
Proving Termination of
Imperative Programs Using Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodrı́guez-Carbonell, Albert Rubio
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—We show how Max-SMT can be exploited in
constraint-based program termination proving. Thanks to ex-
pressing the generation of a ranking function as a Max-SMT
optimization problem where constraints are assigned different
weights, quasi-ranking functions –functions that almost satisfy all
conditions for ensuring well-foundedness– are produced in a lack
of ranking functions. By means of trace partitioning, this allows
our method to progress in the termination analysis where other
approaches would get stuck. Moreover, Max-SMT makes it easy
to combine the process of building the termination argument with
the usually necessary task of generating supporting invariants.
The method has been implemented in a prototype that has
successfully been tested on a wide set of programs.

I. INTRODUCTION
Proving termination is necessary to ensure total correctness

of programs. Still, termination bugs are difficult to trace and
are hardly notified: as they do not arise as system failures but
as unresponsive behavior, when faced to them users tend to
restart their devices without reporting to software developers.
Due to this, approaches for proving termination of imperative
programs have regained an increasing interest in the last
decade [1]–[4].
One of the major difficulties in these methods is that often

supporting invariants are needed. E.g., in [5] linear invariants
are exhaustively computed before termination analysis. In the
same paper a heuristic approach is also presented, which only
requires a light-weight invariant generator by restricting to
single-variable ranking functions. Another solution is proposed
in [6], where invariant generation is not performed eagerly
but on demand. By formulating both invariant and ranking
function synthesis as constraint problems, both can be solved
simultaneously, so that only the necessary supporting invari-
ants for the targeted ranking functions –namely, lexicographic
linear ranking functions– need to be discovered.
Based on [5], [6], we present a Max-SMT constraint-based

approach for proving termination. The crucial observation in
our method is that, albeit our goal is to show that transitions
cannot be executed infinitely by finding a ranking function
or an invariant that disables them, if we only discover an
invariant, or an invariant and a quasi-ranking function that
almost fulfills all needed properties for well-foundedness, we
have made some progress: either we can remove part of a
transition and/or we have improved our knowledge on the
behavior of the program. A natural way to implement this
idea is by considering that some of the constraints are hard
(the ones guaranteeing invariance) and others are soft (those
guaranteeing well-foundedness) in a Max-SMT framework.

Moreover, by giving different weights to the constraints we can
set priorities and favor those invariants and (quasi-) ranking
functions that lead to the furthest progress.
The technique has been implemented in our tool CppInv,

which analyses programs with integer variables and linear
expressions. Thanks to it, we have proved termination of
a wide set of programs, which have been taken from the
programming learning environment Jutge.org [7] and from
benchmark suites in the literature [8].

A. Related Work.
As mentioned above, our method is based on [5]. Namely,

we have borrowed the core argument for termination proofs,
which is based on iteratively discarding those transitions that
cannot be executed infinitely. However, we improve on the way
supporting invariants are generated. While in [5] invariants
are pre-computed in a process that is independent from the
termination analysis and which turns out to be the bottleneck
of the approach, we find lazily the invariants needed to ensure
that ranking functions meet their requirements.
Our research also builds upon [6], where the constraint-

based method [9] was first applied to termination. However, we
extend this work in several aspects. First, in that approach only
linear programs with unnested loops can be handled, while we
can deal with arbitrary control structures. Moreover, in [6] the
generation of their lexicographic ranking functions requires a
higher-level loop that, before sending the constraint problem to
the solver, determines the precedence of the transitions in the
lexicographic order. On the other hand, in our approach this
outer loop is not needed. Finally, thanks to assigning weights
to the constraints, unlike [6] we do not need to stipulate
the number of supporting invariants that will be needed a
priori, and hence our constraint problems are simpler. Further,
weights allow us to guide the solving engine in the search of
appropriate ranking functions and invariants.
In [10], the lexicographic approach of [6] is extended so as

to handle programs with complex control flow. However, their
method still requires to search for the right ordering of the
transitions in order to obtain a successful termination proof.
Moreover, in this technique the procedures for synthesizing
ranking functions and auxiliary invariants do not share enough
information, while in our proposal these mechanisms are
tightly coupled. Finally, in [8] a method closely related to ours
is presented. Both approaches, which have been developed
independently, go in the same direction of achieving a better
cooperation between the invariant and the ranking function

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 201218ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

syntheses. Still, a significant difference is that we can exploit
the quasi-ranking functions produced in the absence of ranking
functions in order to progress in the termination analysis.
In addition to lexicographic ranking functions, there is a

group of effective tools whose termination arguments are
based on Ramsey’s Theorem and the notion of transition
invariant [11]. Transition invariants are over-approximations
of the transitive closure of the transition relation restricted
to the reachable state space. The crucial observation is that a
transitive relation that is disjunctively well-founded, i.e., that is
included in the union of well-founded relations, must be well-
founded too. Hence, if one is able to find a transition invariant
that is also disjunctively well-founded, the program must
be terminating. In [12], this transition invariant is computed
iteratively, starting from the empty relation, by discovering
unranked paths of the program thanks to a reachability check,
and using the approach in [3] for synthesizing new ranking
functions for them. On the other hand, in [13] the generation of
the disjunctively well-founded transition invariant is performed
bottom-up from innermost loops by identifying invariant and
transitive relations among a set of templates that are disjunc-
tively well-founded by construction. Nested loops are then
handled thanks to loop summarization. Our techniques can also
be seen as producing a disjunctively well-founded transition
invariant, being the difference with respect to the previous
approaches in the way new unranked paths are identified and
how a termination argument is generated for them.
Finally, a problem related to proving termination that has

recently raised interest in the area is that of conditional
termination: to synthesize automatically preconditions on the
inputs that ensure program termination. In this context, in [15]
the authors consider what they call potential ranking functions,
which are functions over program states that are bounded but
not necessarily decreasing. The quasi-ranking functions that
we consider here are more general, as for instance functions
that are decreasing but not bounded are also included. In [16],
the problem of conditional termination is also considered. The
approach is based on disjunctively well-founded relations as in
[12], but instead of identifying unranked program paths, thanks
to a dual inclusion the authors partition the transition relation
into those behaviors already proved to be terminating and those
whose status is still unknown. In our work we also proceed
by splitting the transition relation into a terminating part and
an unknown part. However, in [16] this division is achieved
by means of a fixpoint computation, while our approach is
constraint-based.

II. PRELIMINARIES

A. SMT and Max-SMT

Let P be a finite set of propositional variables. If p ∈ P ,
then p and ¬p are literals. The negation of a literal l, written
¬l, denotes ¬p if l is p, and p if l is ¬p. A clause is a
disjunction of literals. A propositional formula is a conjunction
of clauses. The problem of propositional satisfiability (abbrevi-
ated as SAT) consists in, given a formula, to determine whether

int main() {
int x, y, z;

!1: while (y ≥ 1) {
x--;

!2: while (y < z) {
x++; z--;

}
y = x+ y;
} }

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z
ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

!1

!2

τ1

τ2

τ3

Θ(!1) ≡ true

Θ(!2) ≡ false

Fig. 1. Program and its transition system.

or not it is satisfiable, i.e., if it has a model: an assignment of
Boolean values to variables that satisfies the formula.
An extension of SAT is the satisfiability modulo theories

(SMT) problem [17]: to decide the satisfiability of a given
quantifier-free first-order formula with respect to a background
theory. Here we will consider the theories of linear arithmetic
(LA), where literals are linear inequalities, and the more
general theory of non-linear arithmetic (NA), where literals
are polynomial inequalities.
Another generalization of SAT is the Max-SAT problem

[17]: it consists in, given a weighted formula F where each
clause Ci has a weight ωi (a positive number or infinity), to
find the assignment such that the cost, i.e., the sum of the
weights of the falsified clauses, is minimized. Clauses with
infinite weight are called hard, while the rest are called soft.
Equivalently, the problem can be seen as finding the model
of the hard clauses such that the sum of the weights of the
falsified soft clauses is minimized.
Finally, the problem of Max-SMT [18] merges Max-SAT

and SMT, and is defined from SMT analogously to how Max-
SAT is derived from SAT. Namely, the Max-SMT problem
consists in, given a weighted formula, to find an assignment
that minimizes the sum of the weights of the falsified clauses
in the background theory.

B. Transition Systems, Invariants and Ranking Functions
Henceforth we will model imperative programs by means

of transition systems. A transition system S = (v,L,Θ, T)
consists of a tuple of variables v, a set of locations L, a map
Θ from locations to formulas characterizing the initial values
of the variables, and a set of transitions T . Each transition
τ ∈ T is a triple (#, #′, ρ), where #, #′ ∈ L are the pre and
post locations respectively, and ρ is the transition relation:
a formula over the program variables v and their primed
versions v′, which represent the values of the variables after
the transition. See Fig. 1 for an example of a program together
with a corresponding representation as a transition system.
From now on we assume that variables take integer values

and programs are linear, i.e., the initial conditions Θ and
transition relations ρ are described as conjunctions of linear
inequalities. Strict inequalities may be translated into non-strict
ones thanks to the integer type of the variables.

202 219

A state is an assignment of a value to each of the variables
in v. A configuration is a pair (#,σ) consisting of a location #
and a state σ. A computation is a (possibly infinite) sequence
of configurations (#0,σ0), (#1,σ1), ... such that σ0 |= Θ(#0),
and for each pair of consecutive configurations (#i,σi) and
(#i+1,σi+1), there exists a transition τ = (#i, #i+1, ρ) ∈ T
such that (σi,σi+1) |= ρ. A configuration (#,σ) is reachable
if there exists a computation ending at (#,σ). A transition
system is said to be terminating if all its computations are
finite. The problem that we target in this work is, given a
transition system, to determine if it is terminating or not.
A transition τ = (#, #′, ρ) is disabled if it can never be

executed, i.e., if for all reachable configuration (#,σ), there
does not exist any σ′ such that (σ,σ′) |= ρ. A transition
τ is called finitely executable if in any computation, τ is
only executed a finite number of times (in particular, if τ is
disabled). Otherwise, i.e., if there exists a computation where
τ is executed infinitely, we say that τ is infinitely executable.
An assertion is a first-order formula over v. An assertion I

is an invariant at location # if for any reachable configuration
(#,σ), it holds that σ |= I . An invariant map µ assigns an
invariant µ(#) to each of the locations #. An important class
of invariant maps is that of inductive invariant maps:
Definition 1: An invariant map µ is said to be inductive if:
• [Initiation] For every location # ∈ L: Θ(#) |= µ(#)
• [Consecution] For every transition τ = (#, #′, ρ) ∈ T :

µ(#) ∧ ρ |= µ(#′)′.
Invariant maps are fundamental when analyzing program

termination. For instance, a transition τ = (#, #′, ρ) is proved to
be disabled if there is an invariant µ(#) at location # such that
µ(#) ∧ ρ is unsatisfiable. In general, if µ is an invariant map,
then any transition τ = (#, #′, ρ) can be safely strengthened
by replacing the transition relation ρ by µ(#) ∧ ρ.
The basic idea of the approach we follow for proving

program termination [5] is to argue by contradiction that no
transition is infinitely executable. First of all, no disabled
transition can be infinitely executable trivially. Moreover, one
just needs to focus on transitions joining locations in the
same strongly connected component (SCC): if a transition is
executed over and over again, then its pre and post locations
must belong to the same SCC. So let us assume that one has
found a ranking function for such a transition τ , according to:
Definition 2: Let τ = (#, #′, ρ) be a transition such that #

and #′ belong to the same SCC, denoted by C. A function
R : v → Z is said to be a ranking function for τ if:

• [Boundedness] ρ |= R ≥ 0
• [Strict Decrease] ρ |= R > R′

• [Non-increase] For every τ̂ = (#̂, #̂′, ρ̂) ∈ T such that
#̂, #̂′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decrease only depend on
τ , while non-increase depends on all transitions in the SCC.
The key result is that if τ = (#, #′, ρ) admits a ranking

function R, then it is finitely executable. Indeed, first notice
that if one can execute τ from a configuration (#,σ) then
R(σ) ≥ 0, because of boundedness. Also, the value of R

at the states along any path contained in C cannot increase,
thanks to the non-increase property. Moreover, in any cycle
contained in C traversing τ , the value of R strictly decreases,
due to the strict decrease property. Now, let us assume that
there was a computation where τ was executed infinitely. Such
a computation would eventually visit only locations in C.
Because of the previous observations, by evaluating R at the
states at which τ is executed we could construct an infinitely
decreasing sequence of non-negative integers, a contradiction.
Finitely executable transitions can be safely removed from

the transition system as regards termination analysis. This in
turn may break the SCC’s into smaller pieces. If by applying
this reasoning recursively one can prove that all transitions are
finitely executable, then the transition system is terminating.

C. Constraint-Based Program Analysis
Here we review the constraint-based program analysis

approach [6], [9]. The idea is to consider a template for
candidate invariant properties (respectively, ranking functions),
e.g., linear inequalities (linear expressions). These templates
involve both program variables as well as unknowns whose
values have to be determined so as to ensure the required prop-
erties. To this end, the implications in Definition 1 (Definition
2) are expressed by means of constraints (hence the name of
the approach) on the unknowns. If implications are encoded
soundly, any solution to the constraints yields an invariant map
(ranking function). Specifically, if linear arithmetic is the target
language, this can be achieved with Farkas’ Lemma:
Theorem 1 (Farkas’ Lemma): Let S be a system of linear

inequalities Ax + b ≤ 0 (A ∈ Rm×n, b ∈ Rm) over real
variables xT = (x1, . . . , xn). When S is satisfiable, it entails
a linear inequality cTx + d ≤ 0 (c ∈ Rn, d ∈ R) iff there is
λ ∈ Rm such that λ ≥ 0, cT = λTA and d ≤ λT b. Further,
S is unsatisfiable iff 1 ≤ 0 can be so derived.
For clarity, henceforth the following notation is used. Given

a conjunction of linear inequalities Ax + b ≤ 0 and a linear
inequality cTx+d ≤ 0, where the coefficients aij , bi, cj , d may
be real numbers or unknowns, we denote by Ax + b ≤ 0)
cTx+ d ≤ 0 the set of constraints on the unknown coefficients
and on fresh real unknowns λ = (λ1, . . . ,λm), consisting in
λ ≥ 0, cT = λTA and d ≤ λT b.

III. TERMINATION ANALYSIS WITH MAX-SMT
In this section we first describe a constraint-based method

for termination analysis that uses SMT and identify some of
its shortcomings (Sect. III-A). Then we show how Max-SMT
can be used to overcome these limitations (Sect. III-B).

A. An SMT Approach to Proving Termination
Following the approach described in Sect. II-B [5], to show

that a transition τ is finitely executable and thus discard it,
one needs either a disability argument or a ranking function
for it. To this end we construct a constraint system, i.e. an SMT
formula, whose solutions correspond to either an invariant that
proves disability, or a ranking function. Given an SCC, the
constraint system, if satisfiable, will allow discarding (at least,

203220

but possibly more than) one of the transitions in the SCC. By
iterating this procedure until no cycles are left we will obtain
a termination argument for the SCC.
To construct the constraint system, first of all we consider:
• for each location #, a linear invariant template I!(v) ≡

i!,0 +
∑

v∈v i!,v · v ≤ 0, where i!,0, i!,v are unknown;
• a linear ranking function templateR(v)≡r0+

∑
v∈v rv ·v,

where r0, rv are unknown.
Recall that ranking functions are associated to transitions,

not to locations. However, instead of introducing a template
for each transition, we just have one single template, which, if
the constraint system has a solution, will be a ranking function
for a transition to be determined by the solver.
Similarly to [6], we take the following constraints from the

definitions of inductive invariant and ranking function:
Initiation: For # ∈ L: I!

def
= Θ(#)) I!

Disability: For τ = (#, #′, ρ) ∈ T :Dτ
def
= I! ∧ ρ) 1 ≤ 0

Consecution: For τ = (#, #′, ρ) ∈ T :Cτ
def
= I! ∧ ρ) I ′!′

Boundedness: For τ = (#, #′, ρ) ∈ T : Bτ
def
= I! ∧ ρ) R ≥ 0

Strict Decrease: For τ = (#, #′, ρ) ∈ T : Sτ
def
= I! ∧ ρ) R > R′

Non-increase: For τ = (#, #′, ρ) ∈ T :Nτ
def
= I! ∧ ρ) R ≥ R′

Let L and T be the sets of locations and transitions in the
SCC in hand, respectively. Let also P be the set of pending
transitions, i.e., which have not been proved to be finitely
executable yet. Then we build the next constraint system:
∧

!∈L

I!∧
∧

τ∈T

(
Dτ∨Cτ

)
∧
∨

τ∈P

(
Dτ∨(Bτ∧Sτ)

)
∧
(
(
∧

τ∈P

Nτ)∨
∨

τ∈P

Dτ

)
.

The first two conjuncts guarantee that an invariant map is
computed; the other two, that at least one of the pending
transitions can be discarded. Notice that, if there is no disabled
transition, we ask that all transitions in P are non-increasing,
but only that at least one transition in P (the next to be
removed) is both bounded and strict decreasing. Note also
that for finding invariants one has to take into account all
transitions in the SCC, even those that have already been
proved to be finitely executable: otherwise some reachable
states might not be covered, and the invariant generation
would become unsound. Hence in our termination analysis we
consider two transition systems: the original transition system
for invariant synthesis, whose transitions are T and which
remains all the time the same; and the termination transition
system, whose transitions are P , i.e, where transitions already
shown to be finitely executable have been removed. This
duplication is similar to the cooperation graph of [8].
However, this first approach is problematic when a ranking

function needs several invariants. A possible solution is to
add more templates iteratively, so that for example initially
invariants consisting of a single linear inequality are tried,
if unsuccessful then invariants consisting of a conjunction of
two linear inequalities are tried, etc. But when proceeding in
this way, all problems before the right number of invariants
is found are unsatisfiable. This is wasteful, as no constructive
information is retrieved from unsatisfiable constraint systems.

Another problem with this method for analyzing termination
is that the kind of termination proofs it yields may be too
restricted. More specifically, when one proves that a transition
τ is finitely executable, then a single termination argument
shows there is no computation where τ appears infinitely.
Although this produces compact proofs, on the other hand
sometimes there may not exist such a unique reason for
termination, and it becomes necessary a more fine-grained
examination. However, the approach as presented so far does
not provide a natural way or guidance for refining the analysis.

B. A Max-SMT Approach to Proving Termination
The main contribution of our work is to show that the

constraint system can be expressed in such a way that, even
when it turns out to be unsatisfiable, some information useful
for refining the termination analysis can be obtained. The key
observation is that, even though our aim is to prove transitions
to be finitely executable (by finding a ranking function or an
invariant that disables them), if we just find an invariant, or an
invariant and a quasi-ranking function that is close to fulfill
all required conditions, we have progressed in our analysis.
The idea is to consider the constraints guaranteeing invari-

ance as hard, so that any solution to the constraint system will
satisfy them, while the rest are soft. Let us consider proposi-
tional variables pB, pS and pN, which intuitively represent if the
conditions of boundedness, strict decrease and non-increase in
the definition of ranking function are violated respectively, and
corresponding weights ωB, ωS and ωN. We consider now the
next constraint system (where soft constraints are written [·,ω],
and hard ones as usual):
∧

!∈L

I!∧
∧

τ∈T

(
Dτ ∨Cτ

)
∧
∨

τ∈P

(
Dτ ∨

(
(Bτ ∨pB)∧(Sτ ∨pS)

))
∧

((∧

τ∈P

Nτ
)
∨
∨

τ∈P

Dτ∨pN
)
∧[¬pB,ωB]∧[¬pS,ωS]∧[¬pN,ωN].

Note that ranking functions have cost 0, and (if no transition
is disabled) functions that fail in any of the conditions are
penalized with the respective weight. Thus, the Max-SMT
solver looks for the best solution and gets a ranking function
if feasible; otherwise, the weights guide the search to get
invariants and quasi-ranking functions that satisfy as many
conditions as possible.
Hence this Max-SMT approach allows recovering informa-

tion even from problems that would be unsatisfiable in the
initial method. This information can be exploited to perform
dynamic trace partitioning [19] as follows. Assume that the
optimal solution to the above Max-SMT formula has been
computed, and let us consider a transition τ ∈ P such that
Dτ ∨ ((Bτ ∨ pB)∧ (Sτ ∨ pS)) evaluates to true in the solution.
Then we distinguish several cases depending on the properties
satisfied by τ and the computed function R:

• If τ is disabled then it can be removed.
• If R is non-increasing and satisfies boundedness and strict
decrease for τ , then τ can be removed too: R is a ranking
function for it.

• If R is non-increasing and satisfies boundedness for τ
but not strict decrease, one can split τ in the termination

204 221

transition system into two new transitions: one where
R > R′ is added to τ , and another one where R = R′

is enforced. Then the new transition with R > R′ is
automatically eliminated, as R is a ranking function for
it. Equivalently, this can be seen as adding R = R′ to τ .
Now, if the solver could not prove R to be a true ranking
function for τ because it was missing an invariant, this
transformation will guide the solver to find that invariant
so as to disable the transition with R = R′.

• If R is non-increasing and satisfies strict decrease for τ
but not boundedness, the same technique from above can
be applied: it boils down to adding R < 0 to τ .

• If R is non-increasing but neither strict decrease nor
boundedness are fulfilled for τ , then τ can be split into
two new transitions: one with R < 0, and another one
with R ≥ 0 ∧R = R′.

• If R does not satisfy the non-increase property, then it
is rejected; however, the invariant map from the solution
can be used to strengthen the transition relations for the
following iterations of the termination analysis.

Note this analysis may be worth applying on other transi-
tions τ in the termination transition system apart from those
that make Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) true. E.g., if R is a
ranking function for a transition τ but fails to be so for another
one τ ′ because strict decrease does not hold, then, according
to the above discussion, τ ′ can be strengthened with R = R′.
On the other hand, working in this iterative way requires

imposing additional constraints to avoid getting to a standstill.
Namely, in the case where non-increase does not hold and
so one would like to exploit the invariant, it is necessary to
impose that the invariant is not redundant. More in detail,
let us consider a fixed location #, and let I(1)! , . . . , I

(k)
! be

the previously computed invariants at location #. Then I!, the
invariant to be generated at #, is redundant if it is implied
by I

(1)
! , ..., I(k)! , i.e., if E!

def
= ∀v (I(1)! (v) ∧ . . . ∧ I

(k)
! (v)→

I!(v)). So we impose pN → ¬
∧
!∈L E! to ensure that violating

non-increase leads to non-redundant invariants. Conditions are
added similarly to avoid redundant quasi-ranking functions.
Another advantage of this Max-SMT approach is that by

using different weights we can express priorities over condi-
tions. Since, as explained above, violating the property of non-
increase invalidates the computed function R, it is convenient
to make ωN the largest weight. On the other hand, when non-
increase and boundedness are fulfilled but not strict decrease
an equality is added to the transition, whereas when non-
increase and strict decrease are fulfilled but not boundedness
just an inequality is added. As we prefer the former to the
latter, in our implementation (see Sect. V) we set ωB > ωS.
A further improvement is the generation of termination

implications. A termination implication at a location # is an
assertion J(v) such that any transition in the termination
transition system that leads into # implies it, i.e., it holds
that ρ |= J(v′), where ρ is the relation of the transition.
Thus, J will eventually hold when # is reached (although,
unlike ordinary invariants, may not initially be true; see

(c)(a) (b) (d)

Θ(!1) ≡ true Θ(!2) ≡ false

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z
ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z
ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z
ρτ ′3 : y ≥ 1, y ≥ z, x′ = x, y′ = x+ y, z′ = z

!1!1!1 !1

!2!2!2 !2

τ1τ1 τ1.2τ1.2

τ2

τ3 τ ′3 τ ′3

Fig. 2. Evolution of the termination transition system: initially (a) and after
the first (b), second (c) and third (d) round.

Example 1 below). Hence, it can be propagated forward in
the termination transition system to the transitions going out
from #. To produce termination implications, for each location
a new linear inequality template J!(v) is introduced and the
following constraint is imposed:

∧
τ=(!̂,!,ρ)∈P (Dτ ∨ I!̂ ∧ ρ)

J ′

!) . Additional constraints are enforced to ensure that new
termination implications are not redundant with the already
computed invariants and termination implications.
Example 1: Let us show a termination analysis of the

program in Fig. 1. In the first round, the solver finds the
invariant y ≥ 1 at #2 and the ranking function z for τ2.
While y ≥ 1 can be added to τ3 (resulting into a new
transition τ ′3), the ranking function allows eliminating τ2 from
the termination transition system (see Fig. 2 (b)).
In the second round, the solver cannot find a ranking

function. However, thanks to the Max-SMT formulation, it can
produce the quasi-ranking function x, which is non-increasing
and strict decreasing for τ1, but not bounded. This quasi-
ranking function can be used to split transition τ1 into two
new transitions τ1.1 and τ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z
ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

Then τ1.1 is immediately removed, since x is a ranking
function for it. The current termination transition system is
given in Fig. 2 (c).
In the third and final round, the termination implication

x < 0 is generated at #2, together with the ranking function
y for transition τ ′3. Note that the termination implication is
crucial to prove the strict decrease of y for τ ′3, and that the
previously generated invariant y ≥ 1 at #2 is needed to ensure
boundedness. Now τ ′3 can be removed, which makes the graph
acyclic (see Fig. 2 (d)). This concludes the termination proof.

205222

x < 0

x > 0

y < 0

y > 0

z < 0

z > 0

Fig. 3. Chain of locations obtained from a sequence of statements
assume(x != 0); assume(y != 0); assume(z != 0). Note disequalities are
not natively supported, and so have to be split into disjunctions of inequalities.

IV. IMPLEMENTATION

The method presented in Sect. III has been implemented in
the tool CppInv1. This section describes this implementation.
CppInv admits code written in C++ as well as in the lan-

guage of T2 [10]. The system analyses programs with integer
variables, linear expressions and function calls. Variables of
other data types, such as floating-point variables, are treated
as unknown values. Function calls are handled with techniques
similar to those in [20], although currently the returned value
is ignored. Further, for recursive functions, after a function call
we assign unknowns to all variables that can be modified in the
call (i.e., global variables and variables passed by reference).
In the transformation from the source code to the internal

transition system representation, CppInv attempts to reduce
the number of locations by composing transitions. Still, this
preprocessing may result in an exponential growth in the
number of transitions. As our technique does not require
minimized transition systems for soundness, the tool stops this
location minimization if a threshold number of transitions is
reached. Moreover, whenever a chain of locations connected
by transitions that do not modify variables (see Fig. 3) is
detected, CppInv does not attempt to eliminate the locations:
since no variable is updated, in these transitions any function
satisfies the non-increase condition, while no ranking function
is possible. For this reason, when producing the constraints,
these transitions are ignored as far as termination is concerned,
and are only considered for the generation of invariants.
Once the input is represented as a transition system, the ac-

tual termination analysis starts. See function proved TS term:
bool proved TS term(Trans Sys S = (v, L, Θ, T)) {
// C is the list of SCC’s topologically sorted according to ordering ≺

(C, ≺) = compute SCCs and topologically sort(S);
for (C ∈ C by ≺) {
(L, T) = (locations(C), transitions(C));
P = copy(T);
for (! ∈ L : ∃(!̂, !, ρ) ∈ T with !̂ ∈ Ĉ ≺ C)
Θ(!) = Θ(!) ∨ SPost(ρ);
if (not proved SCC term(L, T, P)) return false; }

return true ; }

The SCC’s are computed and topologically sorted, and each
SCC is processed according to this order. Processing an SCC
involves first performing a copy of the transitions for keeping
track of those not proven finitely executable yet. Then the
initial conditions are updated with the strongest postconditions
of the incoming transitions from previous SCC’s, where the
strongest postcondition of a transition relation ρ(v, v′) is the

1CppInv, together with all benchmarks used in the experimental evaluation
of Sect. V, is available at www.lsi.upc.edu/∼albert/cppinv-term-bin.tar.gz.

assertion SPost(ρ)(v) ≡ ∃w ρ(w, v). Finally the SCC is
analysed for termination. If it could not be proved terminating,
the procedure stops. Otherwise the next SCC is dealt with.
The analysis of termination of SCC’s is orchestrated by the

function proved SCC term:
bool proved SCC term(Set Loc L, Set Trans T , Set Trans P) {
if (dis trans (L, T , P) or rank fun(L, T , P) or term impl(L, T , P)){
if (P == ∅) return true;
for (C′ SCC in the graph of P) {

T ′ = transitions(C′);
if (T ′

!= ∅ and not proved SCC term(L, T , T ′)) return false; }
return true ; }

else return false ; }

It takes as arguments: a set of locations L and a set of transi-
tions T , corresponding to an SCC of the transition system; and
the termination transition system: a non-empty set P ⊆ T of
transitions that still have to be proved finitely executable. As
explained in Sect. II-B, one may assume that the graph induced
by P is strongly connected. The function returns true if all
transitions in P can be proved finitely executable. We found
out that, instead of directly solving the full constraint system
introduced in Sect. III-B, in practice it is preferable to proceed
by phases. Each phase2 (functions dis trans, rank fun and
term imp) attempts to remove transitions from P by different
means, and returns true if P has become empty or it is no
longer strongly connected. In the former case, we are done. In
the latter, the same procedure is recursively called. If after all
phases P is non-empty, we report failure to prove termination.
In the first phase (function dis trans), CppInv attempts

to eliminate transitions with disability arguments by gen-
erating the appropriate invariants (neither ranking functions
nor termination implications are considered at this point).
This is achieved by solving the following Max-SMT formula:∧
!∈L I!∧

∧
τ∈T (Dτ∨Cτ)∧(

∨
τ∈T Dτ∨pD)∧[¬pD,ωD]3, where

pD is a propositional variable meaning that no transition can
be disabled, and ωD is the corresponding weight. Transitions
that are detected to be disabled (by means of a call to an
SMT solver) are removed both from the original and the
termination transition system. Invariants are used to strengthen
the transition relations as described in Sect. II-B. The process
is repeated while new transitions can be disabled.
bool dis trans (Set Loc L, Set Trans T , Set Trans P) {
cont = true;
while (cont) {
cont = false;
for (τ = (!, !′, ρ) ∈ P)
if (ρ is UNSAT) // τ is disabled
(T , P) = (T − {τ}, P − {τ});

if (P == ∅) return true;
H =

∧

!∈L

I! ∧
∧

τ∈T

(Dτ ∨ Cτ) ∧
∨

τ∈T

(Dτ ∨ pD);

S = [¬pD,ωD];
(I, c) = solve(H ∧ S); // I invariant map, c cost of solution
if (c == ∞) break; // No solution to hard clauses
for (! ∈ L, (!, !′, ρ) ∈ T) // Strengthen relation with invariant
ρ = ρ ∧ I(!);
if (c == 0) cont = true; }

return not is strongly connected (P); }

2These phases have a time limit in our implementation although this is not
made explicit in the pseudo-code shown below.
3Constraints that avoid redundancy are not included for simplicity.

206 223

In the second phase (function rank fun), the system elim-
inates transitions by using ranking functions as arguments
(termination implications are not considered at this point). If
the computed function R satisfies the non-increase property,
then each of the transitions τ in the termination transition
system is examined and either removed if R is a ranking
function for τ , or split otherwise, as described in Sect. III-B.
bool rank fun(Set Loc L, Set Trans T , Set Trans P){
while (true) {

H =
∧

!∈L

I! ∧
∧

τ∈T

Cτ ∧

∨

τ∈P

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

)
∧

∧

τ∈P

(Nτ ∨ pN)

S = [¬pB,ωB] ∧ [¬pS,ωS] ∧ [¬pN,ωN];
(I,R, c) = solve(H ∧ S);
if (c == ∞) return false; // No solution to hard clauses
for (! ∈ L, (!, !′, ρ) ∈ T) // Strengthen relation with invariant
ρ = ρ ∧ I(!)

for (τ = (!, !′, ρ) ∈ P)
if (ρ is UNSAT) // τ is disabled
(T , P) = (T − {τ}, P − {τ});

if (non increase(R))
for (τ ∈ P)
if (bounded(τ , R) and strict decrease(τ , R)) P = P − {τ};
else split (τ , R, P); // Splits τ

if (P == ∅ or not is strongly connected(P)) return true; } }

The third and final phase (function term impl, not detailed
here for lack of space) is very similar to the previous one, with
the difference that termination implications are also included.
As regards the constraints, we restrain ourselves to invari-

ants and ranking functions with integer coefficients, since this
allows us to exploit efficient non-linear solving techniques
[21]. Moreover, in order to perform integer reasoning, the
following variation of Farkas’ Lemma, based on the Gomory-
Chvátal cutting plane rule [22], is employed:
Lemma 1: Let Ax+b ≤ 0 (A ∈ Rm×n, b ∈ Rm) be a system

of linear inequalities over integer variables xT = (x1, . . . , xn),
and cTx+d ≤ 0 (c ∈ Zn, d ∈ R) be a linear inequality. If there
is λ ∈ Rm, i ∈ Z and f ∈ R such that λ ≥ 0, cT = λTA,
λT b = i − f , 0 ≤ f < 1 and i ≥ d, then Ax + b ≤ 0 entails
cTx+ d ≤ 0.
Lemma 1 allows transforming an ∃∀ problem into an ∃
problem. If all coefficients in the premise are known values,
the resulting satisfiability problem is an SMT problem over
LA. Otherwise, an SMT problem over NA is obtained. Fur-
thermore, as some unknowns are integer (the coefficients) and
some are real (the multipliers), the resulting problems have
mixed types.
CppInv uses Barcelogic [23] for solving the generated

constraints. The Max-SMT(NA) solver for mixed non-linear
arithmetic in Barcelogic extends the techniques presented in
[21] for solving SMT(NIA) problems. This is achieved by
allowing integer and real variables in the underlying linear
arithmetic solver, and wrapping this solver with a branch-and-
bound scheme for optimization [18].

V. EXPERIMENTAL EVALUATION
In this section we show experiments that evaluate the

performance of CppInv on a wide set of examples, which have
been taken from the online programming learning environment
Jutge.org [7] (see www.jutge.org), and from benchmark suites
in [8] and in research.microsoft.com/en-us/projects/t2/. We

TABLE I
RESULTS WITH BENCHMARKS FROM T2

#ins. noMS MS MS+QR MS+QR+TI T2
Set1 449 212 220 228 238 245
Set2 472 245 252 262 276 279

TABLE II
RESULTS WITH BENCHMARKS FROM Jutge.org.

#ins. CppInv T2
P11655 367 324 328
P12603 149 143 140
P12828 783 707 710
P16415 98 81 81
P24674 177 171 168
P33412 603 478 371

#ins. CppInv T2
P40685 362 324 329
P45965 854 780 793
P70756 280 243 235
P81966 3642 2663 926
P82660 196 174 177
P84219 413 325 243

provide here a comparison with the new version of T2, which
according to the results given in [8] is performing much better
when proving termination than most of the existing tools, in-
cluding Terminator [12], AProVE [25] or ARMC [24], among
others. We have also tried CProver [13] and Loopfrog [14],
but the results were not good on these sets of benchmarks. All
experiments were performed on an Intel Core i7 with 3.40GHz
clock speed and 16 GB of RAM.
The first two considered sets of benchmarks are those

provided by the T2 developers. Following the experiments
in [8], we have set a 300 secs. timeout. To show the impact of
the different techniques described in the paper, Table I presents
the number of instances in each set (#ins.) and the number of
those that we proved terminating with the following settings:

• (noMS) implements the generation of invariants and rank-
ing functions using a translation to SMT(NA), but without
using Max-SMT, i.e. with all constraints hard. The fact
that this plain version can already prove many instances
hints on the goodness of our underlying algorithm and
the impact of using our NA-solver in this application.

• (MS) implements the generation of invariants and ranking
functions using Max-SMT(NA), where the constraints
imposed by the ranking function are added as soft.

• (MS+QR) adds to the previous case the possibility to use
quasi-ranking functions.

• (MS+QR+TI) adds to the previous case the possibility to
infer termination implications.

Note that every added improvement allows us to prove
some more instances, while none is lost due to the additional
complexity of the constraints generated.
Moreover, by looking into the results in more detail, we

have observed that our tool and T2 complement each other
to some extent: in Set1 CppInv can prove 7 instances which
cannot be proved by T2, while we cannot prove 14 which
can be handled by T2; similarly, in Set2 CppInv can prove
8 programs which cannot be proved by T2, while we cannot
prove 11 that can be handled by T2. The average time in YES
answers of T2 is 2.9 secs and of CppInv is 12.8 secs.
In Table II, we show the comparison of CppInv (with

all described techniques) and T2 on our benchmarks from
the programming learning environment Jutge.org, which is

207224

!1 !2

y > 0 ∧ y′ = y − 1 ∧ x′ = x− 1
y ≤ 0

y < 0 ∧ y′ = y + x

Θ(!1) ≡ x > y Θ(!2) ≡ false

Fig. 4. Program that requires invariants from previous SCC’s.

currently being used in several programming courses in the
Universitat Politècnica de Catalunya. The benchmark suite
consists of thousands of solutions written by students to
12 different programming problems. These programs can be
considered challenging since most often they are not the
most elegant solution but one with many more conditional
statements than necessary (e.g., the largest instance we can
successfully handle has nearly 700 transitions). Here, due to
the size of the benchmark suites (see column #ins.), for the
execution of both tools we have set a 120 secs. timeout.
The average time in YES answers of T2 is 1.7 secs. and of
CppInv is 1.6 secs. Note that, in order to run these benchmarks
in T2, we have translated them into T2 format using our
intermediate transition graph. This may be a disadvantage for
T2, as it happens in the reverse way when CppInv is run on T2
benchmark set. In particular, we think the bad performance of
T2 in sets P33412, P81966 and P84219 may be related to the
way we handle division, which is crucial in these examples.

VI. CONCLUSIONS AND FUTURE WORK

In short, the contributions of this paper are:
• a novel Max-SMT constraint-based approach to proving
termination. Thanks to expressing the synthesis of a
ranking function and a supporting invariant as a Max-
SMT problem, we achieve a better guided and more fine-
grained termination analysis than SMT-based methods.
Max-SMT reveals to be a convenient framework for
constraint-based termination analysis. In addition to our
method, other techniques such as unaffecting score max-
imization [10] can be naturally modeled in Max-SMT.

• a prototype of termination analyzer for (a subset of) C++.
One of the shortcomings of our approach is that invariant

synthesis is restricted to a single SCC. If invariants from
previous SCC’s have not been generated but are later required,
our technique cannot prove termination. E.g., in the program
shown in Fig. 4, the invariant x > 0 must be discovered
at #1 so as to prove that the rightmost transition is finitely
executable, although it is not necessary for proving that the
leftmost loop is terminating. For future work we plan to
develop techniques to overcome this kind of situations. A
promising idea is to consider initiation conditions as soft:
then the generated quasi-invariants represent what is missing
from previous SCC’s, and then can be propagated backwards.
Alternatively, these quasi-invariants can be used to split the
initial conditions of the current SCC. Finally, as a byproduct,
this would allow us to solve the conditional termination
problem as well.

ACKNOWLEDGMENT
This research was supported by Spanish MEC/MICINN

under grant TIN 2010-21062-C02-01. We thank Jutge.org for
providing benchmarks, and Byron Cook for giving us access
to T2 and their benchmarks and for his helpful comments.

REFERENCES
[1] D. Dams, R. Gerth, and O. Grumberg, “A heuristic for the automatic

generation of ranking functions,” in Workshop on Advances in Verifica-
tion, 2000, pp. 1–8.

[2] M. Colón and H. Sipma, “Synthesis of linear ranking functions,” in
TACAS, ser. LNCS, vol. 2031. Springer, 2001, pp. 67–81.

[3] A. Podelski and A. Rybalchenko, “A complete method for the synthesis
of linear ranking functions,” in VMCAI, ser. LNCS, vol. 2937. Springer,
2004, pp. 239–251.

[4] A. Tiwari, “Termination of linear programs,” in CAV, ser. LNCS, vol.
3114. Springer, 2004, pp. 70–82.

[5] M. Colón and H. Sipma, “Practical methods for proving program
termination,” in CAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 442–
454.

[6] A. Bradley, Z. Manna, and H. Sipma, “Linear ranking with reachability,”
in CAV, ser. LNCS, vol. 3576. Springer, 2005, pp. 491–504.

[7] J. Petit, O. Giménez, and S. Roura, “Jutge.org: an educational program-
ming judge,” in SIGCSE, ACM, 2012, pp. 445–450.

[8] M. Brockschmidt, B. Cook, and C. Fuhs, “Better termination proving
through cooperation,” in CAV, 2013, to appear.

[9] M. Colón, S. Sankaranarayanan, and H. Sipma, “Linear Invariant Gen-
eration Using Non-linear Constraint Solving,” in CAV, ser. LNCS, vol.
2725. Springer, 2003, pp. 420–432.

[10] B. Cook, A. See, and F. Zuleger, “Ramsey vs. lexicographic termination
proving,” in TACAS, ser. LNCS, vol. 7795. Springer, 2013, pp. 47–61.

[11] A. Podelski and A. Rybalchenko, “Transition invariants,” in LICS. IEEE
Computer Society, 2004, pp. 32–41.

[12] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” in PLDI, ACM, 2006, pp. 415–426.

[13] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening,
“Loop summarization and termination analysis,” in TACAS, ser. LNCS,
vol. 6605. Springer, 2011, pp. 81–95.

[14] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. Winter-
steiger, “Loopfrog: A Static Analyzer for ANSI-C Programs,” in ASE,
IEEE, 2009, pp. 668–670.

[15] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv,
“Proving conditional termination,” in CAV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 328–340.

[16] P. Ganty and S. Genaim, “Proving termination starting from the end,”
in CAV, 2013, to appear.

[17] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook
of Satisfiability, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009, vol. 185.

[18] R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theories and
Optimization Problems,” in SAT, ser. LNCS, vol. 4121. Springer, 2006,
pp. 156–169.

[19] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation
based static analyzers,” in ESOP, ser. LNCS, vol. 3444. Springer, 2005,
pp. 5–20.

[20] B. Cook, A. Podelski, and A. Rybalchenko, “Summarization for termi-
nation: no return!” Formal Methods in System Design, vol. 35, no. 3,
pp. 369–387, 2009.

[21] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “SAT Modulo Linear Arithmetic for Solving Polynomial
Constraints,” J. Autom. Reasoning, vol. 48, no. 1, pp. 107–131, 2012.

[22] J. A. Robinson and A. Voronkov, Eds., Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

[23] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “The Barcelogic SMT Solver,” in CAV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 294–298.

[24] A. Podelski and A. Rybalchenko, “ARMC: the logical choice for
software model checking with abstraction refinement,” in PADL, ser.
LNCS, vol. 4354. Springer, 2007, pp. 245–259.

[25] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl, “Automated
termination analysis of java bytecode by term rewriting,” in RTA
Volume 6 of LIPIcs., Schloss Dagstuhl, 2010, 259–276.

208 225

