consider.
First, we should consider that a conventional solution would implement matrix multiplication using a

complex micro-kernel, which sometimes has a smaller micro-tile footprint (i.e., fewer f.e.). But, a complex
micro-kernel that updates fewer f.e. would need to be called more times in order to fully update the output
matrix. Thus, the function call overhead incurred by 1m algorithms may already be at or near parity with
that of a conventional implementation.

Secondly, even if the complex micro-kernel updates the same number of f.e. as its real domain coun-
terpart, there exists a simple optimization that can be applied as long as β ∈ R and C is either row- or
column-stored (but not general-stored). If these conditions are met and detected by the implementation, the
real domain macro-kernel can be called with modified parameters to induce the equivalent complex domain
subproblem. This simple optimization avoids all overhead introduced by the virtual micro-kernel, including
(but not limited to) the cost incurred by additional function calls.

Finally, we suspect that, even if this optimization cannot be applied, the slowdown that results from the
additional overhead may not necessarily be prohibitive.

3.9 Other possible packing formats

An astute reader may have already noticed that the 1e and 1r formats are not unique in their ability to
facilitate induced complex matrix multiplication. Returning to Eqs. 4 and 6, it is easy to see that any
permutation that permutes columns of A simultaneously with the corresponding rows of B will yield a valid
packing configuration (i.e., combination of packing formats on A and B) that facilitates computing the
desired result. The only difference between any two arbitrary packing configurations will be in the order in
which the intermediate terms αrβr, αrβi, −αiβi, and αiβr are accumulated into γr and γi.

Perhaps the most interesting of these permutations is that in which even-numbered15 columns of A
are permuted to be consecutive with one another and grouped together, while odd-numbered columns are
permuted to immediately follow them. This format, with its permutation of k dimension, would transform
Eq. 4 to: 

γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
γi20 γi21 γi22 γi23


+=



αr
00 αr

01 −αi
00 −αi

01

αi
00 αi

01 αr
00 αr

01

αr
10 αr

11 −αi
10 −αi

11

αi
10 αi

11 αr
10 αr

11

αr
20 αr

21 −αi
20 −αi

21

αi
20 αi

21 αr
20 αr

21




βr
00 βr

01 βr
02 βr

03

βr
10 βr

11 βr
12 βr

13

βi
00 βi

01 βi
02 βi

03

βi
10 βi

11 βi
12 βi

13



Or, more generally,

C +=
(
A Ǎ

)( Br

Bi

)
(7)

where A and Ǎ are column-stored, Br and Bi are row-stored, and C remains column-stored, as before with
1m c based on 1e and 1r. The storage format of B would recycle some of the packing infrastructure created
to support 4m, wherein real and imaginary f.e. are packed to separate but adjacent micro-panels. It would
still, however, require the support of a new format to store Ǎ, wherein real and imaginary f.e. are swapped
and the imaginary parts are negated.

A similar permutation can be applied to Eq. 6, yielding:

C +=
(
Ar Ai

)( B
B̌

)
(8)

where Ar and Ai are column-stored, B and B̌ are row-stored, and C remains row-stored, as before with
1m r based on 1r and 1e.

15This assumes a zero-based indexing.
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These alternative packing formats do not immediately appear to have any advantages over 1e and 1r.16

Indeed, the opposite may be true; for small values of mR and nR (actually, small values of mP and nP ),
packing to the 1e and 1r formats may enjoy a slight advantage over other formats due to increased spatial
locality when packing to 1e and 1r. This would occur because the formats call for copying (parts of) a
complex scalar to both the current column or row (of mR or nR f.e.) as well as next column or row,
which may reside within the same cache line, or within a cache line that is more likely to have already been
hardware-prefetched.

3.10 2m

The previous article noted that because of its expression in terms of real and imaginary matrices, 4m would
perform more favorably on complex matrices that stored real and imaginary values separately, as two real
matrices. This would not benefit the accesses on A and B, since those matrices must almost always be
packed to achieve high performance and can easily be separated during that process. However, it would
benefit the accesses on C. Referring back to Eq. 4, we can see that storing the real and imaginary f.e. of
C separately is equivalent to a permutation of the rows of C. In order to keep the computation expressed
unchanged, this permutation would need to be applied to matrix A as well, since they both share an m
dimension. Applying such a permutation to Eq. 4 yields:

γr00 γr01 γr02 γr03
γr10 γr11 γr12 γr13
γr20 γr21 γr22 γr23
γi00 γi01 γi02 γi03
γi10 γi11 γi12 γi13
γi20 γi21 γi22 γi23


+=



αr
00 −αi

00 αr
01 −αi

01

αr
10 −αi

10 αr
11 −αi

11

αr
20 −αi

20 αr
21 −αi

21

αi
00 αr

00 αi
01 αr

01

αi
10 αr

10 αi
11 αr

11

αi
20 αr

20 αi
21 αr

21




βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

 (9)

And if we also apply the permutation along the k dimension discussed in Section 3.9, we have:

γr00 γr01 γr02 γr03
γr10 γr11 γr12 γr13
γr20 γr21 γr22 γr23
γi00 γi01 γi02 γi03
γi10 γi11 γi12 γi13
γi20 γi21 γi22 γi23


+=



αr
00 αr

01 −αi
00 −αi

01

αr
10 αr

11 −αi
10 −αi

11

αr
20 αr

21 −αi
20 −αi

21

αi
00 αi

01 αr
00 αr

01

αi
10 αi

11 αr
10 αr

11

αi
20 αi

21 αr
20 αr

21




βr
00 βr

01 βr
02 βr

03

βr
10 βr

11 βr
12 βr

13

βi
00 βi

01 βi
02 βi

03

βi
10 βi

11 βi
12 βi

13



Or, more generally: (
Cr

Ci

)
+=

(
Ar −Ai

Ai Ar

)(
Br

Bi

)
(10)

This matrix multiplication can be computed via just two calls to a real domain matrix multiplication prim-
itive:

Cr +=
(
Ar −Ai

)( Br

Bi

)
, Ci +=

(
Ai Ar

)( Br

Bi

)

provided that
(
Ar −Ai

)
,
(
Ai Ar

)
, and

(
Br

Bi

)
can each be stored so that they can be referenced as single

matrices. We call this the 2m method, and the specific instance derived from Eq. 10 as 2m c.

16One could make the case that the packing formats described by Eqs. 7 and 8 exhibit the benefit of being somewhat easier
to describe than 1e and 1r, because they can be expressed in terms of more familiar real, imaginary, complex, and modified
complex matrices.
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Similarly, applying permutations to the n and k dimensions to Eq. 6 yields:(
Cr Ci

)
+=

(
Ar Ai

)( Br Bi

−Bi Br

)
(11)

which can also be broken down in two instances of real matrix multiplication:

Cr +=
(
Ar Ai

)( Br

−Bi

)
, Ci +=

(
Ar Ai

)( Bi

Br

)
which corresponds to 2m r.

We can now make a few observations about 2m:

• Eqs. 10 and 11 are identical to Eqs. 3 and 5, respectively, except that scalars are replaced with matrices.

• The initial permutation along the k dimension is actually unnecessary, and so the formatting captured
by Eq. 9 also falls under 2m. This permutation (or lack thereof) only changes the order in which
intermediate terms are accumulated.

• The storage of Cr and Ci in both Eqs. 10 and 11 is unspecified and does not depend on which matrix,
A or B, was originally formatted with 1e (prior to permutation). Either Cr or Ci may be stored by
rows, columns, or a more excotic storage scheme, and their storage formats need not even be identical.
Thus, neither 2m c nor 2m r implies the storage of C; rather, they only imply how the A and B
matrices are formatted and stored—that is, which one contains duplicated (and negated) f.e..

• The 2m method can be applied at an arbitrary level of matrix multiplication. For example, if we assume

from Eq. 10 that input matrices
(
Ar −Ai

)
,
(
Ai Ar

)
, and

(
Br

Bi

)
are each stored as micro-panels

(column-stored, column-stored, and row-stored, respectively), then this application of 2m prescribes
that C is stored by contiguous mR × nR micro-tiles. If, instead, the aforementioned input matrices
were generally large, then C would need to be stored in whatever manner is appropriate for the real
matrix multiplication primitive.

4 Performance

In this section we present performance results for implementations of 1m algorithms on a recent Intel architec-
tures. For comparison, we include results for select 4m algorithms as well as the conventional assembly-based
approach.

4.1 Platform and implementation details

Results presented in this section were gathered on a single Cray XC40 compute node consisting of two
12-core Intel Xeon E5-2690 v3 processors featuring the “Haswell” microarchitecture. Each core, running at
a clock rate of 3.2 GHz17, provides a single-core peak performance of 51.2 gigaflops (GFLOPS) in double
precision and 102.4 GFLOPS in single precision.18 Each socket has a 30MB L3 cache that is shared among
cores, and each core has a private 256KB L2 cache and 32KB L1 (data) cache. Performance experiments
were gathered under the SuSE 11 operating system running the Linux 3.0.101 (x86 64) kernel. Source code
was compiled by the GNU C compiler (gcc), version 5.2.0.19 The version of BLIS used in all tests was not
officially released at the time of this writing, and was adapted from version 0.2.1-85.20

17This system uses Intel’s Turbo Boost 2.0 dynamic frequency throttling technology. According to [?], the maximum the
clock frequency when executing AVX instructions is 3.2 GHz when utilizing one or two cores, and 3.0 GHz when utilizing three
or more cores.

18Accounting for the reduced AVX clock frequency, the peak performance when utilizing 24 cores is 48 GFLOPS/core in
double precision and 96 GFLOPS/core in single precision.

19The following optimization flags were used during compilation: -O3 -mavx2 -mfma -mfpmath=sse -march=core-avx2.
20Despite not yet having an official version number, this version of BLIS may be uniquely identified, with high probability,

by the first 10 digits of its git “commit” (SHA1 hash) number: 1c732d3ddc.
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Precision/Domain Implementation mz
R nzR mz

C kzC nzC

single complex

BLIS 1m c 16/2 6 144/2 256/2 2040

BLIS 1m r 6 16/2 144 256/2 2040/2

BLIS assembly 3 8 144 256 2040

OpenBLAS 8 2 384 192 ?a

double complex

BLIS 1m c 8/2 6 72/2 256/2 2040

BLIS 1m r 6 8/2 72 256/2 2040/2

BLIS assembly 3 4 72 256 2040

OpenBLAS 4 2 256 128 ?a

Table 5: Register and cache blocksizes used by the various implementations of
matrix multiplication, as configured for an Intel Xeon E5-2690 v3 “Haswell” pro-
cessor. Note: Division by 2 is made explicit to allow the reader to quickly see the
1m blocksizes as well as the blocksizes that would be used by the underlying real
domain micro-kernels when performing real matrix multiplication.

a

We were unable to confidently determine the nz
C blocksizes used by OpenBLAS for the

Haswell architecture.

Algorithms 1m c bp, 1m c pb, 1m r bp, and 1m r pb were implemented in the BLIS framework, as
described in Sections 3.5 through 3.8. We also refer to results based on existing conventional, assembly-based
micro-kernels written by hand for the Haswell microarchitecture via GNU extended inline assembly syntax.

All experiments were performed on randomized, column-stored matrices with gemm scalars held constant:
α = 2 and β = 1. In all performance graphs, each data point represents the best of three trials.

Blocksizes for each of the implementations tested are provided in Table 5. For reference, we also provide
the blocksizes for single-precision and double-precision real domain matrix multiplication, as well as those
used by complex gemm implementations in OpenBLAS 0.2.19.

In all graphs presented in this section the x-axes denote the problem size, the y-axes show observed
floating-point performance in units of GFLOPS, and the theoretical peak performance coincides with the
top of each graph.

4.2 Comparing to other implementations

As in the previous article, our primary goal is not to compare the performance of the newly developed 1m
implementations with that of other established BLAS solutions. Rather, our intent is to focus comparisons
within and between families of induced methods. That said, we agree that some basic comparison is ap-
propriate, and thus have included Figure 5. Here, we compare conventional assembly-coded complex gemm
implementations in BLIS with those provided by OpenBLAS 0.2.19 and Intel MKL 11.3. We also include
performance for BLIS’s assembly-coded real domain gemm, since its underlying kernel forms the basis for
all induced methods presented here and in the previous article. Figure 6 shows multithreaded performance
of the same libraries on 24 cores. These graphs show that BLIS’s solutions are quite competitive, and in
some cases outperform OpenBLAS, while falling short of Intel’s highly optimized MKL library.

4.3 Sequential results

Figure 7 reports performance results for various implementations of double- and single-precision complex
matrix multiplication on a single core of the Haswell processor. For these results, m = n was bound to the
problem size while the k dimension was fixed to the corresponding value of kC , as listed in Table 5. As in the
previous article, we focus on this problem shape—rank-kC update—because: (1) it will yield near-optimal
performance for all of our implementations tested, (2) this type of matrix multiplication frequently appears
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Figure 5: Single-threaded performance of various conventional (i.e., assembly-coded) implementations of
double-precision (left) and single-precision (right) complex gemm on a single core of an Intel Xeon E5-2690
v3 “Haswell” processor. The theoretical peak performance coincides with the top of each graph.
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Figure 6: Multithreaded performance of various conventional (i.e., assembly-coded) implementations of
double-precision (left) and single-precision (right) complex gemm on 24 cores of an Intel Xeon E5-2690 v3
“Haswell” processor. The theoretical peak performance coincides with the top of each graph.
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Figure 7: Single-threaded performance of various implementations of double-precision (top) and single-
precision (bottom) complex gemm on a single core of an Intel Xeon E5-2690 v3 “Haswell” processor. The
left and right graphs contain an identical reference curve for assenbly-coded complex gemm as well as results
for three additional reference implementations (corresponding to the assembly-coded real gemm, as well as
4m 1a and 4m hw). These latter three implementations differ from left to right graphs in the preference
of their underlying micro-kernel, indicated by a “(c)” or “(r)” (for column- or row-preferring). The left and
right graphs also differ in which 1m implementations they report, with the left graphs reporting 1m c bp
and 1m r pb (which employ column-preferring micro-kernels) and the right graphs reporting 1m r bp and
1m c pb (which employ row-preferring micro-kernels). The theoretical peak performance coincides with the
top of each graph.
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within high-performance implementations of higher-level DLA operations such as Cholesky, LU, and QR
factorizations, and (3) it is the foundation for matrix multiplications where all three dimensions are large.21

The primary reference implementations chosen for Figure 7 consist of a high-performance complex gemm
based on conventional assembly-coded complex kernels. This reference implementation (the solid line) was
held constant between the top-left and top-right graphs, which report double-precision results, and the
corresponding single-precision implementation is similarly duplicated between the bottom-left and bottom-
right graphs. We also include a high-performance real gemm and, as representatives of the 4m method,
implementations of Algorithms 4m 1a and 4m hw. For these three reference codes, we report results based
on column-preferiential micro-kernels on the left and those of row-preferiential micro-kernels on the right.
(We indicate the preference of the underlying micro-kernel of those algorithms with a “(c)” or “(r)” in the
graph legends.22) We include results for both types of micro-kernels because the left-right difference also
includes which 1m implementations are shown. That is, results for 1m c bp and 1m r pb (which use column-
preferring micro-kernels) appear on the left while those of 1m r bp and 1m c pb (which use row-preferring
micro-kernels) appear on the right. We group the 1m algorithms in this manner so that we can visually
confirm the similarities (or differences) in performance within algorithm pairs.

As predicted in Section 3.7.2, we find that the performance signatures of the algorithms within each
of the aforementioned 1m algorithm pairs are virtually indistinguishable. That is, 1m c bp tracks closely
with 1m r pb, and 1m r bp with 1m c pb. This behavior holds for both single- and double-precision. The
performance signatures between pairs, however, differs slightly. This was expected given that the 1e and
1r packing formats place different memory access burdens on different packed matrices, Ãi and B̃p, which
reside in different levels of cache. It was not previously clear, however, which pair would be superior over
the other, or if there would be a material difference at all. It seems that, at least in the sequential case,
the difference between the 1m pairs’ performance signatures are minimal, though the difference is somewhat
more noticeable in double-precision. This difference is almost certainly due to the different performance
characteristics of the row- and column-preferential micro-kernels. We find evidence of this in the 4m 1a and
4m hw results as well as those of the real gemm implementation, which are also affected by the change in
micro-kernel preference.

In all cases, the 1m implementations outperform both 4m 1a and 4m hw, with the margin growing in
single-precision.

Somewhat surprisingly, the 1m implementations match or exceed the performance of their real domain
benchmarks (the dotted lines in each graph), and are very competitive with assembly-coded complex gemm
regardless of the algorithm employed.

4.4 Multithreaded results

Figure 8 shows double- and single-precision performance using 24 threads, with one thread bound to each
core of the processor. Performance is presented in units of gigaflops per core to facilitate visual assessment
of scalability. For all implementations, we employed 2-way parallelism within the 5th loop and 12-way
parallelism within the 3rd loop, for a total of 24 threads. This parallelization scheme was chosen in a
manner consistent with that of the previous article23, using a strategy set forth in [7].

Like in the single-threaded case, the performance of 1m algorithms closely track one another within pairs,
albeit with somewhat more jitter. However, here we find a marked difference in performance between pairs.

21The authors of [2] propose a taxonomy that includes other shape scenarios besides rank-kC update and large quasi-square
multiplication. Some of these other types of matrix product may favor algorithms that are different from the one depicted in
Figure 1. This topic deserves special treatment, and thus is beyond the scope of the present article.

22Though it is not indicated in the graph legends, we chose to always compare against an assembly-coded complex gemm
based on a row-preferentialmicro-kernel because it exhibited higher performance than its column-preferential counterpart on
the test hardware. The likely reason for this outperformance relates to the way mR and nR affect the bandwidth needed from
the L2 and L1 caches, and is briefly discussed in Section 4.4.

23The two sockets of the Xeon E5-2690 v3 each have an L3 cache that is shared among those sockets’ cores. This encourages
two-way parallelism in the 5th loop, which produces two panels B̃p to be packed and used simultaneously on completely
independent parts of matrix C. Furthermore, by also parallelizing the 3rd loop, each of the 12 cores of either socket pack
separate blocks Ãi into their private L2 caches. Thus, when each core executes the 2nd loop (i.e., the macro-kernel), it
multiplies its local block Ãi by the row-panel B̃p that is shared among all cores on the socket.
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Figure 8: Multithreaded performance of various implementations of double-precision (top) and single-
precision (bottom) complex gemm on two Intel Xeon E5-2690 v3 “Haswell” processors, each with 12 cores.
All data points reflect the use of 24 threads. The left and right graphs contain an identical reference curve for
assenbly-coded complex gemm as well as results for three additional reference implementations (correspond-
ing to the assembly-coded real gemm, as well as 4m 1a and 4m hw). These latter three implementations
differ from left to right graphs in the preference of their underlying micro-kernel, indicated by a “(c)” or
“(r)” (for column- or row-preferring). The left and right graphs also differ in which 1m implementations
they report, with the left graphs reporting 1m c bp and 1m r pb (which employ column-preferring micro-
kernels) and the right graphs reporting 1m r bp and 1m c pb (which employ row-preferring micro-kernels).
The theoretical peak performance coincides with the top of each graph.
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Specifically, the 1m r bp and 1m c pb implementations (those based on the row-preferring micro-kernel)
outperform those of 1m c bp and 1m r pb (based on the column-preferring micro-kernel), with the differ-
ence more pronounced in single-precision. We suspect this is rooted not in the algorithms, per se, but in
the differing micro-kernel implementations used by each pair. The 1m r bp/1m c pb algorithms are imple-
mented with a real micro-krnel that is 6×8 and 6×16 in the single- and double-precision cases, respectively,
while 1m c bp/1m r pb use 8×6 and 16×6 micro-kernels for single- and double-precision implementations,
respectively. The observed difference in performance between the 1m pairs is likely attributable to the fact
that the micro-kernels’ different values for mR and nR place different bandwidth requirements when reading
f.e. from the caches (primarily L1 and L2). Specifically, larger values of mR place a heavier burden on
loading elements from the L2 cache, which is usually disadvantageous since that cache resides further from
the processor. By contrast, a micro-kernel with larger nR loads more elements (per mR×nR rank-1 update)
from the L1 cache, which resides closer to the processor, and relies less heavily on loading elements from the
L2 cache.

Even in the worst case (for 1m c bp/1m r pb), the 1m implementations match or exceed their real do-
main counterparts. And when the 1m r bp/1m c pb algorithm pair is employed, performance is competitive
with that of the conventional implementations based on complex assembly-coded micro-kernels, particularly
in double-precision.

The 1m algorithms based on row-preferential micro-kernels, 1m r bp/1m c pb , outperform 4m 1a,
especially in single-precision where the margin is quite wide. The 1m c bp/1m r pb algorithms, based on a
column-preferential micro-kernel, fare more poorly relative to 4m 1a, but that pair generally still matches or
exceeds the 4m implementation. We suspect that 4m 1a is more resilient to the lower-performing column-
preferential micro-kernel because that algorithm’s virtual micro-kernel leans heavily on the L1 cache, which
on this architecture is capable of being read from and written to at relatively high bandwidth (64 bytes/cycle
and 32 bytes/cycle, respectively) [4].

5 Observations

5.1 4m limitations circumvented

The previous article concluded by identifying a number of limitations inherent in the 4m method that,
collectively, prevent the approach from becoming both a feasible and competitive alternative to matrix
multiplication via conventional assembly-based kernels. We now revisit this list and briefly discuss whether,
to what degree, and how those limitations are overcome by algorithms based on the 1m method.

• Number of calls to primitive. The most versatile 4m algorithm, 4m 1a, incurs up to a 400%
increase in function call overhead over a comparable assembly-based implementation. By comparison,
1m algorithms require at most a doubling of micro-kernel function call overhead, and in certain common
cases (e.g., when β ∈ R and C is row- or column-stored), this overhead can be avoided completely. The
1m method is clearly an improvement over 4m due to its reliance on a single invocation of the matrix
multiplication primitive.

• Inefficient reuse of intput date from A, B, and C. The most cache-efficient application of 4m is
the lowest level algorithm, 4m 1a, which reuses f.e. of A, B, and C from the L1 cache. But, as shown
in Table 3, both 1m r and 1m c variants reuse f.e. of two of the three matrices from registers, and
with the inclusion of the panel-block algorithm, two of the four 1m algorithms (one from each variant)
reuse f.e. of the third matrix from the L1 cache. This would seem to be a significant improvement,
though observed performance improvement over 4m 1a will depend on properties of the hardware (i.e.,
the L1 cache performance)

• Non-contiguous output to C. Algorithms based on the 4m method must update only the real
and then only the imaginary parts of the output matrix, twice each. Since C is typically stored (by
rows or columns) with real and imaginary f.e. interleaved, this piecemeal approach prevents the real
micro-kernel from using vector load and store instructions on C during those four updates. The 1m
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method avoids this issue altogether by packing A and B to formats that allow the real micro-kernel
to update contiguous real and imaginary f.e. simultaneously, during a single invocation. We suspect
that this is, perhaps, the largest contributor to 1m’s performance superiority over 4m.

• Reduction of kC . Algorithm 4m 1a requires that the real micro-kernel’s perferred kC blocksize be
halved in the complex algorithm in order to maintain proper cache footprints of Ãi and B̃p as well
the footprints of their constituent micro-panels.24 Using such sub-optimally sized micro-panels can
noticeably hobble the performance of 4m 1a. Looking back at Table 1, it may seem like 1m suffers a
similar handicap, however, the reason for halving kC and its effect are both completely different. In
the case of 1m, the use of kzC = 1

2kC is simply a conversion of units (complex elements to real f.e.)
for the purposes of identifying the size of the complex submatrices to be packed that will induce the
optimal kC value from the perspective of the real micro-kernel, not a reduction in the f.e. footprint
of the micro-panels operated upon by the real micro-kernel. Indeed, the ability of 1m to achieve high
performance when k = 1

2kC is a strength in the context of certain higher-level applications, such as
Cholesky, LU, and QR factorizations based on rank-k update. Those operations tend to perform better
when the algorithmic blocksize (corresponding to kC) is as narrow as possible in order to limit the
amount of computation in the lower-performing unblocked subproblem.

• Framework accommodation. The 1m algorithms are no more disruptive to the BLIS framework
than the most accommodating of 4m algorithms, 4m 1a, and much less disruptive than the remain-
ing algorithms. This is because, like with 4m 1a, almost all of the 1m implementation details are
sequestered to the packing routines and the virtual micro-kernel.

• Interference with multithreading. Because the 1m algorithms are implemented entirely within the
packing facility and virtual micro-kernel, they parallelize just as easily as the most thread-friendly of
the 4m algorithms, 4m 1a, and entirely avoid the threading difficulties of higher-level 4m algorithms.

• Non-applicability to two-operand operations. Like 4m 1a, algorithms based on 1m can be
applied to other level-3 operations, including those that involve only two operands, such as trmm
and trsm.25 Certain higher-level applications of 4m, however, are inherently incompatible with two-
operand operations because they would overwrite the original contents of the input/output operand
even though subsequent stages of computation depend on that original input.

This analysis suggests that the 1m method solves or avoids most of the performance-degrading weaknesses
of 4m, and in the remaining cases is no worse off than the best 4m algorithm. Thus, its observed performance
superiority was predictable.

5.2 Further discussion

Before concluding, here we offer some final thoughts on the 1m method and its place in the larger spectrum
of approaches to implementing complex matrix multiplication.

5.2.1 Geometric interpretation

Matrix multiplication is sometimes thought of as a three-dimensional operation with a contraction (accu-
mulation) over the k dimension. This interpretation carries into the complex domain as well. However,
when each complex element is viewed in terms of its real and imaginary components, we find that a fourth
pseudo-dimension of computation (of fixed size 2) emerges, one which also involves a contraction. The
1m method reorders and duplicates elements of A and B—a form of swizzling applied when the data is
packed—in such a way that effectively “flattens” this extra dimension of computation. This, combined with
the exposed treatment of real and imaginary f.e., causes the resulting floating-point operations to appear

24Recall that the halving of kC for 4m 1a was motivated by the desire to keep the not just two, but four real micro-panels in
the L1 cache simultaneously. These correspond to the real and imaginary parts of the current micro-panels of Ãi and B̃p.

25As with 4m 1a, support for trsm requires a separate pair of micro-kernels that fuse a matrix multiplication with a triangular
solve with nR right-hand sides.
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indistinguishable from a real domain matrix multiplication with m and k (for column-stored C) or k and n
(for row-stored C) dimensions that are twice as long.

5.2.2 Data reuse: efficiency vs. programmability

Both the conventional approach and 1m move data efficiently through the memory hierarchy.26 However,
once in registers, a conventional complex micro-kernel reuses those loaded values to perform twice as many
flops as 1m. The previous article observes that all 4m algorithms make different variations of the same
tradeoff: by forgoing the reuse of f.e. from registers and instead reusing those data from some level of
cache, the algorithms avoid the need to explicitly encode complex arithmetic at the assembly level. As it
turns out, 1m makes a similar tradeoff, but gives up less while gaining more: it is able to reuse f.e. from
two of the three matrix operands from registers while still avoiding the need for a complex micro-kernel, and
manages to replace that kernel operation with a single real matrix multiplication. And we would argue that
increasing programmability and productivity by forfeiting a modest performance advantage is a good trade
to make under almost any circumstance.

5.2.3 Micro-kernel bandwidth

Because 1m algorithms do not explicitly reuse f.e. of Ãi and B̃p from registers, they require higher memory
bandwidth during the micro-kernel computation than a conventional assembly-based solution.27 Specifically,
increased bandwidth is utilized when reading from the copy of the matrix that is packed into the 1e format,
which resides in either the L2 or L1 cache, depending on which algorithm is being employed.28 In practice, this
potential weakness of 1m is not a concern. Yes, in principle, one could design an architecture with sufficiently
low memory bandwidth from L2 or L1 cache that a conventional complex matrix multiplication achieves
high performance while a 1m-based implementation struggles. However, this would imply a corresponding
performance shortfall in the underlying real domain matrix kernel. Given the ubiquity and importance
of real matrix multiplication in the scientific community, hardware vendors have great incentive to design
architectures that allow sgemm and dgemm to achieve high performance. Thus, we would expect that 1m will
remain a viable alternative for the foreseeable future.

5.2.4 Storage

The supremacy of the 1m method is closely tied to the interleaved, pairwise storage of real and imaginary
values—specifically, of the output matrix C. If users and applications decide to start storing complex matrices
as two real matrices (traditionally-stored, by rows or columns), one each for real and imaginary components,
the 2m approach (for numerically sensitive settings) as well as low-level applications of 3m (for numerically
insensitive settings) become more appropriate.

6 Conclusions

We began the article by reviewing the general motivations for induced methods for complex matrix multi-
plication, and the specific methods, 3m and 4m, studied in the previous article. Then, we recast complex
scalar multiplication (and accumulation) in such a way that it revealed a template that could be used to
fashion a new induced method that casts the complex matrix multiplication in terms of a single real matrix
product. The key is the application of two new packing formats on the left- and right-hand matrix product

26This is in contrast to, for example, Algorithm 4m hw, which the previous article showed makes rather inefficient use of
cache lines as they travel through the L3, L2, and L1 caches.

27While this bandwidth distinction actually holds for all induced methods, different algorithms will place differing degrees of
bandwidth pressure on the memory hierarchy, depending on the level(s) of cache from which it reuses f.e. of A and B.

28The bandwidth from the 1r-formatted matrix is unaffected since it only reorders (rather than duplicates) its f.e.. And since
1m uses half the kC that is optimal in the real domain (and therefore would perform roughly twice as many rank-kC updates), the
bandwidth required for accessing f.e. of the output matrix may also be higher, though the precise level of increase will depend
on the value of kzC that would be used by a comparable assembly-based implementation. However, bandwidth requirements on
C are already quite low, so we would not expect this difference to measurably impact performance.
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operands that allows us to disguise the complex matrix multiplication as a real matrix multiplication with
slightly modified input parameters. This 1m method is shown to have two variants, depending on whether
the output matrix is stored by rows or columns. We introduced an alternative “panel-block” algorithm that,
combined with the original block-panel algorithm, gives rise to a total of four 1m algorithms, and discussed
the similarities and differences in the performance properties of each. We also considered alternative packing
formats, including a 2m method that would be applicable to more exotic storage arrangements that separate
the real and imaginary components. When implemented in the BLIS framework, competitive performance
was observed for 1m algorithms on a recent Intel microarchitecture. These tests provided empirical evidence
of predicted performance similarities within algorithmic pairs, and also confirmed that performance can differ
between pairs. Finally, we reviewed the limitations of the 4m method that are overcome by 1m and then
concluded by discussing a few high-level observations.

The key takeaway from our study of induced methods is that the real and imaginary elements of com-
plex matrices can always be reordered to accommodate the desired fundamental primitives, whether those
primitives are defined to be various forms of real matrix multiplication (as is the case for the 4m, 3m, 2m,
and 1m methods), or vector instructions (as is the case for micro-kernels that implement complex arithmetic
in assembly code). Indeed, even in the real domain, the classic matrix multiplication algorithm’s packing
format is simply a reordering of data that targets the fundamental primitive implicit in the micro-kernel—
namely, an mR × nR rank-1 update. The family of induced methods presented here and in the previous
article expand upon this basic reordering so that the mathematics of complex arithmetic can be expressed
at different levels of the algorithm and of its corresponding implementation, each yielding different benefits,
costs, and performance.
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