
Hop Chains: Secure Routing and the

Establishment of Distinct Identities

Rida A. Bazzi1, Young-ri Choi2, and Mohamed G. Gouda2

1 School of Computing and Informatics
Arizona State University
Tempe, Arizona, 85287

bazzi@asu.edu
2 Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
{yrchoi, gouda}@cs.utexas.edu

Abstract. We present a secure routing protocol that is immune to Sybil
attacks, and that can tolerate initial collusion of Byzantine routers, or
runtime collusion of non-adjacent Byzantine routers in the absence of
collusion between adjacent routers. For these settings, the calculated
distance from a destination to a node is not smaller than the actual
shortest distance from the destination to the node. The protocol can
also tolerate initial collusion of Byzantine routers and runtime collusion
of adjacent Byzantine routers but in the absence of runtime collusion
between non-adjacent routers. For this setting, there is a bound on how
short the calculated distance is compared to the actual shortest distance.
The protocol makes very weak timing assumptions and requires synchro-
nization only between neighbors or second neighbors. We propose to use
this protocol for secure localization of routers using hop-count distances,
which can be then used as a proof of identity of nodes.

1 Introduction

In peer-to-peer networks, physical entities (or hosts) communicate with each
other using pseudonyms or logical identities. Logical identities are assumed by
software processes that execute on the hosts to provide or request services from
other hosts. To the outside world, a host is identified with the software process
that provides the logical functionality. In the absence of direct physical knowl-
edge of a remote host, or certification by a central authority, it is not possible
to tell whether or not two distinct logical identities reside on the same host
(physical entity) and it is possible for one entity to appear in the system under
different names or counterfeit identities. Douceur [4] was the first to thoroughly
study this problem, and he says that an entity launches a Sybil attack when it
appears under different identities. He claims that in the absence of a central
certifying authority, the Sybil attack cannot be solved in practice.

Bazzi and Konjevod [2] proposed the use of geometric techniques to determine
how many identities amongst a group of identities belong to distinct entities and

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 365–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

366 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

thereby reducing the harm due to Sybil attack. Their work is based on existing
evidence that roundtrip delays in the Internet exhibit geometric properties [9].
They provided solutions under a variety of adversarial assumptions including
colluding entities and beacons without assuming a central certifying authority
with direct knowledge of entities in the system. While the work of Bazzi and
Konjevod is a significant step forward, it makes some restricting assumptions.
For instance, the results about the geometry of roundtrip delays apply to systems
in which routers are honest and they are not necessarily applicable in systems in
which routers are corrupt. Also, their solutions require accurate measurements
of roundtrip delays and clock synchronizations between routers that can be far
apart physically. This is not always possible given the variability of network load
and delays.1

In this work, our goal is to present a solution to the Sybil attack problem under
the weakest possible system assumptions and in the absence of a central authority
with direct knowledge of entities in the system. Our solution can tolerate stronger
adversarial settings while making weaker system assumptions. In particular, we
assume that routers can be dishonest and we allow for more collusion between
the routers. Also, we require very rough synchronization between non-adjacent
routers (in a sense that we will define precisely later). For some settings, we
require synchronization, but only between adjacent (or almost adjacent) routers,
which means that the synchronization we require is local. Relaxing the synchrony
and synchronization assumptions is a major improvement over the results of [2]
and we believe that it is an improvement that brings the results closer to a
practical setting.

At the heart of our approach is a secure distance vector routing protocol that
can tolerate Byzantine routers, Sybil attack by routers and collusion between
routers. The protocol assumes that there are no shared keys between any two
nodes, and that only the destination’s public key is known a priori by nodes in
the network. Under the assumption of no collusion between corrupt nodes, a first
version of the protocol guarantees that no node can have a calculated hop-count
distance, or simply distance, to destination that is shorter than its real or actual
shortest hop-count distance to destination. In the presence of initial collusion,
in which corrupt nodes can share information initially, but not afterwards, the
second version of protocol guarantees that no honest router can have a calculated
hop-count distance to destination that is shorter than its real or actual shortest
hop-count distance to destination. In the presence of initial collusion between
any two nodes and runtime collusion between adjacent corrupt nodes, in which
corrupt nodes can communicate with each other at any time, the second protocol
guarantees the following: for any path P from destination to an honest node u,
the calculated hop-count distance of node u is not less than the number of honest
nodes on P plus the number of corrupt components of P (a corrupt component is
a maximal subpath that contains corrupt nodes). In other words, every sequence
of adjacent corrupt nodes on a path can appear to be one node. In the presence

1 In their work, they propose approaches to handle inaccuracies, but these approaches
are incomplete.

Hop Chains: Secure Routing and the Establishment of Distinct Identities 367

of remote collusion between nodes and if there are no colluding adjacent nodes,
then a further modification guarantees that the hop-count distance calculated
by an honest node is not shorter than the shortest distance from destination to
the node. The protocol has two basic components. The first is a practical and
simple protocol that enables a node to determine if another node is its physical
neighbor. The second is a novel use of key chains, which we call hop-chains, that
enable the destination to certify remotely its distance to nodes in the network.
To tolerate initial collusion, we introduce mistrust hop-chains to prevent nodes
from cheating by initially agreeing on keys. This secure routing protocol we
present is a significant contribution on its own. The protocol is more secure and
requires less assumptions than other secure routing protocols in the literature
(see Section 9).

Our solution to the Sybil attack problem proposes to use the secure routing
protocol in order to come up with a secure localization protocol for networks in
which hop-count distances from a number of beacons (or anchor points) can be
used to localize nodes. This is along the lines of the approach of [2], but replacing
roundtrip delays with hop-count distance.

2 Identities and Public Keys

In our model, only the destination has a public key that needs to be known by all
other nodes. Other nodes need to have identities that cannot be forged by faulty
nodes. This can be achieved by having each node randomly choose its own public
key and corresponding private key. We assume that the keys are large enough so
that corrupt nodes can with negligible probability guess or generate keys identical
to those of honest nodes. Also, correct honest nodes generate different keys with
high probability. This guarantees that with high probability nodes cannot forge
messages, but does not rule out that corrupt nodes can replay messages.

In our framework, the identity of a node is its public key. For an honest node,
this identity is unique and does not change over time. For a corrupt node, there
can be multiple identities, one for each public key that the node chooses. We
spell out our assumptions about keys in Section 5.

3 Neighbor Computation

The ability of a node to determine whether another node is its neighbor is an
important ingredient for our secure routing protocol. Before we explain how
that determination can be done, we need to precisely define what we mean by
“determining if a node is the neighbor of another node”.

We say that a node is the neighbor of another node if the two nodes can com-
municate directly and not through an intermediate node. In wireless networks,
this requires that the nodes are in each other’s range. In wired networks, this
requires that the nodes either have access to a shared communication link or
share a private link. In our model, nodes are known to other nodes through their
public keys. So, determining whether a node is the neighbor of another node

368 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

reduces to determining if the owner of the private key corresponding to a given
public key is in the neighborhood of the node. What we determine is something
subtly different from the foregoing. We determine if a node with access to the
private key corresponding to a given public key is in the neighborhood of the
node. The distinction is subtle, but important. A node has access to the private
key if it has the private key or it is in collusion with a node that has the pri-
vate key. If there is no collusion other than initial collusion between nodes, then
having access to a key and having a key are the same thing.

3.1 Immediate Neighbors

A first step in neighbor determination is to broadcast a message requesting from
neighbors to provide their public keys. The goal of neighbor determination is to
determine if a neighbor of the node has access to the private key corresponding
to the provided public key.

A naive approach for determining whether a node is the neighbor of another
node is to send a request message and wait for a reply within a short period of
time. The reply should allow for the transmission time, roundtrip delay and any
local computation at the node to encrypt and decrypt messages exchanged to
prevent third parties for interfering with the communication. Unfortunately, the
time for computations can be substantial especially if public key encryption is
involved which makes the approach vulnerable to a man-in-the-middle attack.

A better approach is similar to the one taken by [3] in which communication is
done in the clear to eliminate high processing time. In a first phase, a node sends
a random bit in a message encrypted with the destination’s key. The destination
decrypts the message and recovers the bit. In a second phase, the node broadcasts
a message in the clear to all its neighbors. Upon receipt of the message, the
destination performs XOR on the first bit of the message with the random bit
and resends the message in the clear to the sender. The extra processing time is
minimal. The probability that the destination sends the correct answer without
knowing the random bit is 1/2. This probability can be made arbitrarily small by
repeating the two phases multiple times. A corrupt node B cannot compromise
this scheme by launching a man-in-the-middle attack in a timely manner. But,
a corrupt node B can execute the first phase by colluding with another node
C, which decrypts the first phase message and provides the value of the bit to
B. This way, B can execute the second phase. Thus, this two-phase approach
guarantees that B has access to the private key corresponding to the public key
it sends to A.

3.2 Neighbors of Neighbors

To tolerate runtime collusion between non-adjacent nodes and if there are no
colluding adjacent nodes, our routing protocol requires the ability for a node
to determine if another node is the neighbor of its neighbor. We propose to
use the same approach we propose for determining neighbors to also determine
neighbors of neighbors by allowing more time for the message to be forwarded
to a neighbor of a neighbor and then sent back.

Hop Chains: Secure Routing and the Establishment of Distinct Identities 369

3.3 Effects of Congestion

If twonodeshaveadedicate linkbetween them, then thedeterminationofneighbors
can be done without interference by other nodes. In a wireless medium, other nodes
can interfere in the communicationby launchingdenial of service attacks.Wedonot
address denial of service attacks in this paper. Our assumption about congestion
is fundamentally different from the assumptions in [2]. In our work, we make the
realistic and practical assumption that two adjacent (immediate neighbors) nodes
can communicate with no congestion for some periods of time, whereas in [2], a
similar assumption is made for nodes that are many hops apart.

3.4 Timing Consideration

In our neighbor computations, we assume that the dominant factor in the delay
is due to transmission and processing, but not propagation delay. The transmis-
sion rate between two adjacent nodes is determined by their hardware and it is
not unreasonable that the nodes can measure time to an accuracy of 1 bit. In
wireless networks, speeds of 100 Mbps can be considered high. At this speed, a
4 KByte frame takes around 0.32 msec. During that time a signal can propagate
up to 96 km which is way beyond the range of node to node transmission in
ad-hoc networks. In wired networks, propagation delay can be substantial for
transatlantic communication, but such communication has to go through known
entities that charge for their services and cannot be part of any ad-hoc network.

4 Distance Vector Routing and Its Vulnerabilities

In a traditional distance vector routing protocol, nodes in a network collaborate
to build a spanning tree whose root is the ultimate destination node d. Initially,
no node u other than d has a parent in the routing tree, and the distance of
node u is infinite. Only the ultimate destination node d is in the routing tree,
and it periodically broadcasts an advertisement message of the form adv(d, 0)
to its neighbors.

When a node u whose current distance is greater than s + 1 receives an
adv(v, s) message, node u makes node v its parent in the tree, and sets its dis-
tance to be s+1. Once node u has a parent in the tree, node u becomes connected
to the tree and starts sending an adv(u, s′) message periodically, where s′ is the
current distance of u. When u stops receiving advertisement messages from its
parent for a certain time period, it stops sending advertisement messages.

A node can cause harm if it drops packets it is supposed to forward2 or if it
reports a false (shorter) distance to destination. Such misbehavior is illustrated in
Figure 1 where the ultimate destination is node (0,0) and node (8,8) misbehaves.
The left side of the figure illustrates the case where node (8,8) drops packets and
the right side illustrates the case where node (8,8) reports a distance of 2 to

2 There are techniques to detect nodes that do not forward messages [1], but in this
paper we do not consider the problem of detecting such nodes.

370 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

0 1 2 3 4 5 6 7 98

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 98

1

2

3

4

5

6

7

8

9

Fig. 1. Routing tree when (8,8) does not lie (left) and when (8,8) lies (right)

destination. The black circles illustrate the affected nodes and node (8,8) (in
general, the number of affected nodes depends on the difference between the
reported distance and the real distance). Our goal for a secure distance vector
routing protocol is to prevent corrupt nodes from reporting distances that are
smaller than their actual distances to destination. The proposed secure routing
protocol tolerates strong adversaries. We consider the following failures.

Byzantine failures. Corrupt nodes can behave arbitrarily. In particular, they
can advertise multiple public keys (attempt Sybil attacks) and they can replay
or resend messages received from others.

Initial collusion of nodes. Corrupt nodes that initially collude can share in-
formation before the execution of the protocol, but they cannot communicate
information that they learn during the execution of the protocol. To our knowl-
edge, this model has not been considered by others. It makes sense to consider
it in our setting because nodes are known to others through their public keys.
It is not clear how a node can find or trust another node to collude with. If a
node is corrupted with a virus, for example, then two corrupted nodes share the
common information that the virus carries and therefore they initially collude.

Runtime collusion of adjacent nodes. Even though it is not clear how nodes
can find other nodes to collude with, it makes sense to consider adjacent nodes
that are colluding at runtime. In fact, if two adjacent nodes are initially collud-
ing, they could discover that they have the same keys by communicating with
each other and then decide to collude. Our protocol tolerates run-time collusion
between adjacent nodes (or connected component consisting of corrupt colluding
nodes).

Runtime collusion of non-adjacent nodes. We consider runtime collusion
between non-adjacent nodes, but in the absence of collusion between adjacent
nodes. We assume that non-adjacent corrupt nodes can communicate informa-
tion with each other at any time.

5 Tolerating Non-colluding Byzantine Failures

Every node u in the network creates its own public key(s) (BKu), and corre-
sponding private key(s) (RKu). The public key BKd is known by all nodes.
We denote a message m encrypted with a key BKu with BKu〈m〉. Similarly,

Hop Chains: Secure Routing and the Establishment of Distinct Identities 371

BKu〈m〉 is the decryption of m using the public key of u, and BKu〈RKu〈m〉〉 =
m. To reduce the size of messages, we assume the existence of a message di-
gest, or one way hash, function MD. The use of MD is not needed for the
correctness of the protocol. If a node receives a message (m, m′) such that
BKu〈m′〉 = BKu〈RKu〈m〉〉, then m′ must have been encrypted by u, which
has RKu. Similarly if a node receives a message (m, m′) such that BKu〈m′〉 =
BKu〈RKu〈MD(m)〉〉, then m′ must have been encrypted by u.

In the protocol, each node u that is connected to the routing tree maintains
a hop-chain that verifies its hop-count distance to destination. The hop-chain
contains a sequence of public keys and a sequence of certificates. The public keys
are supposed to be keys of a sequence of nodes d = u0, u1, . . . , uk = u that form
a path from d to u. The certificates vouch that every node in the sequence is the
neighbor of the next node in the sequence. Finally, a hop-chain has a date dt
that specifies the period of validity of the chain. The date changes infrequently
relative to the communication delays in the network, and it does not require any
tight synchronization between the nodes. A hop-chain has the following format:
〈dt, BKu0 , BKu1 , . . . , BKuk−1 , BKuk

, Cu0 , Cu1 , . . . Cuk−1 , Cuk
〉, where Cu0 =

RKu0〈MD(dt, BKu0)〉, and Cui = RKui−1〈MD(dt, BKui)〉, 0 < i ≤ k.

Definition 1. The length of a hop-chain Hu of a node u, denoted len(Hu), is
the number of certificates in Hu. 3

It is straightforward to see that only a node that has RKu0 can generate Cu0 ,
and only a node that has RKui−1 can generate Cui . We say that a hop chain is
valid if it is of the form 〈dt, K0, K1, . . . , Kk, C0, C1 , . . . , Ck〉 and

– K0 = BKd and BKd〈C0〉 = MD(dt, BKd)
– BKi−1〈Ci〉 = MD(dt, Ki), 0 < i ≤ k.

A node u that receives a hop-chain can locally check its validity. The protocol en-
sures that the owners of successive keys in the sequence are neighbors or the same
node (creating successive bogus nodes). It will follow that the hop-chain length of
node u minus one cannot be less than the shortest distance from u to d.

Initially, no node u other than d has a parent in the routing tree, and the dis-
tance of node u is infinite. Only node d is initially connected to the routing tree.

Each hop-chain contains a date field dt that indicates the date (time) at
which the chain is generated. The root of the routing tree, node d, periodically
updates dt every P seconds. Thus, node d periodically recomputes its chain
〈dt, BKd, RKd〈MD(dt, BKd)〉〉 every P seconds. The period of time P is chosen
to be larger than the delay between nodes in the network.

A node u that is connected to the tree periodically broadcasts an advertise-
ment message to its neighbors every p seconds where p � P . The advertisement
message of node u has the form adv(BKu, dt, Hu), where dt is the latest date
that u is aware of, and Hu is the latest chain that u has.

When a node u receives an advertisement message, adv(bk, t, h), where bk is a
public key, t is a date, and h is a hop-chain, u ignores the message if t is smaller
3 Note that len(Hu) minus one is equal to the hop-distance from destination to u.

372 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

1: var dt : integer, // date
2: Hu, ph : integer, // current/potential hop-chain
3: ds : 0..dmax+1, // distance, initially dmax+1
4: BKp : integer, // parent’s permanent public key
5: trc : 0..tmax, // time to remain connected
6: wait : boolean, // wait for ack msg or not, init. false
7: pdt, t : integer, // potential and received date
8: h, c : integer, // received hop-chain/certificate
9: bk, bk′ : integer // received keys

Fig. 2. Variables of a node u

than the latest date u is aware of – the message is too old. If the message has
a date that is more recent than the latest date at node u, u verifies that the
message is valid. If the message is valid, u tentatively decides to use the received
hop-chain to calculate its distance to destination. An adv message is valid, if
bk is the public key of a neighbor of u, the date of the message is the same as
the date of the hop-chain h, the hop-chain h is valid, and the last key in the
chain is equal to bk. In the case that the date of the message is the same as
the most recent date u is aware of, if the message is valid, and the length of h
is smaller than the current distance of u to destination, u tentatively decides
to use the received hop-chain to calculate its distance to destination. When a
node u tentatively decides to use the received chain to calculate its distance to
destination, u makes bk its potential parent, assigns h to the potential chain
ph, and assigns t to the potential date pdt. Finally, u sends a reply message to
node bk and waits to receive a certificate from bk – its potential parent. The
reply message is of the form rpl(bk, BKu, t). While node u is waiting to receive
a certificate, u ignores any advertisement messages u receives until u receives a
certificate or u times out. (This is only to keep our code easy to follow.)

There is no loss in ignoring advertisement messages, since advertisement mes-
sages will be sent periodically, and so node u can receive them later.

When a node u that is connected to the routing tree receives a reply mes-
sage rpl(bk, bk′, t), where bk = BKu, and t equals to dt in its own hop-chain,
node u first computes a certificate c = RKu〈MD(dt, bk′)〉, and then u sends an
acknowledgment message ack(bk′, t, c) to node bk′.

When a node u that is waiting to receive a certificate from its potential parent
receives an acknowledgment message ack(bk′, t, c), where bk′ = BKu, and t =
pdt, node u checks the validity of the certificate in the message. The certificate
c is valid if it is encrypted with the corresponding private key of the last key
tpbk in the potential hop-chain ph (the key of its potential parent) and so c =
tpbk〈MD(dt, BKu)〉. If the certificate in the message is valid, u makes node tpbk
its parent in the routing tree and updates its distance to destination. Finally,
u computes its (new) hop-chain by adding BKu and c to the hop-chain of its
parent, ph.

When a node u has a parent and does not receive any valid advertisement
message from its parent for a time period of tmax× p seconds, u concludes that
it is not connected to its parent anymore. Thus, u disconnects from the tree by
making its distance infinite, and stops sending advertisement messages.

Hop Chains: Secure Routing and the Establishment of Distinct Identities 373

After node u sends a reply message to its potential parent v, u starts a timer
and times out after w seconds, at which time u no longer considers v as its
potential parent. The value of w is chosen to be large enough to accommo-
date roundtrip delay to a neighbor including time for public key encryption and
decryption. The protocol variables and specification of a node u are given in
Figures 2 and 3. We state without proof the properties of the protocol.

Lemma 1 (len(hop-chain) ≥ len(shortest path)). For every honest node
u, len(Hu) ≥ len(S), where S is the shortest path from node d to node u and
len(S) is the number of nodes in path S.

Lemma 2 (len(hop-chain) ≤ len(good path)). For every honest node u, if
there exists a “good” path G from node d to node u such that each node in the
path is honest, then eventually len(Hu) ≤ len(G) holds.

6 Tolerating Initial Collusion

The protocol of the previous section is vulnerable to initial collusion. Consider
two nodes u and v that share the public and private keys BKu and RKu. Assume
that v is a farther node from the destination. Since v has u’s keys, the neighbors
of v will consider the owner of the private key RKu to be their neighbor. If at
some point, node v receives an advertisement message with a chain that contains
the public key of u, v can cut the chain, only keep the portion of the chain that is
identical to u’s chain, and present that portion to its neighbors. Node v can then
advertise u’s chain to its neighbor, and the neighbors of v will find the received
chain to be valid, in effect v manages to claim a distance to destination that is
shorter than its actual distance to destination.

The reason for the success of this attack is that a node is certified based only
on the initial information of the node, and initially colluding nodes share all their
initial information. To get around this difficulty, we need to certify nodes based
on information that they do not have initially. This can be achieved by having
a parent in the routing tree create public/private key pairs for its children.

These temporary keys will be used alongside the permanent keys of a node.
We say that they are temporary because their values depend on the identity of
the parent of a node at a given time. For a node u, we denote these keys with
TBKu and TRKu. For the destination node d, we really need no temporary
keys, but we introduce them to make the protocol more uniform.

In the modified protocol, nodes use temporary keys and permanent keys to
check the validity of a certificate and therefore of a chain. The mistrust hop-
chain of a node has the format: 〈dt, (BKu0 , TBKu0), . . . , (BKuk

, TBKuk
), Cu0 ,

Cu1 , . . . , Cuk−1 , Cuk
〉, where Cu0 = RKu0〈TRKu0〈MD(dt, BKu0 , TBKu0)〉〉,

and Cui = RKui−1〈TRKui−1〈MD(dt, BKui , TBKui)〉〉, 0 < i ≤ k.
It is straightforward to see that only a node that has RKu0 and TRKu0 can

generate Cu0 , and only a node that has RKui−1 and TRKui−1 can generate Cui .

374 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

1: timeout DATE expires → // d periodically updates date
2: if (u = d) then
3: dt := UPDATE DT;
4: Hu := 〈dt, BKu, RKu〈MD(dt, BKu)〉〉;
5: timeout DATE after P

6: [] timeout ADV expires → // u periodically sends advertisement
7: if (u = d) then
8: send adv(BKu, dt, Hu);
9: timeout ADV after p
10: elseif (u �= d) then
11: trc := MAX(trc − 1, 0);
12: if (trc > 0) then
13: send adv(BKu, dt, Hu);
14: timeout ADV after p
15: elseif (trc = 0) then
16: ds := dmax+1

17: [] timeout RPL expires→ // no longer wait for ack from potential parent
18: wait := false

19: [] rcv adv(bk, t, h) → // if valid adv received from a node closer to d
20: // update potential parent and reply to sender
21: if ¬wait ∧ (t > dt ∨ (t = dt ∧ len(h) < ds))

∧ valid(adv(bk, t, h)) then
22: pdt := t; ph := h;
23: wait := true;
24: send rpl(bk, BKu, t) to bk;
25: timeout RPL after w
26: // if valid advertisement received from parent
27: // stay connected for a longer period
28: if ((trc > 0) ∧ (bk = BKp) ∧ (len(h) = ds)

∧ valid(adv(bk, t, h))) then
29: trc := tmax

30: [] rcv rpl(bk, bk′, t) → // if valid reply received from a node
31: // compute a certificate and send it to sender
32: if ((BKu = bk) ∧ (t = dt) ∧ (trc > 0) then
33: send ack(bk′, dt, RKu〈MD(dt, bk′)〉) to bk′

34: [] rcv ack(bk, t, c) → // if valid ack received from potential parent
35: // update its parent, distance, chain, and send adv
36: if wait ∧ (BKu = bk) ∧ (pdt = t)

∧ valid(ack(bk, t, c)) then
37: dt := pdt;
38: Hu := COMP CERT(ph, c);
39: ds := len(ph);
40: BKp := GET BKP(ph);
41: wait := false;
42: trc := tmax;
43: send adv(BKu, dt, Hu);
44: timeout ADV after p

Fig. 3. A specification of a node u

We say that a mistrust hop-chain is valid if the chain is of the form 〈dt,
(K0, T0), (K1, T1), . . . , (Kk, Tk), C0, C1 , . . . , Ck〉 and

– K0 = BKd and TBKd〈BKd〈C0〉〉 = MD(dt, K0, T0)
– TBKi−1〈BKi−1〈Ci〉〉 = MD(dt, Ki, Ti), 0 < i ≤ k.

Using permanent and temporary keys, the protocol ensures that the owner of
every pair of permanent and temporary public keys in the sequence encrypted
the certificate of the owner of the next pair of public keys in the sequence. Thus,

Hop Chains: Secure Routing and the Establishment of Distinct Identities 375

1: [] rcv rpl(bk, bk′, t) → // if valid reply received from a node
2: // choose temp. keys and send a cert. to sender
3: if ((BKu = bk) ∧ (t = dt) ∧ (trc > 0) then
4: (tcbk, tcrk) := GEN KEYS;
5: send ack((bk′, tcbk), dt, bk′〈tcrk〉,

RKu〈TRKu〈MD(dt, bk′, tcbk)〉〉) to bk′

6: [] rcv ack(bk, bk′, t, r, c) → // if valid ack received from potential parent
7: // update its parent, distance, chain, and send adv
8: if wait ∧ (BKu = bk) ∧ (pdt = t)∧

valid(ack(bk, bk′, t, r, c)) then
9: dt := pdt;
10: TBKu := bk′; TRKu := RKu〈r〉;
11: Hu := COMP CERT(ph, c);
12: ds := len(ph);
13: BKp := GET BKP(ph);
14: wait := false;
15: trc := tmax;
16: send adv(BKu, dt, Hu);
17: timeout ADV after p

Fig. 4. rpl and ack processing to handle initial collusion

a corrupt node u that initially colludes with another node v closer to destination
cannot use the hop-chain of v, since u has no access to the temporary private
key of v.

In the modified protocol, rpl and ack processing is modified as in Figure 4.
When a node u that is connected to the routing tree receives a reply message
rpl(bk, bk′, t), where bk = BKu, and t equals to dt in its own hop-chain, node
u randomly chooses temporary public/private key pair (tcbk, tcrk) for node bk′.
Node u then computes a certificate c = RKu〈TRKu〈MD(dt, bk′, tcbk)〉, and
also computes an encrypted temporary private key r = bk′〈tcrk〉. Finally, node
u sends an acknowledgment message ack((bk′, tcbk), t, r, c) to node bk′.

When a node u that is waiting to receive a certificate from its potential parent
receives an acknowledgment message ack((bk′, bk′′), t, r, c), where bk′ = BKu,
and t = pdt, node u first checks the validity of the certificate in the message.
The certificate c is valid if it is encrypted with the corresponding permanent and
temporary private keys of the last key pair (pbk, tpbk) in the potential chain ph
(the key of its potential parent) and so tpbk〈pbk〈c〉〉 = MD(t, BKu, bk′′). If the
ack message is valid, u makes node pbk its parent in the routing tree and updates
its distance to destination. Finally, u computes its temporary public and private
keys, TBKu and TRKu by assigning bk′′ to TBKu, and RKu〈r〉 to TRKu, and
then computes its (new) hop-chain by adding (BKu, TBKu) and c to the hop
chain of its parent, ph. We state without proof the properties of the protocol.

Lemma 3 (Initial collusion: len(hop-chain) ≥ len(shortest path)). For
every honest node u, len(Hu) ≥ len(S), where S is the shortest path from node
d to node u.
Lemma 4 (Initial collusion + Collusion of adjacent nodes). For every
honest node u, if there exists a path P from node d to node u, then len(Hu) ≥
len(P)− (|cor(P)| − |cor comp(P)|), where cor(P) is the set of corrupt nodes
in P and cor comp(P) is the set of maximal connected components of P whose
elements are all corrupt.

376 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

7 Tolerating Runtime Collusion of Non-adjacent Nodes

The protocol in the previous section will not work if two colluding nodes can
share both their permanent as well as their temporary keys provided by the
parent of a node. In order to tolerate runtime collusion of non-adjacent nodes,
we make the parent of a node u keep the temporary private key of node u.
However, implementing this idea is not straightforward. Consider the following
modification. The hop-chain format does not change, except that the temporary
private key of u is kept at the parent of u. The rpl message sent by u contains
a nonce that the potential parent v of u should forward to its parent to encrypt
with the temporary private key of v. When v receives this rpl message, v forwards
the nonce to its parent (the potential grandparent of u). Later when v receives
the encrypted nonce from its parent, v forwards it to u. Clearly, this will not
work because two non-adjacent colluding nodes v and v′ can cheat as follows. The
farther node v forwards the nonce sent by u to node v′ closer to destination, and
in turn v′ forwards it to its parent. When the parent of v′ sends the encrypted
nonce to v′, v′ forwards it to v that forwards it to u.

In the above modification, we need to ensure that the parent of v, the grand-
parent of u, is a neighbor of v. Thus, we need to run the neighbor of neighbor
determination protocol described in Section 3 for the owner of the temporary
private key of v, which should be a neighbor of a neighbor of u.

The protocol is modified as follows. First, an ack message sent from u to v
does not contain the temporary private key of v generated by u. Second, when
u receives an adv(bk, t, h) message, u needs to check that the owner of the last
temporary private key in the chain is a neighbor of a neighbor of u, as well as
the validity of the received hop-chain.

Lemma 5 (Collusion: len(hop-chain) ≥ len(shortest path)). For every
honest node u, len(Hu) ≥ len(S), where S is the shortest path from node d to
node u.

8 Preventing and Mitigating the Sybil Attack

We say that a solution prevents Sybil attacks if no entity can successfully pretend
to have more than one identity. We say that a solution mitigates Sybil attacks
if the solution limits the number of identities that an entity can have. This is
done under the assumption that nodes have vast resources, but we assume that
corrupt nodes cannot break the public key encryption scheme in use. In the
following sections, we show how the routing protocol can be used to mitigate or
prevent Sybil attacks under various assumptions about the network. We start
by considering restricted settings, and then we consider a general network.

8.1 Sybil Attack in an Immediate Neighborhood

In the simplest setting, we are interested in determining if two identities that
are the immediate neighbors of a node reside on distinct nodes. If the nodes

Hop Chains: Secure Routing and the Establishment of Distinct Identities 377

are connected with physical links, then it is easy to distinguish nodes because
identities that appear on the same link can be considered to be identical. In this
case, the number of physical links determines the number of neighbors.

If the nodes are connected through a wireless link, then the situation is similar
to the situation described in Douceur’s work [4]. Roundtrip delays cannot be used
to differentiate two nodes and it seems that the only way to distinguish nodes is
through an approach similar to that of Douceur [4], namely requiring the node
to prove that it has the resources of multiple nodes.

8.2 Sybil Attack in a Line

In this section, we consider a number of nodes connected in a line. This case
is the basis for our treatment of Sybil attacks in general networks. We only
consider how to detect multiple identities that correspond to the same entity or
how to detect that a number of identities above some threshold correspond to
the same entity. We are not concerned with a corrupt node that drops messages
from nodes on its two sides thereby disconnecting them. The result of the section
will be to determine conditions under which corrupt node can successfully launch
Sybil attack in a line. We only describe the approach for the case of initial
collusion and collusion between adjacent nodes.

Initial collusion. Consider a sequence of nodes A = A0, A1, . . . , An = B. These
nodes are such that the actual distance from A to Ai is equal to i. Also, the
minimum distance from Ai to B is n − i. We assume that A and B are honest,
the distance between A and B is n, and their public keys are known by all nodes
in the line. Nodes A and B are beacons used to locate nodes in the line. Finally,
we assume that only initial collusion exists in the network.

Under these assumptions, by Lemma 3, it follows that the length of a hop-
chain from beacon A to Ai, lenA(HAi) is greater than or equal to i. Similarly, the
length of a hop-chain from beacon B to Ai, lenB(HAi) ≥ n − i. If there are no
corrupt nodes, then lenA(HAi) + lenB(HAi) = n. It follows that a corrupt node
cannot insert any bogus nodes on a hop-chain without being detected because
adding bogus nodes will make the sum greater than n.

If the distance between A and B is not known, and only a lower bound nlow

and an upper bound nhigh on the distance are known, any node Ai such that
lenA(HAi) + lenB(HAi) ≤ nhigh would be accepted. If the actual distance be-
tween A and B is nlow, then a corrupt node can insert up to nhigh −nlow bogus
nodes without being detected. The corrupt nodes as a group cannot insert more
than nhigh − nlow bogus nodes (identities) without being detected. Since nodes
are colluding only initially, this should also create a dilemma as to which nodes
should be the ones to insert the bogus identities.

Initial collusion and collusion of adjacent nodes. Consider adjacent col-
luding nodes. In this case, using the protocol of Section 6, the nodes can shrink
the path, but only by the number of corrupt nodes minus the number of cor-
rupt components. This will not affect the above results, because the number of
identities that can be created by corrupt nodes would still be nhigh − nlow. The

378 R.A. Bazzi, Y.-r. Choi, and M.G. Gouda

disappeared corrupt nodes can be replaced by other corrupt nodes that appear
elsewhere on the line, but the corrupt nodes cannot add more bogus identities
than nhigh − nlow.

We summarize the results of these sections with the following lemma.

Lemma 6. On a line, the number of new identities that can be added is not
more than nhigh − nlow, where nhigh and nlow are upper and lower bounds on
the hop-count distance between the end nodes assumed honest.

8.3 Sybil Attack in a Network

In a general network, under the assumption of no collusion between adjacent
nodes, the path from a beacon node to any node cannot be made shorter than
it really is. Also, the length of a path from a beacon to any node is not more
than the length of the shortest good path. If the network has enough redundant
paths, then the distances between nodes are not affected by corrupt routers. In
this case, we propose to use hop-count distances of a node from a number of
beacons as the identity of the node. There is already a good amount of work on
hop-count based coordinates (see [5] for example), and it is not our goal in this
paper to study this topic. We simply propose to use our secure routing protocol
in conjunction with hop-count based coordinates in order to assign identities to
nodes. If the number of corrupt nodes is not large, then corrupt nodes cannot
practically affect changes in the location of other nodes.

9 Secure Routing Related Work

Secure distance vector routing protocols have been proposed by many researcher
[11,10,12,6,7]. Existing protocols are based on assumptions that are stronger than
the ones we make. The protocol proposed in [11] uses a set of the intrusion de-
tection sensors to detect routing attacks, and requires knowledge of the network
topology and sensor positions. SEAD [6] does not prevent corrupt nodes from re-
plying advertisement messages, and does not consider colluded attackers. In [7],
nodes are assigned to unique identifiers (by a central authority), the destination
knows all these identifiers, and the clocks of all nodes are tightly synchronized
(to use [8]). RIP-RT [10] assumes that corrupt nodes cannot modify the value of
the time-to-live field in a probing message and that any two nodes share a key.
Moreover, this protocol assumes that each node knows the identifiers of adja-
cent nodes. The problem of detecting misbehaving nodes was considered in [1],
which also proposes an on-demand secure routing protocol. Our routing protocol
focuses on reducing harm caused by corrupt nodes that lie their distances, and
does not consider to detect such nodes.

References

1. B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on-demand secure
routing protocol resilient to byzantine failures. In WiSE ’02: Proceedings of the
3rd ACM workshop on Wireless security, pages 21–30. ACM Press, 2002.

Hop Chains: Secure Routing and the Establishment of Distinct Identities 379

2. R. Bazzi and G. Konjevod. On the stabilishment of distinct identities in overlay
networks. In Proceedings of ACM Symposium on Principles of Distributed Com-
puting.

3. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In
Proceedings of EUROCRYPT, pages 344–359, 1993.

4. J. Douceur. The sybil attack. In Proceedings of IPTPS, pages 251–260, 2002.
5. R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica.

Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In
Proceedings of the 2nd Symposium on Networked Systems Design and Implemen-
tation (NSDI 2005), 2005.

6. Y.-C. Hu, D. B. Johnson, and A. Perrig. Sead: Secure efficient distance vector rout-
ing for mobile wireless ad hoc networks. In Proceedings of the 4th IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA 2002).

7. Y.-C. Hu, A. Perrig, and D. B. Johnson. Efficient security mechanisms for routing
protocols. In Proceedings of the 10th Annual Network and Distributed System
Security Symposium (NDSS 2003), February 2003.

8. Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet leashes: A defense against wormhole
attacks in wireless ad hoc networks. In Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies, April 2003.

9. T. Ng and H. Zhang. Predicting internet network distance with coordinate-based
approaches. In Proceedings of INFOCOM, 2002.

10. D. Pei, D. Massey, and L. Zhang. Detection of invalid routing announcements in
the rip protocol. In Proceedings of GLOBECOM 2003, 2003.

11. V. M. tal and G. Vigna. Sensor-based intrusion detection for intra-domain distance-
vector routing. In CCS ’02: Proceedings of the 9th ACM conference on Computer
and communications security, pages 127–137. ACM Press, 2002.

12. T. Wan, E. Kranakis, and P. V. Oorschot. S-rip: A secure distance vector routing
protocol. In Proceedings of Applied Cryptography and Network Security, 2004.

	Introduction
	Identities and Public Keys
	Neighbor Computation
	Immediate Neighbors
	Neighbors of Neighbors
	Effects of Congestion
	Timing Consideration

	Distance Vector Routing and Its Vulnerabilities
	Tolerating Non-colluding Byzantine Failures
	Tolerating Initial Collusion
	Tolerating Runtime Collusion of Non-adjacent Nodes
	Preventing and Mitigating the Sybil Attack
	Sybil Attack in an Immediate Neighborhood
	Sybil Attack in a Line
	Sybil Attack in a Network

	Secure Routing Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

