
Anatomy of Parallel Computation with Tensors

FLAME Working Note #72
Ph.D. Dissertation Proposal

Martin D. Schatz

Department of Computer Science
and

Institute for Computational Engineering and Sciences
The University of Texas at Austin

Austin, Texas 78712
martin.schatz@utexas.edu

December 17, 2013

Abstract

Recent data models have become more complex leading to the need for multi-dimensional represen-
tations to express data in a more meaningful way. Commonly, tensors are used to represent such data.
Multi-linear algebra, the math associated with tensors, has become essential for tackling problems in big
data and scientific computing. To solve the largest problems of today, libraries designed for supercom-
puters consisting of thousands of compute nodes connected via a network are utilized. Such compute
architectures are referred to as “distributed-memory” architectures. Up to now, the main approach for
problems of multi-linear algebra has been based on mapping multi-linear algebra to linear algebra and
rely on highly efficient linear algebra libraries to perform the equivalent computation [6, 23]. Unfor-
tunately, there are inherent inefficiencies associated with this approach. In this proposal, we define a
domain-specific language for distributed tensor computation. Additionally, through a process akin to
constraint propagation, we show how, using the language, algorithms can be systematically derived and
required collective communications identified for the tensor contraction operation.

1 Introduction

Branches of scientific computing, particularly computational chemistry, express data as a tensor which can
be viewed as a multi-dimensional analog of a matrix. Chemical methods heavily rely on an operation
commonly referred to as the tensor contraction, which can be viewed as a generalization of matrix-matrix
multiplication. For instance, in the following fragment of the third-order Møller-Plesset (MP3) method [5]
found in computational chemistry,

ε = TABIJ
(
UABCDTCDIJ + VACIKTBCJK + WIJKLTABKL

)
, (1)

the term

VACIKTBCJK (2)

is a tensor contraction involving the four-dimensional tensor V and T expressed using Einstein notation [11].
In fact, all terms denoted as the product of two variables (indicated as regular multiplication) in (1) represent

1

0" 1" 3"2" 4" 5" 6" 7" 8" 9" 10" 11"

0" 1" 3"2" 0" 1" 2" 3" 0" 1" 2" 3"

memory"

mode"A"

Index"into"

mode"B" 0" 1" 2"

(a)

0" 1" 3"2" 4" 5" 6" 7" 8" 9" 10" 11"

0" 1" 0"2" 1" 2" 0" 1" 2" 0" 1" 2"

memory"

mode"B"

Index"into"

mode"A" 0" 1" 2" 3"

(b)

0" 1" 3"2" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 15"14" 16" 17" 18" 19" 20" 21" 22" 23"

0" 1" 1"0" 0" 1" 0" 1" 0" 1" 0" 1" 0" 1" 1"0" 0" 1" 0" 1" 0" 1" 0" 1"

0" 1" 2" 0" 1" 2" 0" 1" 2" 0" 1" 2"

0" 1" 2" 3"

memory"

mode"A"

Index"into"

mode"B"

mode"C"

(c)

0" 1" 3"2" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 15"14" 16" 17" 18" 19" 20" 21" 22" 23"

0" 1" 3"2" 0" 1" 2" 3" 0" 1" 2" 3" 0" 1" 3"2" 0" 1" 2" 3" 0" 1" 2" 3"

memory"

mode"C"

Index"into"

mode"A"

mode"B"

0" 1" 0" 1" 0" 1"

0" 1" 2"

(d)

Figure 1: Generalized column-major storage for different objects. The first line in each image corresponds
to linear memory, and each subsequent line corresponds to the modes associated with each object. (a)
AAB ∈ RLA×LB , (b) ABA ∈ RLB×LA , (c) AABC ∈ RLA×LB×LC and (d) ACAB ∈ RLC×LA×LB .

tensor contractions1. As reproduced, the fragment is incorrect for utilization within chemistry, however the
fragment allows us to discuss many of the challenges associated with computing with tensors.

The number of modes associated with each tensor expresses the number of dimensions, or order, of
the tensor. The modes of each tensor represents a feature of the application and are labeled accordingly
(indicated by superscripts). Assuming a generalization of column-major storage, the order of the modes can
also indicate how each tensor is stored in memory. Examples of how modes can be used to indicate the
storage scheme utilized is given in Figure 1.

We could write an expression such as

XABJI += VACIKTBCJK (3)

to compute the result of (2). Here, XABJI merely acts as an output to store the results of the contraction.
The order of the modes for XABJI was arbitrarily chosen for example purposes in this paper. If

1Throughout this proposal, we ignore the distinction between covariant and contravariant vectors. This assumption does
not affect the following discussions.

2

XABJI ∈ RLA×LB×LJ×LI ,

VACIK ∈ RLA×LC×LI×LK ,

TBCJK ∈ RLB×LC×LJ×LK ,

then each element of XABJI is computed as

χi0i1i2i3+ =

LC−1∑
i4=0

LK−1∑
i5=0

νi0i4i3i5τi1i4i2i5 .

where χi0i1i2i3 is an element of XABJI , νi0i4i3i5 is an element of VACIK , and τi1i4i2i5 is an element of TBCJK .
Given an ordered list of modes used in (3), the subscript ik denotes an element’s index within the kth mode
of that list. In this example, the ordered list used is (A,B, J, I, C,K).

Notice that the relative order of modes is not constant between tensors (each tensor can have a different
order of modes). It is this freedom in order of modes that makes it difficult to ensure high-performance
implementations for tensor contractions. To achieve high-performance for all cases, one would need an
algorithm tailored for every permutation of modes, but this is infeasible as the number of permutations is
related to the order of the tensors, which can be arbitrarily large (requiring an arbitrarily large number of
algorithms to account for the entire space of possible operands).

One approach commonly used to circumvent this issue is to reorder the data via a permutation and re-
shaping of data, so that a general matrix-matrix multiplication (for which high-performance implementations
exist) can be performed to compute the same result. We refer to this as a permute-and-reshape approach.
Work by Bader and Kolda refers to the permutation and reshaping of the tensor as a matricization of a
tensor [4, 3]. To see how this is performed, consider the equivalent (but with rearranged modes) operation

XAIBJ += VAICKTCKBJ . (4)

One can view (4) as the matrix-matrix multiplication

CMN = AMPBPN (5)

if we map each element χi0i1i2i3 , νi0i1i2i3 , and τi0i1i2i3 to elements of CMN , AMP , and BPN according to
the mappings

χi0i1i2i3 = γ(i0+i1LA)(i2+i3LB),
νi0i1i2i3 = α(i0+i1LA)(i2+i3LC),
τi0i1i2i3 = β(i0+i1LC)(i2+i3LB).

where γ(i0+i1LA)(i2+i3LB), α(i0+i1LA)(i2+i3LC), and β(i0+i1LC)(i2+i3LB) are elements of CMN , AMP , and BPN

respectively.
Assuming the same generalized column-major ordering of elements in memory, the result of computing

(5) is the same as directly computing (4). As (5) is a matrix-matrix multiplication, at the expense of
permuting the data (needed to get (3) into the form of (4)), we can achieve high-performance when computing
the operation. The disadvantage of this approach, most pronounced in distributed-memory architecture
computing environments, is that these rearrangements of data can amount to a large communication overhead
associated with the overall computation even though they contribute a lower-order term.

Currently, many libraries and projects view, in some form, the tensor contraction operation as two
permute-and-reshape operations followed by a matrix-matrix multiplication, followed finally by a permute-
and-reshape operation. The initial permute-and-reshape operations ensure the correct result is computed
in the subsequent matrix-matrix multiplication. The final permute-and-reshape operation is required to
ensure the elements in memory appear as if the tensor contraction were directly computed. The Tensor
Contraction Engine (TCE) [6], a project designed to generate efficient code for a given expression of tensor
contractions which essentially generates a series of distributed matrix-matrix multiplication with necessary
data redistributions before and after the computation.

3

Notation Meaning
L Set of all possible modes of tensor

a, b, . . . Set of modes assigned to a tensor
lk k-th mode assigned to a tensor
ik k-th index into a mode
rlk Range of mode lk, i.e., the list of possible index values of mode lk
Llk Dimension of mode lk

a,b, . . . Sequences

α, β, . . . Elements of sequences
G Processing grid
mg Order of shape of processing grid mesh

G〈p0,...,pmg−1〉 The process at location 〈p0, . . . , pmg−1〉 in G
dk dimension of k-th mode of G

α, β, . . . Scalars
a,b, . . . Vectors
A,B, . . . Matrices
A,B, . . . Tensors
D〈p0,...,pk〉 Distribution Partitioning defined by the sequence 〈p0, . . . , pk〉
χ \ψ The scalar χ divides (is a divisor of) ψ

Figure 2: Glossary of notation used throughout this proposal

When discussing distributed-memory computing, it is also important to consider the communication
overhead required when redistributing data among processes. Many commonly utilized communication
patterns involving many processes at once, referred to as collective communications, are used to create
high-performance implementations for linear algebra operations. It is important to understand what condi-
tions each collective communication should be utilized to increase performance. By having a model which
incorporates this information, the task of accommodating new computing architectures is mitigated.

For high-performance distributed-memory dense linear algebra operations, the Elemental library (Ele-
mental) [18] expresses algorithms in terms of a formal notation which allows one to not only systematically
derive algorithms for matrix-matrix multiplication, but also express different types of redistributions of data
in terms of different collectives. By combining these two aspects, tools can automate the derivation process,
and, as a result, identify which collective communications are required for a given efficient algorithm to
proceed.

In this paper, we more formally define tensors and the tensor contraction, briefly describe challenges
that must be addressed when devising a distributed-memory library to support general tensors, and describe
current projects that aim to address the challenges detailed along with their perceived limitations. Finally,
we conclude by proposing a notation for distributing data of tensors in distributed-memory environments
as well as show how the proposed notation can be used to systematically derive algorithms for the tensor
contraction operation.

2 Preliminaries

In this paper, ideas that are likely unfamiliar to the reader will be used. This section provides the necessary
background for subsequent discussions. All terminology introduced in this section is summarized in Figure 2
and the glossary at the end of this proposal.

In this section, we define tensors as well as the tensor contraction operation. In addition, we introduce
the notion of a sequence, relevant notation, and relevant collective communications.

4

Roman Greek
a α
b β
c γ
e ε
t τ
v ν
x χ
y ψ

Figure 3: List of Roman letters and their Greek counterparts used to indicate scalars throughout this
proposal. Depending on the type of object, the Roman letter used may be used with different accenting or
casing.

2.1 Notation

We assume all indexing begins at zero.
We refer to the set of all modes used as L. A set of modes is denoted with a bold-italisized lower-

case Roman letters (a, b, . . .). The k-th mode of l is denoted lk (assuming some ordering of modes in l).
We reserve the lower-case Roman letter i for indexing within modes of a tensor. Subscripts are used to
differentiate between different indexing variables (for instance i0 is different from i1).

In coming discussions we refer to the processing grid used for computation. We use G to refer to the
processing grid and mg to refer to the order of the processing mesh (number of modes used to specify the
shape of the mesh). We reserve the lower-case Roman letter p for indexing within modes of G (subscripts used
to differentiate between modes of G). If we view G as an order-mg mesh, the process at location specified by
the coordinate (p0, p1, . . . , pmg−1) is referred to by G〈p0,...,pmg−1〉

2. We reserve the lower-case Roman letter d

for the dimension of the modes of G (subscripts differentiate modes).
An element of an order-m tensor A ∈ RLl0

×Ll1
×···×Llm−1 is denoted as αi0i1···im−1

where 0 ≤ ik < Llk

for all 0 ≤ k < m − 1. In general, we use Greek lower-case letters for scalars (α, β, γ, . . .), bold lower-
case Roman letters for vectors (a,b,c,. . .), bold upper case Roman letters for matrices (A, B, C, . . .), and
uppercase scripted letters for tensors (A, B, C, . . .). For convenience, the mapping from Roman to Greek
letter is summarized in Figure 3.

2.2 Sequences

We will rely on the notion of a sequence of integers, an ordered set of integers where duplicates are allowed,
for describing the different distributions of tensor data similar to the approach taken in [12].

We use bold lower-case Roman letters with an overline to refer to sequences (a, b, c, . . .). Elements of
sequences are denoted as bold lower-case Greek letters with an overline (α, β, γ, . . .). Angle brackets, 〈 and
〉, are used to explicitly define a sequences.

We illustrate this idea with the following example:

2The reason for using sequence notation instead of tuple notation for a process will be explained later.

5

Example 1. The sequence x = 〈2, 4, 5, 3, 1〉 represents the set of elements {1, 2, 3, 4, 5} ordered such that

x = 〈χ0, χ1, χ2, χ3, χ4〉 = 〈2, 4, 5, 3, 1〉

The sequence x = 〈2, 2, 5〉 represents the set of elements {2, 5} ordered such that

〈χ0, χ1, χ2〉 = 〈2, 2, 5〉

The sequence y = 〈〉 represents the empty sequence.

We now define operations on sequences along with the associated notation we will use throughout this
paper.

Definition 1 (Cardinality).
|x|

refers to the cardinality of the sequence x; i.e., the number of elements comprising the sequence x (including
duplicates).

Definition 2 (Element of).
χ ∈ x

indicates that χ is an element of the sequence x.

Definition 3 (Concatenation).
x t y

indicates the concatenation of y to x; i.e.,

x t y = 〈χ0, . . . , χ|x|−1, ψ0, . . . , ψ|y|−1〉

Definition 4 (Subsequence).
y v x

denotes that y is a subsequence of x; i.e., all elements in y appear in the same relative order in x.

We illustrate the idea of a subsequence with the following example

Example 2. Consider the sequences

x = 〈2, 5, 3〉,
y = 〈2, 3〉,
z = 〈2, 1〉,
w = 〈3, 2〉.

The sequence y is a subsequence of x as all elements of y appear in x and appear in the same relative
order. The sequence z is not a subsequence of x as the element ζ1 = 1 does not appear in x. The sequence
w is not a subsequence of x as all elements of w appear in x but in a different relative order (3 appears
after 2 in sequence x, not before as in w).

A table summarizing the symbols and meanings for sequence operations has been provided in Figure 4.

6

Symbol used Meaning
x Sequence
〈〉 Empty sequence
|x| Cardinality
χ ∈ x Element of
x t y Concatenation
x v y Subsequence

Figure 4: List of symbols and their meanings associated with sequences.

2.3 Tensors

A tensor can be viewed as anm-modal array3 where each mode is related to a certain feature of the application
labeled accordingly. Each mode is written as a superscript of the tensor. The set of all possible modes is
denoted as L. For this proposal, we use uppercase Roman letters as possible modes for tensors understanding
that the set of modes is, in general, infinite.

The order of a tensor is the number of modes associated with the tensor. The dimension of a mode
labeled I, denoted LI , is the length or size of the mode. Under this definition of dimension, any mode
labeled the same, regardless of tensor, must have the same dimension.

The range of a mode labeled I, denoted rI , is the sequence which corresponds to all valid indexing values
of the mode (ordered increasingly). This means rI refers to the sequence 〈0, . . . , LI − 1〉. A subrange is a
subsequence of a range. When referring to a particular element of a tensor, we indicate the location of the
scalar element using subscripts. Each subscript corresponds to an index of the corresponding mode.

We can define an order-m tensor representing the modes l0, l1, . . . , lm−1 of the set of modes l as

Al0l1···lm−1 ∈ RLl0
×Ll1

×···×Llm−1 .

The element of Al0l1···lm−1 at location i0, i1, . . . , im−1 (index ik of mode lk) can be referred to as

αi0i1···im−1
.

We illustrate the introduced terminology with the following example:

Example 3. Given an order-3 tensor
AACB ∈ R3×4×2,

AACB has the following associated with each mode:

Mode Range Dimension
A 〈0, 1, 2〉 3
C 〈0, 1, 2, 3〉 4
B 〈0, 1〉 2

The entry α201 is defined by the following indices:
Mode Index
A 2
C 0
B 1

3An m-modal array is equivalent to an m-dimensional array, however, to avoid confusion we use the former terminology.

7

2.4 Tensor Contraction

A tensor contraction can be viewed as a generalization of matrix-matrix multiplication. Strictly speaking,
the tensor contraction definition with which we are concerned is the contraction defined as the summation
over the product of two tensors. It is this definition that views matrix-matrix multiplication as a special
case. For example, we can write matrix-matrix multiplication as

CIJ = AIKBKJ .

This views each matrix as an order-2 tensor where we are performing a contraction over the mode K. The
definition of a tensor contraction as a summation over the product of tensors is made explicit by noting that
elements of CIJ are computed as

γi0i1 =

LK−1∑
i2=0

αi0i2βi2i1 .

Notice that this corresponds to the definition of matrix-matrix multiplication, and that each output entry
of the matrix C is defined as the summation over the product of entries in A and B along the K mode.

Similarly, we can define matrix-vector multiplication in terms of a tensor contraction as

cI = AIKbK .

In addition to viewing matrix-matrix multiplication as a special case of tensor contractions, all transpose
variants are special cases of a tensor contraction as well. Take the matrix-matrix multiplication

CT = ABT .

This can be written as the tensor contraction

CJI = AIKBJK .

We leave it as an exercise to the reader to see why the previous two statements are equivalent.
In the previous examples, we only discussed the case where at most two modes were involved with each

object involved in the computation. The generalization used to include tensors of arbitrary order, states
that each output element is formed by the product of input tensors summed along all modes shared by both
input tensors. Consider the contraction

Cl0···lm−1 = Al0···lks0···sn−1Blk+1···lm−1s0···sn−1 ,

where l ∩ s = ∅. As mentioned earlier, the contraction presently considered has been expressed in Einstein
notation [11]. This notation states that all shared modes by inputs are implicitly summed over all indices.
Using this notation, the tensor C is defined element-wise as

γi0···im−1
=

Ls0∑
im=0

· · ·
Lsn−1∑

im+n−1=0

βi0···ikim···im+n−1
αik+1···im−1im···im+n−1

.

Notice that we are performing summations over all modes contained in s because each mode in this set is
shared by inputs A and B.

Later, it will be useful to include which modes are being summed over in the contraction without using an
element-wise definition. We do this by alternatively expressing the contraction in Einstein notation, prefixed
with the summation symbol which has, as a subscript, all modes being summed over. This should be viewed
only as an alternative notation, not as a difference in operation being performed. For instance,

Cl0l2 =
∑
l1,l3

Al0l1l3Bl1l2l3 = Al0l1l3Bl1l2l3

8

denotes C should be computed element-wise as

Ci0i2 =

Ll1
−1∑

i1=0

Ll3
−1∑

i3=0

αi0i1i3βi1i2i3 .

Additionally, we are allowed to permute the order of modes in all operands. If one associates a storage
scheme related to the order of modes of each tensor, then a permutation of modes means the data is stored
in permuted order. The computations performed are equivalent, it is just the order of modes which has
changed.

It is this added flexibility/generalization that makes creating high-performance implementations difficult.
However, as shown in Theorem 8, when computing a tensor contraction resulting in an order-m tensor, we
can theoretically expect to achieve O(n

m
2) useful floating point operations per element involved (assuming

each mode of dimension n).

2.5 Collective Communications

The language described in this proposal assumes an elemental-cyclic wrapping of data on the computing grid.
This is the same view taken by the Elemental [18] library for dense linear algebra. ScaLAPACK [9] assumes
a block-cyclic wrapping of data on the computing grid. An elemental-cyclic wrapping can be viewed as a
block-cyclic wrapping with unit block-size. One can view the ideas underpinning Elemental as an example of
Physically Based Matrix Distributions (PBMD) [10]. PLAPACK [26] is another example of a library using
PBMD. Redistributions defined in Elemental and PLAPACK, by design, are implemented with collective
communications (network communications involving a group of processes). The notation used by Elemental
more formally describes how distributions are related via a particular collective communication relative to the
efforts made in PLAPACK. As we argue later, redistributions are also, by design, implemented as collective
communications.

A thorough presentation of the collective communications used in this paper is given in Chan et al. [8]. A
summary of the collective communications used in this proposal is given in Figure 5 and their lower bounds,
with respect to communication, under reasonable assumptions are given in Figure 6. We will primarily be
focused in the allgather, permutation (simultaneous point-to-point), all-to-all, and reduce-scatter operations.

3 Tensor Data Distribution

In this section, we propose a notation for describing how to distribute data of an order-m tensor A on
a processing grid, G, viewed as an order-mg mesh. We then show how redistributions of data between
valid distributions can be implemented via collective communications. Before moving on, we recommend
becoming familiar with the ideas presented in Schatz et al. [22] regarding the notation used for distributing
matrices and vectors in Elemental as well as how this notation is used to systematically derive algorithms
for matrix-matrix multiplication. This will give the reader a thorough understanding of the special case of
tensor contraction involving only order-2 tensors (matrices). The forthcoming discussions should be viewed as
generalizations of the ideas presented therein. To make this document self-contained, the pertinent sections
from that paper are summarized in Appendix A.

3.1 Preliminaries

Our goal is to distribute elements of an order-m tensor A among processes of a processing grid G. Our
approach will be to view G as a logical mg-modal mesh and then assign unique subranges of modes of A to
each process in the processing grid. By doing this, each process will be assigned the elements of A defined
by the assigned subranges of modes.

The partitioning of the ranges of modes among processes is fundamental to coming discussions, and the
following formalism specifies our notation.

9

Operation Before After

Peer-to-

peer

Node 0 Node 1 Node 2 Node 3
x0 x1 x2 x3

Node 0 Node 1 Node 2 Node 3
x1 x0 x3 x2

Broadcast
Node 0 Node 1 Node 2 Node 3

x
Node 0 Node 1 Node 2 Node 3

x x x x

Reduce(-

to-one)

Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)

Node 0 Node 1 Node 2 Node 3∑
j x

(j)

Scatter

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Gather

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Allgather

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Node 0 Node 1 Node 2 Node 3
x0 x0 x0 x0

x1 x1 x1 x1

x2 x2 x2 x2

x3 x3 x3 x3

Reduce-

scatter

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3∑
j x

(j)
0 ∑

j x
(j)
1 ∑

j x
(j)
2 ∑

j x
(j)
3

Allreduce
Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)

Node 0 Node 1 Node 2 Node 3∑
j x

(j)
∑

j x
(j)

∑
j x

(j)
∑

j x
(j)

All-to-all

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(1)
0 x

(1)
1 x

(1)
2 x

(1)
3

x
(2)
0 x

(2)
1 x

(2)
2 x

(2)
3

x
(3)
0 x

(3)
1 x

(3)
2 x

(3)
3

Figure 5: Collective communications considered in this paper.

10

Communication Latency Bandw. Computation Cost used for analysis

Peer-to-peer α nβ – α+ nβ
Broadcast dlog2(p)eα nβ – log2(p)α+ nβ

Reduce(-to-one) dlog2(p)eα nβ p−1
p nγ log2(p)α+ n(β + γ)

Scatter dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Gather dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Allgather dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Reduce-scatter dlog2(p)eα p−1
p nβ p−1

p nγ log2(p)α+ p−1
p n(β + γ)

Allreduce dlog2(p)eα 2p−1p nβ p−1
p nγ 2 log2(p)α+ p−1

p n(2β + γ)

All-to-all dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Figure 6: Lower bounds with respect to communication for the different components of communication.
Conditions for the lower bounds given in [8] and [7]. Here, p corresponds to the number of processes involved
in the communication and n corresponds to the amount of data communicated. The last column gives the
cost functions that we use in our analyses. For architectures with sufficient connectivity, simple algorithms
exist with costs that remain within a small constant factor of all but one of the given formulae. The exception
is the all-to-all, for which there are algorithms that achieve the lower bound for the α and β term separately,
but it is not clear whether an algorithm that consistently achieves performance within a constant factor of
the given cost function exists.

Definition 5 (Partitioning of N). A collection of k sequences {s0, . . . , sk−1} is said to be a partitioning
of the sequence of natural numbers (including zero), 〈N〉, if the following conditions are met:

1. ∀i,j∈{0,...,k−1}∀`0∈si∀`1∈sj `0 6= `1 (No two sequences share the same element)

2. ∀`∈{0,...,k−1}σ`i 6= σ`j when i 6= j (No elements duplicated in any sequence)

3. ∀i∈Ni ∈ ∪k−1j=0sj (All natural numbers appear in a sequence)

The basic idea will be to use different partitionings of the natural numbers to describe the distribution
of ranges of modes of the distributed tensor. This process is referred to as “distributing” a mode. In this
manner, we view an element of a partitioning as specifying a filter to apply to the range of a mode. By
applying a range to a filter, we create a subrange which indicates which indices of the mode to be distributed
are assigned to each process in our computing grid. We formally describe the notion of a sequence filter.

Definition 6 (Sequence filter). Consider a sequence, x, we wish to filter; i.e., form a new sequence
comprised of elements of x. Given a sequence, s, which we view as our filter, then we say x(s) is the
application of a filter s to the sequence x; i.e.

x(s) = 〈χσi
: (0 ≤ i < |s|) ∧ (0 ≤ σi < |x|)〉.

In other words, x(s) is the sequence composed of elements of x in the order specified by elements of s. All
elements of s which are out of the range of x are excluded.

We illustrate this idea with a simple example:

11

G〈0,0〉 G〈0,1〉 G〈0,2〉

rI(〈0, 1, . . .〉) rI(〈0, 1, . . .〉) rI(〈0, 1, . . .〉)
G〈1,0〉 G〈1,1〉 G〈1,2〉

rI(〈0, 1, . . .〉) rI(〈0, 1, . . .〉) rI(〈0, 1, . . .〉)

Figure 7: Example showing which subranges of mode I are assigned to a 2 × 3 processing grid using the
distribution partitioning D〈〉. The top entry of each box designates the process in G, and the bottom entry
corresponds to the subrange assigned.

Example 4. Let x = 〈3, 6, 12, 9〉 and s = 〈0, 2, 4, ...〉. Then

x(s) = 〈3, 12〉.

Let s = 〈3, 8, 1〉. Then
x(s) = 〈9, 6〉.

By filtering a range, we are creating a subrange of the mode. The elements assigned to a process in G are
determined based on which subranges of modes are assigned to the process.

3.2 Distribution Partitionings

We are now ready to define the partitionings we will consider for assigning subranges of modes to processes
of G when distributing elements of a tensor. We will first give examples of desired partitionings and then
provide a definition for the general case.

3.3 Partitionings on an order-2 mesh

Consider a mode whose indices we wish to distribute, I, among processes of G. Throughout this subsection,
we view G as a d0× d1 mesh. We would like to allow for the case where I is replicated on all processes. This
corresponds to all processes being assigned the subrange

rI(〈N〉),

of mode I.
This is a useful distribution as it allows for the replication of elements among processes. However, if all

modes were distributed in this manner, the tensor being distributed would be fully replicated on all processes
which, in general, defeats the purpose of utilizing a distributed-memory architecture. Figure 7 provides a
visual depiction of this distribution. To address this problem, we describe distributions that constrain the
subranges assigned to processes based on the process’s location in the grid.

Consider the case where we assign indices of I to processes in a round-robin fashion based solely on the
process’s location within the column-mode of G. That is, given a process, G〈p0,p1〉, we wish to assign it the
subrange

rI(〈j ∈ N : j ≡ p0 mod d0〉),

of mode I.
Notice that the difference between the previous two distributions is that the original distribution has

been constrained based on a process’s index of a mode of G. We can similarly define a distribution where I

12

G〈0,0〉 G〈0,1〉 G〈0,2〉

rI(〈0, 2, 4, . . .〉) rI(〈0, 2, 4, . . .〉) rI(〈0, 2, 4, . . .〉)
G〈1,0〉 G〈1,1〉 G〈1,2〉

rI(〈1, 3, 5, . . .〉) rI(〈1, 3, 5, . . .〉) rI(〈1, 3, 5, . . .〉)
(a)

G〈0,0〉 G〈0,1〉 G〈0,2〉

rI(〈0, 3, 6, . . .〉) rI(〈1, 4, 7, . . .〉) rI(〈2, 5, 8, . . .〉)
G〈1,0〉 G〈1,1〉 G〈1,2〉

rI(〈0, 3, 6, . . .〉) rI(〈1, 4, 7, . . .〉) rI(〈2, 5, 8, . . .〉)
(b)

Figure 8: Example showing which subranges of mode I are assigned to a 2 × 3 processing grid using the
distribution partitioning (a) D〈0〉 and (b) D〈1〉. The top entry of each box designates the process in G, and
the bottom entry corresponds to the subrange assigned.

is distributed based on a process’s location within the row-mode of G. This distribution results in process
G〈p0,p1〉 being assigned

rI(〈j ∈ N : j ≡ p1 mod d1〉),

of mode I.
Figure 8 provides a visual depiction of the previous two distributions. They are equivalent to the matrix

distributions (different distributions used for each mode) used in Appendix A.
Already, we see a pattern emerge. Each filter used to assign a subrange to a process is parameterized by

two pieces of information: the process’s location in G and the modes of the grid used for creating the filter.
We can generalize the previous two distributions with a single symbol,

D
〈n〉
〈h〉 = 〈j ∈ N : j ≡ n mod dh〉 ,

where h is either 0 or 1 indicating that the process’s column or row mode index is to be used (respectively)
for filtering, and n is the process’s location within that mode. Given these two pieces of information, the
exact subrange to assign process G〈p0,p1〉 is completely specified. As a shorthand, we use the symbol D〈h〉 to

indicate that process G〈p0,p1〉 is assigned the subrange according to the filter D
〈p0,p1〉(〈h〉)
〈h〉 . It should come as

no surprise that to specify the distribution where process G〈p0,p1〉 is assigned the entire range of I is denoted
by D〈〉 (no modes of the grid are required to specify the filter, thus no constraints).

Finally, it is useful to define the distribution which assigns indices of I based on viewing G as a vector of
processes (instead of a rectangular grid). Given a process G〈p0,p1〉, if we wish to assign it the subrange of I
according to a column-major ordering of process locations, we would use the filter

D
〈p0,p1〉
〈0,1〉 = 〈j ∈ N : j ≡ (p0 + p1d0) mod (d0d1)〉 .

To define the filter according to a row-major vector view of the processing grid, we would assign the index-
values according to the filter

D
〈p1,p0〉
〈1,0〉 = 〈j ∈ N : j ≡ (p1 + p0d1) mod (d1d0)〉 .

13

G〈0,0〉 G〈0,1〉 G〈0,2〉

rI(〈0, 6, 12, . . .〉) rI(〈2, 8, 14, . . .〉) rI(〈4, 10, 16, . . .〉)
G〈1,0〉 G〈1,1〉 G〈1,2〉

rI(〈1, 7, 13, . . .〉) rI(〈3, 9, 15, . . .〉) rI(〈5, 11, 17, . . .〉)
(a)

G〈0,0〉 G〈0,1〉 G〈0,2〉

rI(〈0, 6, 12, . . .〉) rI(〈1, 7, 13, . . .〉) rI(〈2, 8, 14, . . .〉)
G〈1,0〉 G〈1,1〉 G〈1,2〉

rI(〈3, 9, 15, . . .〉) rI(〈4, 10, 16, . . .〉) rI(〈5, 11, 17, . . .〉)
(b)

Figure 9: Example showing which subranges of mode I are assigned to a 2 × 3 processing grid using the
distribution partitioning D〈0,1〉 (a) and D〈1,0〉 (b). The top entry of each box designates the process in G,
and the bottom entry corresponds to the subrange assigned.

The previous two distributions are equivalent to the column-major and row-major vector distributions,
respectively, introduced in Appendix A4. We summarize the overall distribution for each process being
assigned the distribution according to a column-major vector or row-major vector view of the grid as D〈0,1〉
or D〈1,0〉 respectively. The order of the integers 0 and 1 in both D〈0,1〉 and D〈1,0〉 describes the order in
which G should be traversed when creating the associated filter. The relevance of the ordering will become
for important when generalizing to computing grids of higher-order (greater than order-2 here). Figure 9
provides a visual depiction of the previous two distribution partitionings.

So far, the only information explicitly needed by a process to indicate the desired distribution is the
sequence of modes of the grid used to generate the filter (given by the subscript of the distribution symbol).
Given this information, the assigned subrange to each process can be viewed as a vectorization of certain
modes of the processing grid followed by a cyclic distribution of rI . For those familiar with Elemental, the
previously mentioned distributions are the exact distributions utilized by that package.

3.4 Partitionings on an order-mg mesh

With the previous examples given, we can discuss how distributions can be described if G is viewed as a
higher-modal mesh (instead of just two-modal). In general, the same pattern of expressing a sequence of
modes of the grid to use in creating the filter exists; we simply have more modes to choose from. For
example, consider an d0 × d1 × d2 processing grid. If we specify the distribution D〈1,0,2〉, this means that
process G〈p0,p1,p2〉 is assigned the subrange

rI

(
D
〈p1,p0,p2〉
〈1,0,2〉

)
where D

〈p1,p0,p2〉
〈1,0,2〉 = 〈j ∈ N : j ≡ (p0 + p1d1 + p2d1d0) mod (d1d0d2)〉,

of mode I.
An example of this distribution partitioning is provided in Figure 10.
So far, we have assumed that the process grid and tensor are aligned; i.e., processes mapping to zero in

the filter are always assigned the zeroth index of a mode. In some cases, it is useful to align the processes
according to a different alignment parameter, σ. We consolidate the above patterns observed for an arbitrary-

4The notion of this kind of distribution of vectors was first introduced in [10] and is the key idea behind PLAPACK and
subsequently Elemental.

14

G〈0,0,0〉 G〈0,1,0〉 G〈0,2,0〉

rI(〈0, 24, 48, . . .〉) rI(〈1, 25, 49, . . .〉) rI(〈2, 26, 50, . . .〉)
G〈1,0,0〉 G〈1,1,0〉 G〈1,2,0〉

rI(〈3, 27, 51, . . .〉) rI(〈4, 28, 52, . . .〉) rI(〈5, 29, 53, . . .〉)
G〈2,0,0〉 G〈2,1,0〉 G〈2,2,0〉

rI(〈6, 30, 54, . . .〉) rI(〈7, 31, 55, . . .〉) rI(〈8, 32, 56, . . .〉)
G〈3,0,0〉 G〈3,1,0〉 G〈3,2,0〉

rI(〈9, 33, 57, . . .〉) rI(〈10, 34, 58, . . .〉) rI(〈11, 35, 59, . . .〉)

G〈0,0,1〉 G〈0,1,1〉 G〈0,2,1〉

rI(〈12, 36, 60, . . .〉) rI(〈13, 37, 61, . . .〉) rI(〈14, 38, 62, . . .〉)
G〈1,0,1〉 G〈1,1,1〉 G〈1,2,1〉

rI(〈15, 39, 63, . . .〉) rI(〈16, 40, 64, . . .〉) rI(〈17, 41, 65, . . .〉)
G〈2,0,1〉 G〈2,1,1〉 G〈2,2,1〉

rI(〈18, 42, 66, . . .〉) rI(〈19, 43, 67, . . .〉) rI(〈20, 44, 68, . . .〉)
G〈3,0,1〉 G〈3,1,1〉 G〈3,2,1〉

rI(〈21, 45, 69, . . .〉) rI(〈22, 46, 70, . . .〉) rI(〈23, 47, 71, . . .〉)

Figure 10: Example showing which subranges of mode I are assigned to a 4× 3× 2 processing grid using the
distribution partitioning D〈1,0,2〉. The top entry of each box designates the process in G, and the bottom
entry corresponds to the subrange assigned.

modal processing grid with the notion of a vectorized distribution partitioning. We define this now and give
an explicit example.

Definition 7 (Vectorized distribution partitioning). Given the mode we wish to distribute, I, a
processing grid viewed as a d0×d1×· · ·×dmg−1 mesh, G, an arbitrary process’s location within G specified
by the sequence p = 〈p0, . . . , pmg−1〉, and a sequence of unique modes of G, x = 〈h0, h1, . . . , hk〉 where
hi ∈ {0, . . . ,mg − 1}, i 6= j =⇒ hi 6= hj, and 0 ≤ k < mg, we define the sequence

D
p(x)
x =

〈
j ∈ N : j ≡

|x|−1∑
`0=0

(
ζ`0

`0−1∏
`1=0

dχ`1

)
+ σ

 mod

|x|−1∏
`=0

dχ`

〉 (6)

for some alignment parameter 0 ≤ σ <

|x|−1∏
`=0

dχ`

.

We call the set of all D
p(x)
x , given any valid choice of p, a vectorized distribution partitioning. The symbol

Dx will refer to the distribution where process G〈p0,p1,...,pmg−1〉 is assigned the subrange rI

(
D

p(x)
x

)
of mode

I.

Example 5. We wish to distribute a mode I of dimension 20 on a process grid arranged in a 2 × 4 × 3
mesh according to the distribution D〈0,2〉 with alignment parameter σ = 4. Then, process p = 〈0, 3, 1〉 is

assigned the subrange 〈0, . . . , 19〉
(
D
〈0,1〉
〈0,2〉

)
of the mode I where

D
p(x)
x = D

〈0,1〉
〈0,2〉 =

〈
j ∈ N : j ≡

(
2−1∑
`0=0

(
ζ`0

`0−1∏
`1=0

dχ`1

)
+ σ

)
mod

(
2−1∏
`=0

dχ`

)〉
= 〈j ∈ N : j ≡ (0 + 1 ∗ 2) + 4 mod (2 ∗ 3)〉
= 〈j ∈ N : j ≡ 6 mod 6〉 .

In other words, under the distribution D〈0,2〉, process G〈0,3,1〉 is assigned the subrange 〈0, 6, 12, 18〉 of I.

We will refer to a vectorized distribution partitioning as a partitioning. Further, as a partitioning is defined
as a set, we refer to an element of a distribution partitioning as a partition. When all modes are distributed
based on some partitioning, we say the tensor has been distributed based on a distribution (specified by how

15

all modes are distributed).

3.5 Distributions

Now that we have introduced the notion of a partitioning, we are ready to specify what conditions must be
satisfied for a distribution of a tensor to be considered valid.

Given an order-m tensor,

Al0l1···lm−1 ∈ RLl0
×Ll1

×···×Llm−1 ,

we wish to distribute among processes of G arranged as an d0 × d1 × · · · × dmg−1 mesh; we consider

Al0l1···lm−1
(
Dx0

, Dx1
, . . . , Dxm−1

)
where Dxk

is a vectorized distribution partitioning as defined previously, a valid distribution if

1. ∀i,j∈{0,...,k−1}∀`0∈xi
∀`1∈xj

`0 6= `1 (No two partitionings share the same element)
2. ∀`∈{0,...,m−1}χ`i 6= χ`j when i 6= j (No element duplicated in any partitioning)

3. ∀`∈{0,...,m−1}∀i∈{0,...,|x`|−1}χ`i ∈ {0, . . . ,mg − 1}. (All elements of partitionings valid)

If the above conditions hold, every element of A will be assigned to at least one (perhaps many) process(es)
in G. The proof of this is left as future work.

The set of elements of A under some distribution assigned to each process in G is the set of elements
whose index within each mode of A is an element of the assigned subrange of the corresponding mode.
Another way to view this is the set of elements assigned to each process is defined as the set of elements
whose location in A is an element of the cross-product of subranges assigned to that process (preserving the
same ordering of modes as the object being distributed). An example showing what elements of a matrix
distributed on G viewed as an order-2 mesh is given below.

Example 6. Consider a matrix, AMN ∈ R6×9, we wish to distribute on a processing grid, G, viewed as
a 2× 3 mesh. Given that we wish to distribute A as

AMN (D〈0〉, D〈1〉),

then the elements of A are distributed among processes according to the diagram

G〈0,0〉 G〈0,1〉 G〈0,2〉
α00 α03 α06 α01 α04 α07 α02 α05 α08

α20 α23 α26 α21 α24 α27 α22 α25 α28

α40 α43 α46 α41 α44 α47 α42 α45 α48

G〈1,0〉 G〈1,1〉 G〈1,2〉
α10 α13 α16 α11 α14 α17 α12 α05 α18

α30 α33 α36 α31 α34 α37 α32 α25 α38

α40 α53 α56 α51 α54 α57 α52 α45 α58

where G〈p0,p1〉 corresponds to the process at location 〈p0, p1〉 in G. Notice that process G〈p0,p1〉 is as-

signed elements whose indices of mode M are in rM

(
D
〈p0,p1〉(〈0〉)
〈0〉

)
and whose indices of mode N are

in rN

(
D
〈p0,p1〉(〈1〉)
〈1〉

)
. This is exactly what is defined by the distribution AMN (D〈0〉, D〈1〉).

16

3.6 Canonical Distributions

We say a distribution is canonical if no duplication of elements among processes exists. Consider an order-m
tensor, A, we wish to distribute among processes of G viewed as an mg-modal mesh. If m > mg, then any
valid distribution is canonical (fewer modes in G relative to modes in the object ensure no duplication of
data).

If m ≤ mg, then any distribution involving all modes of G is canonical. For example, when distributing
an order-2 tensor on G viewed as an order-3 mesh, distributions such as

AIJ(D〈0〉, D〈1,2〉),

AIJ(D〈0,1,2〉, D〈〉)

are canonical, but

AIJ(D〈0,1〉, D〈〉)

is not canonical (not all modes of G are used to describe the distribution).
When discussing how to derive algorithms for tensor contractions, we maintain the constraint that at the

beginning of the algorithm, input and final output objects must be in canonical distributions. Additionally,
any final output objects must be in canonical distributions at the end of the algorithm. This property is held
if we first assign a single mode of G to each mode of the object in increasing order. If the order of the object
is greater than the order of G, D〈〉 partitionings are used once all modes of the grid have been exhausted.
Consider mapping an order-3 tensor on a order-2 grid. The canonical distribution we use is

AIJK(D〈0〉, D〈1〉, D〈〉).

If the order of the object is less than the order of G, all unused modes of G are appended to the distribution
partitioning assigned to the last mode of the object, i.e., for mapping a order-2 tensor to an order-3 processing
grid, we will use the distribution

AIJ(D〈0〉, D〈1,2〉).

The necessary proofs for statements treated as fact is left as future work.

3.7 Elemental Distributions: Subset of the proposed

Elemental defines a set of distributions for matrices which can be viewed as special cases of the proposed
notation. One assumption that Elemental makes for distributing matrices is that the mesh used is viewed
as a 2-D mesh. In the following table, we show how the distributions used in Elemental are expressed in the
proposed notation by relating the assigned subranges to processes.

Elemental distribution Assigned subrange to G〈p0,p1〉 Proposed distribution
∗ 〈j ∈ N〉 D〈〉
MC 〈j ∈ N : j ≡ p0 mod d0〉 D〈0〉
MR 〈j ∈ N : j ≡ p1 mod d1〉 D〈1〉
VC 〈j ∈ N : j ≡ (p0 + p1d0) mod (d0d1)〉 D〈01〉
VR 〈j ∈ N : j ≡ (p1 + p0d1) mod (d0d1)〉 D〈10〉

4 Redistributions

In the previous section, we described valid distributions for distributing an order-m tensor, A, to a process
grid arranged as an order-mg mesh. In this section, we describe how, by design, data of A is redistributed
on this mesh from one distribution to another utilizing the collective communications listed in Figure 5.
Each subsection describes a different collective communication. The headers of each subsection should be

17

interpreted as defining the collective communication discussed, along with how distribution partitioning
symbols of a valid distribution are affected. This is done for brevity; descriptions of how entire distributions
are affected by the communication are provided within the subsection.

We will restrict our proposed language to only include the redistributions described in this section.
Further, in this section we assume the alignment parameter for determining mode mappings is zero, that is
σ = 0, an assumption that is easily lifted.

4.1 Allgather: Dy ← Dyt〈h`〉

Recall that the distribution of an order-m tensor is of the form

Al0···lm−1(Dx0
, Dx1

, . . . , Dxm−1
).

In this subsection, we are concerned with redistributions of the form

Al0···lm−1(Dx0
, . . . , Dxk−1

, Dy, Dxk+1
, . . . , Dxm−1

)← Al0···lm−1(Dx0
, . . . , Dxk−1

, Dyt〈h`〉, Dxk+1
, . . . , Dxm−1

).

Notice that the only change in the distribution of A is that the distribution partitioning assigned to mode
lk has changed to Dy from Dyt〈h`〉.

In this case, we are redistributing elements of A such that process G〈p0,p1,...,pmg−1〉 initially stores the
subrange of lk according to the distribution partition

Dz
yt〈h`〉 =

〈
j ∈ N : j ≡

|y|−1∑
`0=0

(
ζ`0

`0−1∏
`1=0

dψ`1

)
+ ζ |y|

|y|−1∏
`1=0

dψ`1

 mod

dh`

|y|−1∏
`1=0

dψ`1

〉 ,
where z = 〈p0, . . . , pmg−1〉(y t 〈h`〉). Performing an allgather collective within the h` mode of the process
grid does not affect any partitionings besides Dyt〈h`〉 as no other partitionings involve the h` mode of G.

An allgather communication within the h` mode of the process grid will ensure that at the end of the
communication process G〈p0,p1,...,pmg−1〉 is assigned the subrange of lk defined by

dh`
−1⋃

`0=0

D
z`0

yt〈h`〉,

where zi = 〈p0, . . . , ph`−1, i, ph`+1, . . . , pmg−1〉(y t 〈h`〉).
We recognize the resulting distribution partitioning asDz

y where z = 〈p0, . . . , ph`−1, i, ph`+1, . . . , pmg−1〉(y)
meaning the final distribution of the tensor is

Al0···lm−1(Dx0 , . . . , Dxk−1
, Dy, Dxk+1

, . . . , Dxm−1).

For a proof, see Appendix B.

4.2 Scatter: Dxt〈h`〉 ← Dx

Consider the order-m tensor Al0···lm−1 distributed as

Al0···lm−1(Dx0 , · · · , Dxm−1).

Given a mode we wish to scatter along, h`, the result of scattering mode lk is

Al0···lm−1(Dx0 , . . . , Dxkt〈h`〉, Dxk+1
, . . . , Dxm−1).

Beginning with a valid distribution, this communication is optimized by performing a local rearrangement
of data as the elements required in the resulting distribution are a subset of those already stored by the

18

process. Having the scatter semantics clearly defined will help us later in describing the semantics of the
reduce-scatter operation. In particular, scatter operations are useful when the entire tensor is stored on a
single, lower order, hyper-plane of G. An example of this is when all entries of a matrix are stored in a single
column of processes in a 2-D process grid.

4.3 All-to-all: (Dxt〈h`〉, Dy)← (Dx, Dyt〈h`〉)

An all-to-all collective within mode h` of G can be viewed as performing an allgather followed by a scatter.
Thus, an all-to-all communication within mode h` of the processing grid redistributes the data such that the
symbol pair change

(Dxt〈h`〉, Dy)← (Dx, Dyt〈h`〉)

occurs.

4.4 Reduce-scatter: Bl0(Dxt〈h`〉)← Al0l1(Dx, D〈h`〉)

The goal of a reduction is to eliminate a mode of the distributed tensor tensor by accumulating elements.
In this subsection, we first outline the effect of eliminating, via reduction, a mode of our tensor with a single
reduce-scatter operation, and next describe the effect of performing the reduction using a multi-step version;
the latter being viewed as a generalization of the former.

4.4.1 Single-step reduce-scatter mode elimination

Here, we are concerned with the global operation:

Bl0...lk−1lk+1...lm−1 =
∑
lk

Al0...lk−1lklk+1...lm−1 (7)

defined element-wise as

βi0...ik−1ik+1...im−1
=

Llk
−1∑

ik=0

αi0...ik−1ikik+1...im−1
.

As an example of this operation, consider the case where we wish to reduce the columns of a matrix together
(forming a vector); i.e., given a matrix, A, partitioned by columns,

A =
(

a0 a1 . . . ak−1
)
,

we wish to compute the vector

b =

k−1∑
`=0

a`.

We can express this operation as

bI =
∑
K

AIK .

Given Al0...lk−1lklk+1...lm−1 distributed as

Al0...lk−1lklk+1...lm−1(Dx0 , . . . , Dxk−1
, D〈h`〉, Dxk+1

, . . . , Dxm−1),

we can form the appropriate output tensor B by performing a reduction in the h` mode of G. We implement
the reduction with a reduce-scatter collective. As a reduction is implemented as a reduce-scatter, we must

19

scatter the data resulting from the reduction. As we can choose how to arrange data to be scattered, the
distribution associated with B is flexible. By arranging the data correctly, we can, in effect, scatter one of
the modes remaining after the reduction. This means the resulting distribution of B is

Bl0...lk−1lk+1...lm−1(Dy0
, . . . , Dyk−1

, Dyk+1
, . . . , Dym−1

),

where

yj =

{
xj t xk if j = `

xj otherwise

for some (0 ≤ ` < m) ∧ (` 6= k).

4.4.2 Multi-step reduce-scatter mode elimination

Previously, we showed how a single reduce-scatter collective can be utilized to fully eliminate a mode of a
tensor via reduction. Recall, the operation we are computing is a reduction of mode lk expressed as

Bl0...lk−1lk+1...lm−1 =
∑
lk

Al0...lk−1lklk+1...lm−1 ,

where

βi0...ik−1ik+1...im−1
=

Llk
−1∑

ik=0

αi0...ik−1ikik+1...im−1
.

Expressed in this form, this performs the reduction in one step. By introducing a temporary Tl0...lk−1l
′
klk+1...lm−1

where Ll′k
\Llk , we could write the reduction in two steps, first forming Tl0...lk−1l

′
klk+1...lm−1 defined element-

wise as

τi0...ik−1i′kik+1...im−1
=

f(i′k+1)−1∑
ik=f(i′k)

αi0...ik−1ikik+1...im−1
,

where f(x) = (x+ 1)
Llk

Ll′
k

, and then computing Bl0...lk−1lk+1...lm−1 via a single reduce-scatter

Bl0...lk−1lk+1...lm−1 =
∑
l′k

Tl0...lk−1l
′
klk+1...lm−1 .

In effect, the first reduction forms an intermediate that captures partial contributions to the final result. The
second reduction then accumulates the partial results together to compute the final result. We can describe
this two-step process as

Tl0...lk−1l
(1)
k lk+1...lm−1 =

∑
lk

Al0...lk−1lklk+1...lm−1

Bl0...lk−1lk+1...lm−1 =
∑
l
(1)
k

Tl0...lk−1l
(1)
k lk+1...lm−1 ,

where l
(1)
k indicates that Tl0...lk−1l

(1)
k lk+1...lm−1 represents partial contributions and requires further reduction

to eliminate l
(1)
k . Although this is technically not in the correct form (as the first reduction does not reduce

over all indices of lk), we feel the meaning is understood as the output has a partially-reduced mode.
In general, we can view one single reduction as a series of reductions, which eventually will result in a

tensor with an eliminated mode. For instance, we can view the reduction of lk in A as the following series
of reductions

20

Tl0...lk−1l
(1)
k

lk+1...lm−1 =
∑
lk

A
l0...lk−1lklk+1...lm−1

Tl0...lk−1l
(2)
k

lk+1...lm−1 =
∑
l
(1)
k

T
l0...lk−1l

(1)
k

lk+1...lm−1

...

Bl0...lk−1lk+1...lm−1 =
∑
l
(n)
k

T
l0...lk−1l

(n)
k

lk+1...lm−1 .

We use the notation l
(j)
k to indicate that a mode of a tensor represents partial contributions associated with

performing j reduction steps and is intended for elimination from the tensor via reduction. For brevity, we

summarize all l
(j)
k modes with l′k, where it is understood that computational progress is made if there is no

difference in inputs and outputs.
When viewing a reduction as a multi-step process, it is important to note that the number of useful

reductions able to be performed is bounded by the length of the original mode being reduced. One can
continue performing reduction steps past this point, however no new progress will be made.

Putting this together, given the tensor A distributed as

Al0...lk−1lklk+1...lm−1(Dx0
, . . . , Dxk−1

, Dxkt〈h`〉, Dxk+1
, . . . , Dxm−1

),

and performing the series of operations

Tl0...lk−1l
′
klk+1...lm−1 =

∑
lk

Al0...lk−1lklk+1...lm−1

Bl0...lk−1lk+1...lm−1 =
∑
l′k

Tl0...lk−1l
′
klk+1...lm−1 ,

we know the form of the distribution of B as we must ensure that the semantics of this multi-step approach,
at least, meet the semantics of performing a single-step reduction. In fact, the multi-step approach is more
flexible than the single-step approach. However, for now, let us restrict ourselves to meeting the semantics
of the single-step reduction.

We are now tasked with determining how Tl0...lk−1l
′
klk+1...lm−1 is distributed. Then, Tl0...lk−1l

′
klk+1...lm−1

must be distributed as

Tl0...lk−1l
′
klk+1...lm−1(Dy0

, . . . , Dyk−1
, Dyk

, Dyk+1
, . . . , Dym−1

)

where

yj =

{
xj t xk if j = `

xj otherwise

for some (0 ≤ ` < m).
The important distinction between this definition and the definition in the single-step approach is that

here the distribution of T can be the same as the distribution of A. The difference is that here a mode of
smaller dimension has replaced the mode we originally wished to eliminate. Another way to view this is
that here computation, instead of redistribution of data, indicates progress of the algorithm. It is because
of this added generality, relative to the single-step approach, that we previously stated that the multi-step
approach is more flexible than the single-step approach for reducing a mode. Further, as this statement
applies to all multi-step reductions, and each reduction can be viewed as a multi-step reduction, the space
of possible distributions of the final output, B, increases dramatically.

21

4.5 Elemental Redistributions: The order-2 case of the proposed

In the following table, we show how all of the redistributions in Elemental can be expressed as redistributions
given in this paper. When translating from Elemental notation to the proposed, in general, the symbol C
in Elemental maps to 0 in the proposed notation and R maps to 1. The table is templatized by a pair of
variables x and y such that x 6= y and x, y ∈ {0, 1, C,R}. When interpreted in the “Elemental Redistribution”
column, x, y ∈ {C,R}. When interpreted in the “Proposed Redistribution” column, x, y ∈ {0, 1}.

Elemental Redistribution Collective used Proposed Redistribution
(Mx,My)↔ (Mx, ∗) ← reduce-scatter, → allgather (D〈x〉, D〈y〉)↔ (D〈x〉, D〈〉)
(Mx,My)↔ (∗,My) ← reduce-scatter, → allgather (D〈x〉, D〈y〉)↔ (D〈〉, D〈y〉)
(Vx, ∗)↔ (Mx, ∗) ← reduce-scatter, → allgather (D〈xy〉, D〈〉)↔ (D〈x〉, D〈〉)
(Vx, ∗)↔ (Mx,My) ↔ all-to-all (D〈xy〉, D〈〉)↔ (D〈x〉, D〈y〉)
(Vx, ∗)↔ (Vy, ∗) ↔ peer-to-peer (D〈xy〉, D〈〉)↔ (D〈yx〉, D〈〉)
(Mx, ∗)↔ (∗, ∗) ← reduce-scatter, → allgather (D〈x〉, D〈〉)↔ (D〈〉, D〈〉)
(∗,Mx)↔ (∗, ∗) ← reduce-scatter, → allgather (D〈〉, D〈x〉)↔ (D〈〉, D〈〉)
(Mx, ∗)↔ (∗,Mx) ↔ all-to-all (D〈x〉, D〈〉)↔ (D〈〉, D〈x〉)

The last line in the above table may be unfamiliar to the reader. This redistribution is omitted in
Elemental’s list of redistributions, although it is valid.

5 Systematically deriving algorithms for tensor contractions

Up to this point, we have defined valid distributions and redistributions of our tensors. We have not
commented on how these are used in deriving correct algorithms for general tensor contractions. In this
section, we explain how one can derive different algorithms targeted for situations where exactly one tensor
involved in the contraction is considered “large” and the other two “small”. Each algorithm will avoid
communicating the “large” tensor at the expense of communicating the “small” tensors to reduce the time
devoted to communication. If the reader is familiar with Schatz et al. [22], these algorithms are referred to
as the different “stationary” algorithmic variants.

We view the derivation process as a propagation of constraints. We will begin with fixed constraints on
our objects; then by continually applying additional constraints, we will eventually arrive at a valid algorithm
for the contraction.

One rule that we will not break during this propagation is that during local computation, all modes,
regardless of the tensor in which they appear, must be distributed in the same manner. This is done to ensure
correctness of the algorithms.

We will use the example given in the introduction as motivation for this section. Recall the operation in
question was

XABJI += VACIKTBCJK .

For simplicity, we will describe algorithms for the equivalent operation

CABJI += AACIKBBCJK .

When deriving algorithms, we will assume our processing grid, G, is of the same order as the highest-order
tensor involved in the operation. We conjecture that with this constraint, we can ensure scalability in our
algorithms.

5.1 Stationary C: Avoid communicating C

For this algorithm, we wish to avoid communicating C. Further, we would like an algorithm of the form:

22

Prep
AACIK(?, ?, ?, ?)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(?, ?, ?, ?)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(?, ?, ?, ?)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Compute CABJI(?, ?, ?, ?) += AACIK(?, ?, ?, ?)BBCJK(?, ?, ?, ?)

In our algorithm templates, “?” indicates an unknown entry we must be resolved before we can arrive at a
complete algorithm. In the Prep phase, we redistribute each tensor and prepare it for computation in the
Compute phase. By definition, no communication of data occurs when transitioning from the Prep phase to
the Compute phase.

As we wish not to communicate C, we shouldn’t redistribute C, meaning the redistribution performed in
the Prep phase is equivalent to the identity transformation. This implies the following modifications can be
made to the template

Prep
AACIK(?, ?, ?, ?)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(?, ?, ?, ?)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Compute CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉) += AACIK(?, ?, ?, ?)BBCJK(?, ?, ?, ?)

As all modes, regardless of tensor, must be distributed in the same way during local computation, we can
perform the following substitutions

Prep
AACIK(D〈0〉, ?, D〈3〉, ?)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈1〉, ?, D〈2〉, ?)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Compute CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉) += AACIK(D〈0〉, ?, D〈3〉, ?)BBCJK(D〈1〉, ?, D〈2〉, ?)

We are now tasked with determining how to distribute the remaining modes. Recall that we must ensure
that no two modes use the same modes of the processing grid for distribution. Examining our template in
its current state, we see all modes of G have been used to distribute modes. Therefore, we must assign the
distribution partitioning D〈〉 to all remaining modes in the computation phase (and by extension in the Prep
phase as well). This results in the following template

Prep
AACIK(D〈0〉, D〈〉, D〈3〉, D〈〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈1〉, D〈〉, D〈2〉, D〈〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Compute CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉) += AACIK(D〈0〉, D〈〉, D〈3〉, D〈〉)B
BCJK(D〈1〉, D〈〉, D〈2〉, D〈〉)

This leaves us with our final algorithm, which can be summarized as
1. Redistribute tensors A and B

2. Perform local tensor contraction along the modes K and C.
A cost analysis of the above algorithm is given in Appendix C.1.

5.2 Stationary A: Avoid communicating A

Now, we look at the same operation, but we wish to avoid communicating A. As A contains some modes
involved in the contraction which will be distributed in some way, we will have to perform a reduction to

23

compute the final results; otherwise we only have partially computed the final values. We use the notation∑̂
h

to indicate a reduction across mode h of the processing grid. As we know we must perform a reduction

after local computation, we would like an algorithm based on the following template:

Prep
AACIK(?, ?, ?, ?)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(?, ?, ?, ?)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(?, ?, ?, ?)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(?, ?, ?, ?, ?, ?) += AACIK(?, ?, ?, ?)BBCJK(?, ?, ?, ?)

Reduce
TAIK

′BJ(?, ?, ?, ?, ?) =
∑̂
?

TAC
′IK′BJ(?, ?, ?, ?, ?, ?)

CABJI(?, ?, ?, ?) =
∑̂
?

TAIK
′BJ(?, ?, ?, ?, ?)

Again, by definition, no communication occurs across boundaries of phases. In the above template, the

tensors TAC
′IK′BJ and TAIK

′BJ represent intermediate objects which store the partial results of the overall
computation. The order of their modes and reductions was arbitrarily chosen. We have two reduction steps
since the global operation represents the contraction over two modes. To ensure correctness of our resulting

algorithm, we must set each element of TAC
′IK′BJ to

τi0i1i2i3i4i5 =

{
γi0i4i5i2 if i1 = 0 ∧ i3 = 0

0 otherwise.

and set all entries of TAIK
′BJ to zero. We can now proceed propagating constraints to the algorithm. In

this example we do not wish to redistribute A. Propagating this information results in

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(?, ?, ?, ?)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(?, ?, ?, ?)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(?, ?, ?, ?, ?, ?) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(?, ?, ?, ?)

Reduce
TAIK

′BJ(?, ?, ?, ?, ?) =
∑̂
?

TAC
′IK′BJ(?, ?, ?, ?, ?, ?)

CABJI(?, ?, ?, ?) =
∑̂
?

TAIK
′BJ(?, ?, ?, ?, ?)

for our template. Propagating the information that during local computations, all modes must be distributed
in the same manner results in

24

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(?, D〈1〉, ?, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(?, ?, ?, ?)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, ?, ?) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(?, D〈1〉, ?, D〈3〉)

Reduce
TAC

′IK′BJ(?, ?, ?, ?, ?) =
∑̂
?

TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, ?, ?)

CABJI(?, ?, ?, ?) =
∑̂
?

TAIK
′BJ(?, ?, ?, ?, ?)

for our template. Notice that we did not assign anything to modes of C in the reduce phase. This is because
our constraint only tells us about local computations. As reductions are global operations, this constraint
does not apply. The remaining modes of the local computation must be distributed as D〈〉. Propagating
this information results in

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(?, ?, ?, ?)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)

Reduce
TAIK

′BJ(?, ?, ?, ?, ?) =
∑̂
?

TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉)

CABJI(?, ?, ?, ?) =
∑̂
?

TAIK
′BJ(?, ?, ?, ?, ?)

for our template. Now all that is left is determining what distributions to assign the remaining modes
involved in the reductions. Recall that a reduce-scatter provides us options for resulting distributions. This
is a valuable feature as we have flexibility in how CABJI must be distributed. One heuristic we can adopt is
to avoid replicating any entries of CABJI . Therefore, we would like to have CABJI distributed canonically.
Further, if at all possible, we would like to avoid redistributing CABJI after the final reduction. One such
distribution scheme is to distribute CABJI as CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉). This has the added benefit that

the modes shared by AACIK are distributed equivalently. Propagating these constraint results in

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)

Reduce
TAIK

′BJ(?, ?, ?, ?, ?) =
∑̂
?

TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉) =
∑̂
?

TAIK
′BJ(?, ?, ?, ?, ?)

for our template. An examination of the Reduce phase shows that the only modes involved in the reduction
steps are C ′, K ′, B, and J . As these are the only modes affected by the reductions, the others must remain

25

under the same distribution5. Using this knowledge, and knowledge of how reduce-scatter collectives operate,
we can modify our template resulting in

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)

Reduce
TAIK

′BJ(D〈0〉, D〈2〉, D〈3〉, D〈1〉, D〈〉) =
∑̂
1

TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉) =
∑̂
3

TAIK
′BJ(D〈0〉, D〈2〉, D〈3〉, D〈1〉, D〈〉)

for our template, which is a resulting valid algorithm. Again, it should be noted that this is just one of many
possible final distributions of CABJI . Depending on the constraints of the environment, other choices may
be better suited. Regardless, the derivation process remains the same. As our template is completely filled,
we have a valid algorithm for computing the specified operation.

A cost analysis of the above algorithm is given in Appendix C.2.

5.3 Stationary B: Avoid communicating B

The stationary B algorithm can be derived analogously to the stationary A algorithm.

5.4 Summary

In this section, we have shown how to derive three different variants of a specific tensor contraction. Although
we only showed one example the ideas generalize to all contractions as long as the same assumptions about
grid order are made. Generalizations such as one tensor being of lower order than the others follow the same
derivation process starting with the same assumptions. Further, this derivation process applies to cases
where the order of the computing grid is smaller than the largest tensor. In addition, this process supports
the reduction across virtual modes of the processing grid (a reduction across multiple modes of the grid at
once). For example, performing the reduction of an mode distributed as D〈0,1〉 does not require any other
special rules to support.

One disadvantage to all these algorithms is that they assume a large amount of extra memory is available
to store each tensor. One can envision creating blocked versions (which partition some of the operands) of
each algorithm to mitigate this effect.

6 Related work

Attempts from many different fields have been made to address the challenges associated with tensor com-
putations in distributed-memory environments, all of which are useful towards to end goal of creating a
well-designed library for high-performance tensor computation. Many of these approaches focus more on
providing functionality to the computational community rather than focusing on understanding the under-
lying computation being performed. We detail the related work here.

5Though not technically correct, here we are assuming each reduction is performed as a single-step reduction. Assuming
this, then the statement holds.

26

6.1 Tensor Contraction Engine

The Tensor Contraction Engine [6] (TCE) is a sophisticated project which, given an arbitrary tensor contrac-
tion expression, generates efficient code which implements the specified expression. By applying heuristics
and expression rewrites, TCE is able to generate a search space of algorithms which reduce the computational
complexity while retaining necessary properties such as having the data fit in memory. As a final step, the
TCE generates code for the selected algorithm in terms of matrix-matrix multiplication which can achieve
high-performance (given an appropriate library).

As we mentioned earlier in this paper, mapping tensor contractions to matrix-matrix multiplication can
result in significant overhead due to the communication required to redistribute the data in preparation for
computation. However, this final mapping is a result of the availability of high-performance libraries. There
is no reason why, given a high-performance multi-linear algebra library, one could not replace the final step of
TCE and implement the selected algorithm with the multi-linear algebra library, thereby reaping all benefits
of the analysis of the TCE.

6.2 Cyclops Tensor Framework

The Cyclops Tensor Framework [23] (CTF) is a framework designed for applications based on tensor con-
tractions which involve tensors with some form of symmetry. The CTF is designed for distributed-memory
computing environments. By exploiting symmetry, CTF can significantly reduce the storage requirements
while still providing an implementation for tensor contractions which provably achieves the communication
lower bound for each tensor contraction. An elemental-cyclic distribution of entries is used to distribute only
the unique portion of the symmetric tensors required in the operation. The general pattern for performing a
tensor contraction is broken into a communication phase, which redistributes data among all processes using
an all-to-all collective communication, and a computation phase which performs the actual computation.
To ensure correctness with arbitrary processing grid meshes, CTF maps the problem to a virtual processing
grid which then is mapped to the physical grid used.

6.3 SIAL

The Super Instruction Architecture (SIA) is an environment comprising a programming language, SIAL, and
a runtime system, SIP, with the goal of providing portable and efficient code related to tensor computations
for a wide array of computing environments including distributed-memory environments [20]. SIAL exposes
commonly used abstractions in scientific computing, such as blocking, providing the user a useful method
of describing how an algorithm proceeds without unnecessarily complicating the code. Programs written
in SIAL are compiled to a bytecode which is then interpreted by an SIP virtual machine which handles
the execution of the program. Additionally, the SIP handles difficulties associated with parallelism, thus
hiding this aspect of the program from the user. Distributed-memory parallelism in the SIP is handled
through the use of asynchronous communication routines to aid in effectively overlapping computation with
communication. One important aspect of this project is that all computation fully computes a resulting
block during local computation.

As an example of the use of SIAL, the Advanced Concepts in Electronic Structure library (ACES) [15]
implements a suite of chemical methods of electronic structure theory.

6.4 NWChem

Similar to the ACES project described previously, the NWChem [25] package is designed to provide users
access to many computational chemistry methods. NWChem is implemented through a distributed-memory
framework built upon the Global Arrays toolkit (GA) [17, 14, 1]. The goal of GA is to provide the programmer
a shared-memory interface to the user even though computing in a distributed-memory environment. When
a user requests data at a particular global location, it is up to GA to ensure that the data is communicated
correctly. The interface allows for all types of redistributions, and as a result does not attempt to enforce

27

regularity in the data which is communicated. As in the ACES project, the goal is not to devise a framework
for the underlying computation, but a framework for expressing the computation needed to be performed.

6.5 CAST

Work by Rajbhandari et al. [19] provides a framework for the tensor contraction operation involving tensors
which contain some form of symmetry. Similar to the proposed work, this work uses an elemental-cyclic
wrapping of data onto the mesh and provides conditions which must be met to create a valid distribution.
Using these constraints, and a model for computation, this work creates a space of algorithms which are
then searched to find an efficient implementation. The algorithms created rely on a three-phase approach
to computing a tensor contraction which is can be summarized as broadcasting, computing, and finally
redistributing.

Indeed, many of the ideas in this work and the proposed work are shared: utilizing an elemental-cyclic
distribution of data, defining similar valid distributions, and creating a space of algorithms which must be
searched. The key difference, in our eyes, is that the proposed work formalizes the relationship between
distributions of elemental-cyclic wrappings of data and the set of collective communications. By doing so,
algorithms involving many more of the collective communications can be created and the algorithms required
can be systematically derived and examined.

6.6 Other work

Work by Gao, et al. [12] takes a compiler approach to creating high-performance programs for tensor con-
tractions. Similar to CTF, this work breaks the global computation into phases of communication and
computation. The main difference is that this work allows for reduction-based algorithms (algorithms which
utilize reduce-scatter collectives to perform part of the computation) thereby allowing some amount of flex-
ibility. One significant drawback of this work is that presently, the approach taken is to serialize or group
multiple modes of the tensors together as a single index and then apply a well-known high-performance
linear algebra library to compute the result. As we have argued, this can incur additional cost due to
communication which a native tensor library could potentially avoid.

7 Conclusion and Future Work

In this paper, we have proposed a notation for describing how tensors are distributed and redistributed on
processing grids. Additionally, we have shown how one can systematically derive algorithms for the tensor
contraction operation. As this work is preliminary, we conclude with ideas for future work.

Incorporate generalizations of “3D” algorithms. In this paper, we assumed that the processing
grid used for computation is of the same order as the tensors involved in the computation. Looking at
linear algebra, there are a class of algorithms where the processing grid is viewed as an order-3 mesh
instead of an order-2 mesh commonly referred to as “3D” algorithms[2]. It is unclear how 3D algorithms
(or generalizations thereof) fit into the proposed notation. As 3D algorithms provide benefits for parallel
matrix-matrix computation, one can imagine similar benefits can be obtained for tensor contractions.

Automate algorithm derivation and selection. The proposed notation provides a systematic way
to derive algorithms for tensor contractions. However, the process of deriving the algorithms and picking
the optimal among the space of algorithms can potentially be time consuming, especially considering the
complexity of many applications. As the goal of the notation is to provide a formal notation for all important
features of the domain, one could envision creating a tool which can process and select the optimal algorithm,
similar to how DxT has been applied to linear algebra [16].

28

Incorporate other tensor operations. In this paper, we only focus on the tensor contraction operation.
There exist a slew of other tensor operations which are important for other domains. It would be interesting
to see if/how one could similarly systematically derive algorithms for these operations as well using the
proposed notation.

Incorporate symmetry. One significant drawback of computing with tensors storing all elements large
amount of data required to express the problem. As one increases the order of the tensor being computed
with, the amount of data required increases dramatically. If one can assume some symmetry within the
tensor, this effect can be reduced significantly [21]. However, it is unclear how to incorporate this into the
proposed notation.

Investigate utility of redistribution features. Looking at how high-performance matrix-matrix multi-
plication is performed in Elemental, the reduce-scatter operation is used to directly reduce the partial results
to final results in one step. However, as we have argued in this paper, there is opportunity for a reduction
of modes in multiple-steps. As this case does not appear in the matrix case, it would be interesting to
investigate what, if any, benefits there are to performing a reduction as a multi-step process.

Further, other redistributions are not utilized in the matrix case, at least they are not described in the
relevant papers such as using an all-to-all to redistribute between a specific set of distributions (mentioned
in Section 4). Investigating the utility of such redistributions could provide benefits in the tensor case.

Expand distribution/redistribution rules The proposed notation is rich in the distributions and re-
distributions defined, however it is by no means complete. One could envision other rules which are simple to
incorporate and useful in practice. Examining the patterns seen while executing different algorithms could
potentially result in other rules created.

Provide a library. One assumption made in this paper is that in the end, the notation enables a high-
performance implementation to exist. In theory, if the ideas presented are correctly implemented, a high-
performance library for tensor contractions should be the result. However, at this point, it is unclear how
difficult the ideas proposed are to implement.

Acknowledgments

We would like to than Tze Meng Low, Robert van de Geijn and Tamara G. Kolda for their contributions to
many aspects of this paper. We thank the other members of the FLAME team for their support. This work
was also partially sponsored by NSF grants ACI-1148125/1340293 (supplement) and CCF-1320112.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References

[1] Global arrays webpage. http://hpc.pnl.gov/globalarrays/.

[2] R.C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach to
parallel matrix multiplication. IBM Journal of Research and Development, 39:39–5, 1995.

[3] Brett W. Bader and Tamara G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Transactions on Mathematical Software, 32(4):635–653, December 2006.

[4] Brett W. Bader and Tamara G. Kolda. Efficient matlab computations with sparse and factored tensors.
SIAM Journal on Scientific Computing, 30(1):205–231, 2007.

29

[5] R J Bartlett. Many-body perturbation theory and coupled cluster theory for electron correlation in
molecules. Annual Review of Physical Chemistry, 32(1):359–401, 1981.

[6] G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R.J.
Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R.M. Pitzer, J. Ra-
manujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel programs for a
class of ab initio quantum chemistry models. In Proceedings of the IEEE, volume 93, pages 276–292,
2005.

[7] Jehoshua Bruck, Ching tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weathersby. Efficient algorithms
for all-to-all communications in multi-port systems. In IEEE Transactions on Parallel and Distributed
Systems, pages 298–309, 1997.

[8] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective communication:
theory, practice, and experience. Concurrency and Computation: Practice and Experience, 19(13):1749–
1783, 2007.

[9] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[10] C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions: have we been doing
it all wrong? Technical Report TR-95-40, Department of Computer Sciences, The University of Texas
at Austin, 1995.

[11] A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354:769–822, 1916.

[12] Xiaoyang Gao, Swarup Kumar Sahoo, Chi-Chung Lam, J. Ramanujam, Qingda Lu, Gerald Baum-
gartner, and P. Sadayappan. Performance modeling and optimization of parallel out-of-core tensor
contractions. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’05, pages 266–276, New York, NY, USA, 2005. ACM.

[13] B. Hendrickson, R. Leland, and S. Plimpton. An efficient parallel algorithm for matrix-vector multipli-
cation. Technical report.

[14] Manojkumar Krishnan, Bruce Palmer, Abhinav Vishnu, Sriram Krishnamoorthy, Jeff Daily, and Daniel
Chavarria. The Global Arrays User Manual, 2012.

[15] V. Lotrich, N. Flocke, M. Ponton, A.D. Yau, A. Perera, E. Deumens, and R.J. Bartlett. Parallel imple-
mentation of electronic structure energy, gradient and hessian calculations. J. Chem. Phys., 128:194104,
2008.

[16] Bryan Marker, Jack Poulson, Don S. Batory, and Robert A. van de Geijn. Designing linear algebra
algorithms by transformation: Mechanizing the expert developer. In VECPAR, 2012.

[17] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold Trease, and Edo
Apra. Advances, applications and performance of the global arrays shared memory programming toolkit.
International Journal of High Performance Computing Applications, 20(2):203–231, 2006.

[18] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A. Romero.
Elemental: A new framework for distributed memory dense matrix computations. ACM Trans. Math.
Softw., 39(2):13:1–13:24, February 2013.

[19] Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, Sriram Krishnamoorthy, and
P.Sadayappan. Framework for distributed contractions of tensors with symmetry. Technical Report 23,
The Ohio State University and Pacific Northwest National Laboratory, 2013.

30

[20] B.A. Sanders, R. Bartlett, E. Deumens, V. Lotrich, and M. Ponton. A block-oriented language and
runtime system for tensor algebra with very large arrays. In High Performance Computing, Networking,
Storage and Analysis (SC), 2010 International Conference for, pages 1–11, 2010.

[21] Martin D. Schatz, Tze Meng Low, Robert A. van de Geijn, and FLAME Working Note #68 Tamara
G. Kolda. Exploiting symmetry in tensors for high performance: an initial study. Technical Report
TR-12-33, The University of Texas at Austin, Department of Computer Sciences, December 2012.

[22] Martin D. Schatz, Jack Poulson, and Robert van de Geijn. Parallel matrix multiplciation: 2d and 3d.
FLAME Working Note #62 TR-12-13, The University of Texas at Austin, Department of Computer
Sciences, JUNE 2012.

[23] Edgar Solomonik, Jeff Hammond, and James Demmel. A preliminary analysis of cyclops tensor frame-
work. Technical Report UCB/EECS-2012-29, EECS Department, University of California, Berkeley,
Mar 2012.

[24] G. W. Stewart. Communication and matrix computations on large message passing systems. Parallel
Computing, 16:27–40, 1990.

[25] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang,
J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong. Nwchem: A comprehensive and scalable open-
source solution for large scale molecular simulations. Computer Physics Communications, 181(9):1477
– 1489, 2010.

[26] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

A Elemental 2-D Examples

In this section, we describe Elemental’s approach to expressing and deriving algorithms for matrix-vector
and matrix-matrix operations.

A.1 Matrix-vector multiplication

Suppose A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, and label their individual elements so that

A =


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
. . .

...
αm−1,0 αm−1,1 · · · αm−1,n−1

 , x =


χ0

χ1

...
χn−1

 , and y =


ψ0

ψ1

...
ψm−1

 .

Recalling that matrix-vector multiplication, y = Ax (or yI = AIKxK in tensor notation) is computed as

ψ0 = α0,0χ0 + α0,1χ1 + · · ·+ α0,n−1χn−1
ψ1 = α1,0χ0 + α1,1χ1 + · · ·+ α1,n−1χn−1
...

...
...

...
ψm−1 = αm−1,0χ0 + αm−1,1χ1 + · · ·+ αm−1,n−1χn−1

we notice that element αi0i1 multiplies χi1 and contributes to ψi0 . Thus we may summarize the interactions
of the elements of x, y, and A by

31

χ0 · · ·

ψ0

...

α0,0 α0,3 α0,6 · · ·

α3,0 α3,3 α3,6 · · ·

α6,0 α6,3 α6,6 · · ·

...
...

...
. . .

χ1 · · ·

ψ3

α0,1 α0,4 α0,7 · · ·

α3,1 α3,4 α3,7 · · ·

α6,1 α6,4 α6,7 · · ·

...
...

...
. . .

χ2 · · ·

ψ6

α0,2 α0,5 α0,8 · · ·

α3,2 α3,5 α3,8 · · ·

α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

χ3

ψ1

...

α1,0 α1,3 α1,6 · · ·

α4,0 α4,3 α4,6 · · ·

α7,0 α7,3 α7,6 · · ·

...
...

...
. . .

χ4

ψ4

α1,1 α1,4 α1,7 · · ·

α4,1 α4,4 α4,7 · · ·

α7,1 α7,4 α7,7 · · ·

...
...

...
. . .

χ5

ψ7

α1,2 α1,5 α1,8 · · ·

α4,2 α4,5 α4,8 · · ·

α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

χ6

ψ2

...

α2,0 α2,3 α2,6 · · ·

α5,0 α5,3 α5,6 · · ·

α8,0 α8,3 α8,6 · · ·

...
...

...
. . .

χ7

ψ5

α2,1 α2,4 α2,7 · · ·

α5,1 α5,4 α5,7 · · ·

α8,1 α8,4 α8,7 · · ·

...
...

...
. . .

χ8

ψ8

α2,2 α2,5 α2,8 · · ·

α5,2 α5,5 α5,8 · · ·

α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

Figure 11: Distribution of A, x, and y within a 3 × 3 mesh. Notice that redistributing a column of A in
the same manner as y requires simultaneous scatters within rows of nodes while redistributing a row of A
consistently with x requires simultaneous scatters within columns of nodes. Here the distribution of x and
y are given by x(D〈1,0〉) and y(D〈0,1〉), respectively, and A by A(D〈0〉, D〈1〉). While the presented mesh of
nodes is square, none of the results depend on the mesh being square.

k − index
χ0 χ1 · · · χn−1

i-
in

d
ex

ψ0 α0,0 α0,1 · · · α0,n−1
ψ1 α1,0 α1,1 · · · α1,n−1
...

...
...

. . .
...

ψm−1 αm−1,0 αm−1,1 · · · αm−1,n−1

(8)

which is meant to indicate that χi1 must be multiplied by the elements in the i1-th column of A while the
i0-th row of A contributes to ψi0 . The axes of (8) are meant to indicate the mode whose range each direction
represents.

A.2 Two-Dimensional Elemental Cyclic Distribution

It is well established that (weakly) scalable implementations of dense linear algebra operations require nodes
to be logically viewed as a two-dimensional mesh [24, 13].

32

χ0 χ3 χ6 · · ·

ψ0

ψ3

ψ6

...

α0,0 α0,3 α0,6 · · ·

α3,0 α3,3 α3,6 · · ·

α6,0 α6,3 α6,6 · · ·

...
...

...
. . .

χ1 χ4 χ7 · · ·

ψ0

ψ3

ψ6

...

α0,1 α0,4 α0,7 · · ·

α3,1 α3,4 α3,7 · · ·

α6,1 α6,4 α6,7 · · ·

...
...

...
. . .

χ2 χ5 χ8 · · ·

ψ0

ψ3

ψ6

...

α0,2 α0,5 α0,8 · · ·

α3,2 α3,5 α3,8 · · ·

α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

χ0 χ3 χ6 · · ·

ψ1

ψ4

ψ7

...

α1,0 α1,3 α1,6 · · ·

α4,0 α4,3 α4,6 · · ·

α7,0 α7,3 α7,6 · · ·

...
...

...
. . .

χ1 χ4 χ7 · · ·

ψ1

ψ4

ψ7

...

α1,1 α1,4 α1,7 · · ·

α4,1 α4,4 α4,7 · · ·

α7,1 α7,4 α7,7 · · ·

...
...

...
. . .

χ2 χ5 χ8 · · ·

ψ1

ψ4

ψ7

...

α1,2 α1,5 α1,8 · · ·

α4,2 α4,5 α4,8 · · ·

α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

χ0 χ3 χ6 · · ·

ψ2

ψ5

ψ8

...

α2,0 α2,3 α2,6 · · ·

α5,0 α5,3 α5,6 · · ·

α8,0 α8,3 α8,6 · · ·

...
...

...
. . .

χ1 χ4 χ7 · · ·

ψ2

ψ5

ψ8

...

α2,1 α2,4 α2,7 · · ·

α5,1 α5,4 α5,7 · · ·

α8,1 α8,4 α8,7 · · ·

...
...

...
. . .

χ2 χ5 χ8 · · ·

ψ2

ψ5

ψ8

...

α2,2 α2,5 α2,8 · · ·

α5,2 α5,5 α5,8 · · ·

α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

Figure 12: Vectors x and y respectively redistributed as row-projected and column-projected vectors. The
column-projected vector y(D〈0〉) here is to be used to compute local results that will become contributions
to a column vector y(D〈0,1〉) which will result from adding these local contributions within rows of nodes.
By comparing and contrasting this figure with Figure 11 it becomes obvious that redistributing x(D〈1,0〉) to
x(D〈1〉) requires an allgather within columns of nodes while y(D〈0,1〉) results from scattering y(D〈0〉) within
process rows.

It is also well established that, to achieve load balance for a wide range of matrix operations, matrices
should be cyclically “wrapped” onto this logical mesh. We start with these insights and examine the simplest
of matrix distributions that result: 2D elemental cyclic distribution [18, 13].

Denoting the number of nodes by p, a d0 × d1 mesh must be chosen such that p = d0d1.

Matrix distribution The elements of A are assigned using an elemental cyclic (round-robin) distribution
where αi0i1 is assigned to node (i0 mod d0, i1 mod d1). Thus, node (σ0, σ1) stores submatrix

A(σ0 : d0 : m− 1, σ1 : d1 : n− 1) =

 ασ0,σ1
ασ0,σ1+d1 · · ·

ασ0+d0,σ1
ασ0+d0,σ1+d1 · · ·

...
...

. . .

 ,

where the left-hand side of the expression uses the MATLAB convention for expressing submatrices, starting
indexing from zero instead of one. This is illustrated in Figure 11.

33

Column-major vector distribution A column-major vector distribution views the d0×d1 mesh of nodes
as a linear array of p nodes, numbered in column-major order. A vector is distributed with this distribution
if it is assigned to this linear array of nodes in a round-robin fashion, one element at a time.

In other words, consider vector y. Its element ψi0 is assigned to node (i0 mod d0, (i0/d0) mod d1),
where / denotes integer division. Or, equivalently in MATLAB-like notation, node (σ0, σ1) stores sub-
vector y(u(σ0, σ1) : p : m−1), where u(σ0, σ1) = σ0 + σ1d0 equals the rank of node (σ0, σ1) when the nodes
are viewed as a one-dimensional array, indexed in column-major order. The distribution of y is illustrated
in Figure 11.

Row-major vector distribution Similarly, a row-major vector distribution views the d0 × d1 mesh of
nodes as a linear array of p nodes, numbered in row-major order. The vector is then assigned to this linear
array of nodes in a round-robin fashion, one element at a time.

In other words, consider vector x. Its element χi1 is assigned to node (i1 mod d1, (i1/d1) mod d0). Or,
equivalently, node (σ0, σ1) stores subvector x(v(σ0, σ1) : p : n−1), where v = σ0d1 + σ1 equals the rank
of node (σ0, σ1) when the nodes are viewed as a one-dimensional array, indexed in row-major order. The
distribution of x is illustrated in Figure 11.

A.3 Parallelizing matrix-vector operations

In the following discussion, we assume that A, x, and y are distributed as discussed above6. At this point,
we suggest comparing Eqn. (8) with Figure 11.

Computing y := Ax The relation between these distributions of a matrix, column-major vector, and row-
major vector is illustrated by revisiting the most fundamental of computations in linear algebra, y := Ax,
already discussed in Section A.1. An examination of Figure 11 suggests that the elements of x must be
gathered within columns of nodes (allgather within columns) leaving elements of x distributed as illustrated
in Figure 12. Next, each node computes the partial contribution to vector y with its local matrix and copy
of x. Thus, in Figure 12, ψi0 in each node becomes a contribution to the final ψi0 . These must be added
together, which is accomplished by a summation of contributions to y within rows of nodes. An experienced
MPI programmer will recognize this as a reduce-scatter within each row of nodes.

Computing A := yxT +A A second commonly encountered matrix-vector operation is the rank-1 update:
A := αyxT + A. We will discuss the case where α = 1. Recall that

A + yxT =


α0,0 + ψ0χ0 α0,1 + ψ0χ1 · · · α0,n−1 + ψ0χn−1
α1,0 + ψ1χ0 α1,1 + ψ1χ1 · · · α1,n−1 + ψ1χn−1

...
...

. . .
...

αm−1,0 + ψm−1χ0 αm−1,1 + ψm−1χ1 · · · αm−1,n−1 + ψm−1χn−1

 ,

which, when considering Figures 11 and 12, suggests the following parallel algorithm: All-gather of y within
rows. All-gather of x within columns. Update of the local matrix on each node.

B Allgather redistribution communication pattern

In this section we show why, given a tensor Al0l1···lm−1 distributed as

Al0l1···lm−1(Dx0
, . . . , Dxk−1

, Dyt〈h`〉, Dxk+1
, . . . , Dxm−1

)

on an d0 × d1 × · · · × dmg−1 mesh of processes, an allgather communication within the h` mode of the grid
results in the tensor distributed as

6We suggest the reader print copies of Figures 11 and 12 for easy referral while reading the rest of this section.

34

Al0l1···lm−1(Dx0 , . . . , Dxk−1
, Dy, Dxk+1

, . . . , Dxm−1)

Our argument lies in showing that, for any process location s = 〈σ0, σ1, . . . , σmg−1〉 in our process grid,

D
s(y)
y ⇐⇒

dh`
−1⋃

`0=0

D
s(yt〈h`〉)
yt〈h`〉 .

We are now tasked with showing that

{j ∈ N : j ≡ c0 mod c1} ⇐⇒⋃dh`

`0=0 {j ∈ N : j ≡ (c0 + `0c1) mod (dh`
c1)}

where c0 =

|x|−1∑
`0=0

(
χ`0

`0−1∏
`1=0

dψ`1

)
, x = s(y), and c1 =

|y|−1∏
`1=0

dψ`1
.

{j ∈ N : j ≡ c0 mod c1}

contains elements of the form c0 + nc1 where n ∈ N. We first show that for any n, the set

dh⋃̀
`0=0

{j ∈ N : j ≡ (c0 + `0c1) mod (dh`
c1)}

contains the element c0 + nc1. Consider the case where 0 ≤ n < dh`
. The set in question contains such an

element as it stores elements of the form c0 + `0c1 where 0 ≤ `0 < dh`
.

Consider the case where n ≥ dh`
. Then, the set in question contains the element c0 + nc1 as it can be

rewritten as c0 +(dh`
+ j)c1 = c0 +(dh`

)c1 + jc1 ≡ c0 + jc1 mod dh`
c1 for some j. By the previous argument,

the set in question contains the needed element.
Showing the reverse direction is trivially true. Thus, the assertion holds.

C Algorithm cost analyses

In this section, we will provide a cost analyses (based on costs given in Figure 6) for the algorithms derived
in Section 5. We assume our processing grid is arranged in a logical d0 × d1 × d2 × d3 processing mesh.
Further, we assume the dimension of mode I is denoted LI .

C.1 Stationary C algorithm

Recall that our final derived stationary C algorithm was

AACIK(D〈0〉, D〈〉, D〈3〉, D〈〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈1〉, D〈〉, D〈2〉, D〈〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉) += AACIK(D〈0〉, D〈〉, D〈3〉, D〈〉)B
BCJK(D〈1〉, D〈〉, D〈2〉, D〈〉)

The redistribution

AACIK(D〈0〉, D〈〉, D〈3〉, D〈〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

35

can be implemented as an all-to-all within mode-2 of the process grid, an all-to-all within mode-3, and an
allgather within modes 1 and 2 of the process grid. The cost of this redistribution is

log2(d2)α+ β LALCLILK

d0d1d2d3
d2−1
d2

+ log2(d3)α+ β LALCLILK

d0d1d2d3
d3−1
d3

+ log2(d1d2)α+ β LALCLILK

d0d1d2d3
d1d2−1
d1d2

=

log2(d1d
2
2d3)α+ β LALCLILK

p

(
d2−1
d2

+ d3−1
d3

+ d1d2−1
d1d2

)
The redistribution

BBCJK(D〈1〉, D〈〉, D〈2〉, D〈〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

can be implemented as an all-to-all within mode-0, all-to-all within mode-1, and an allgather within modes
0 and 3. The cost of this redistribution is

log2(d0)α+ β LBLCLJLK

d1d2d3
d0−1
d0

+ log2(d1)α+ β LBLCLJLK

d0d2d3
d1−1
d1

+ log2(d0d3)α+ β LBLCLJLK

d0d1d2
d0d3−1
d0d3

=

log2(d20d1d3)α+ β LBLCLJLK

p

(
d0−1
d0

+ d1−1
d1

+ d0d3−1
d0d3

)
The computation has a cost of

2LALCLILKLBLJ
p

γ

In total, the algorithm has a cost of

2LALCLILKLBLJ

p γ + 2 log2 (d0d2d1d3)α+ β LCLK

p

(
LALI

(
d2−1
d2

+ d3−1
d3

+ d1d2−1
d1d2

)
+ LBLJ

(
d0−1
d0

+ d1−1
d1

+ d0d3−1
d0d3

))
C.2 Stationary A algorithm

Recall that our final derived stationary A algorithm was

Prep
AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)← AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

BBCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

Product TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉) += AACIK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)B

BCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)

Reduce
TAIK

′BJ(D〈0〉, D〈2〉, D〈3〉, D〈1〉, D〈〉) =
∑̂
1

TAC
′IK′BJ(D〈0〉, D〈1〉, D〈2〉, D〈3〉, D〈〉, D〈〉)

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉) =
∑̂
3

TAIK
′BJ(D〈0〉, D〈2〉, D〈3〉, D〈1〉, D〈〉)

The redistribution

BBCJK(D〈〉, D〈1〉, D〈〉, D〈3〉)← BBCJK(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

can be implemented as an all-to-all within mode-0 of the grid and an allgather within modes 0 and 2 of the
grid. The cost of this redistribution is

α log2(d0) + β LBLCLJLK

p

(
d0−1
d0

)
+

α log2(d0d2) + β LBLCLJLK

p

(
d0d2−1
d0d2

)
The redistribution

CABJI(D〈0〉, D〈1〉, D〈3〉, D〈2〉)← CABJI(D〈0〉, D〈1〉, D〈2〉, D〈3〉)

36

can be implemented as an allgather within modes 2 and 3 of the grid. The cost of this redistribution is

α log2(d2d3) + β LALBLJLI

p

(
d2d3−1
d2d3

)
The local computation has a cost of

2LALCLILKLBLJ
p

γ

The reduction within mode-1 of the grid has a cost of

α log2(d1) + (β + γ)
LALCLILKLBLJ

p

(
d1 − 1

d1

)
The subsequent reduction within mode-3 of the grid has a cost of

α log2(d3) + (β + γ)
LALILKLBLJ

d0d1d2

(
d3 − 1

d3

)
In total, the algorithm has a cost of

γ
p

(
2LALCLILKLBLJ + LALCLILKLBLJ

d1−1
d1

+ LALILKLBLJ
d3−1
d3

)
+

α log2(d1(d0d2d3)2)+

β LBLJ

p

(
LCLK

(
d0−1
d0

+ d0d2−1
d0d2

)
+ LALI

(
d2d3−1
d2d3

+ LK

(
d3−1
d3

+ LC
d1−1
d1

)))
D Best case flop to element ratio

We wish to determine what is the best flops to element ratio we can hope to attain when considering a tensor
contraction. Here we show that the best case is O(n

m
2) where m is the order of the output tensor we wish

to compute.
Theorem 8. Given an order-mC tensor C defined by the contraction of an order-mA tensor A with an
order-mB tensor B, then the maximum flop to number of elements involved ratio is O(n

mC
2) assuming all

modes involved have dimension n.
Proof: Without loss of generality, assume that C is computed as

Cl0l1···lmC−1 = Al0l1···lkA−1s0s1···sS−1BlkA
lkA+1···lmC−1s0s1···sS−1 .

We know that the following conditions hold

kA + S = mA

mC − kA + S = mB

Further, we know that the number of flops required to compute C is

#flops = nmC︸︷︷︸
#elems

nS︸︷︷︸
cost/element

and the number of elements involved is

#elems = nmC︸︷︷︸
C

+nmA︸︷︷︸
A

+nmB︸︷︷︸
B

.

Then the ratio of flops to elements involved is given by

R =
#flops

#elems
=

nmCnS

nmC + nmA + nmB
=

nmCnS

nmC + nkA+S + nmC−kA+S
=

nmC

nmC

nS + nkA + nmC−kA
.

37

We wish to find the value kA which results in R being maximized. This occurs at kA = mC

2 resulting in

R =
nmC

nmC

nS + n
mC
2 + n

mC
2

=
nmC

nmC

nS + 2n
mC
2

.

In the worst case for S, R is O(n), however if S ≥ mC

2 then R is O(n
mC
2). endofproof

38

