
Verifying Multi-threaded Software with Impact
Björn Wachter

Department of Computer Science
University of Oxford

Email: bjoern.wachter@cs.ox.ac.uk

Daniel Kroening
Department of Computer Science

University of Oxford
Email: daniel.kroening@cs.ox.ac.uk

Joël Ouaknine
Department of Computer Science

University of Oxford
Email: joel.ouaknine@cs.ox.ac.uk

Abstract—Lazy abstraction with interpolants, also known as
the Impact algorithm, is en vogue as a state-of-the-art software
model-checking technique for sequential programs. However, a
direct extension of the Impact algorithm to concurrent programs
is bound to be inefficient as it has to explore all thread
interleavings, which leads to control-state explosion. To this end,
we present a new algorithm that combines a new, symbolic form
of partial-order reduction with Impact. Our algorithm carries
out the dependence analysis on-the-fly while constructing the
abstraction and is thus able to deal precisely with dynamic
dependencies arising from accesses to tables or pointers — a
setting where classical static partial-order reduction techniques
struggle. We have implemented the algorithm in a prototype
tool that analyses concurrent C program with POSIX threads
and evaluated it on a number of benchmark programs. To our
knowledge, this is the first application of an Impact-like algorithm
to concurrent programs.

I. INTRODUCTION

Concurrent software is gaining importance owing to the
advent of power-efficient multi-core architectures. Model
checking for concurrent software is thus one of the most press-
ing problems facing the verification community. Concurrent
software in C/C++ is usually written using mainstream APIs
such as POSIX, or via a combination of language and library
support as in Java. Typically, multiple threads are spawned—
either up-front or dynamically—which communicate via shared
variables. While software verification generally has to cope
with data state explosion, threads introduce the problem of
state explosion due to the need of keeping track of a plethora
of thread interleavings.

Lazy abstraction with interpolants [1], also known as the
Impact algorithm, has emerged as one of the most efficient
algorithms for addressing the data state explosion problem for
sequential programs. Impact unwinds the control-flow graph
of the program in the form of an abstract reachability tree.
Whenever the exploration arrives at an error state, the nodes
on the error path are annotated with invariants that prove
infeasibility of the error path. The crux of the algorithm is
a covering check that allows the algorithm to soundly stop
the unwinding and terminate with a correctness proof of the
program. The underlying observation is that tree nodes represent
sets of program states which are related by subset relations.
Roughly, a node w labeled with x > 0 “contains” a node v

labeled with x > 1. If we have established that the superset

Supported by ERC project 280053, EPSRC project EP/H017585/1 and the
Semiconductor Research Corporation (SRC) under task 2269.002.

main() thread T1 thread T2
assume(i!=j);
v[i]=0; v[j]=0; A : v[i]=1; a : v[j]=-2;
pthread_create(T1); B : v[i]=v[i]+1; b : v[j]=v[j]+1;
pthread_create(T2); C : v[i]=v[j]; c : v[i]=v[i]+1;
pthread_join(T1);
pthread_join(T2);
assert(v[j] ∏ 0);

A a

B a A b

C a B b A c

a C b B c A

b C c B

c C

A a

B a A b

C a B b A c

a C b B c A

b C c B

c C

Fig. 1: An example program (top) and its complete interleaving
(left) and reduced interleaving semantics (right).

node w cannot be on an error path, we do not need to search
for an error path from subset node v . This combination of low-
cost program unwindings combined with path-based refinement
and covering checks gives rise to an efficient software model
checking algorithm.

However, the original Impact algorithm has been devised
for sequential code only. A direct extension of Impact to
multi-threaded programs amounts to an enumeration of thread
interleavings. Let us illustrate this with the example program
with two threads given in Figure 1. On the left-hand side of the
figure, the state graph with the complete set of interleavings is
shown. Note that there is a diamond-shaped structure where
program paths merge, e.g., executing instruction A and then a

leads to the same state as executing a first and then A, making
certain sequences of instructions redundant. This situation is
very common in multi-threaded programs.

Impact produces the full program unwinding, as the explo-
ration of the abstract tree has to reach an error location to
discover the right invariants. The algorithm may find identical
invariants for redundant paths, but this does not prune the
abstract exploration, as, at that point, the program paths have
already been completely unwound.

Force cover, an optimization of Impact, improves this
situation by giving Impact the power to discover that certain
program executions merge without fully exploring the paths
to the error location. This reduces the number of paths to
be explored. On our example, the application of force covers
results in a tree of a similar size as the graph on the left-hand

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 193210ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

side of Figure 1. In particular, even with force covers, Impact
still explores all thread interleavings in our example, which
can be prohibitively expensive. A a

B a b

C a b c

a
C

b c A

b C
c B

c C

Fig. 2: Impact with POR
and force cover

A principal method to reduce
the number of interleavings in
the exploration of concurrent pro-
grams is partial-order reduction
(POR) [2]–[5]. The right-hand
side of Figure 1 shows an explo-
ration reduced by means of partial-
order reduction. A key contribution
of this paper is a novel combina-
tion of Impact with POR, which
produces the abstract tree shown in Figure 2. Impact with force
cover alone explores a tree with five further nodes, as it does
not know in advance that the executions merge, while partial-
order reduction is able to discover this earlier. Discovering
redundant paths early on during the exploration is crucial to
avoid path explosion.

Contributions:
• We present an extension of the Impact algorithm to

concurrent software.
• We show how to combine partial-order reduction with

Impact. Due to a subtle interplay between node coverings
and POR, obtaining a sound verification procedure is non-
trivial. To this end, we give a general framework to prove
such combinations correct, and an algorithm based on
this framework which combines Impact with monotonic
partial-order reduction [6].

• We compare the effect of partial-order reduction and force
covers; our conjecture is that the two techniques yield
orthogonal benefits and are best combined.

We present background and basic definitions in Section II.
We develop a variant of the Impact algorithm for concurrent
software in Section III. We present a combination of partial-
order reduction and Impact in Section IV. Experimental results
are discussed in Section V.

II. BASIC DEFINITIONS

Program semantics: We consider a concurrent program
P composed of a finite set of threads T , which communicate
by performing operations on shared variables.

A state of a concurrent system consists of the local states
S

local

of each thread, i.e., the value of the thread’s program
counter given by a program location l 2 L and values of the
local variables of the thread, and of the shared states S

shared

,
i.e., values for communication objects such as locks, tables and
the like. Thus, we have a global state space S = S

shared

£S

local

.
A global control location is a function l : T ! L from threads

to control locations. Let L

G

be the set of global control locations.
The global location in state s is denoted by l(s). For a given
global location l and thread T , we write l

T

as a shorthand
for l(T). By l[T 7! l], we denote the global location where the
location of thread T maps to l , while the locations for all other
threads T

0 remain unchanged.

We characterize program data in terms of formulas in
standard first-order logic. We denote the set of well-formed
formulas over symbols ß by F (ß). For a given formula F we
denote the set of formulas over the same symbols by F (F).

Let V be the vocabulary that represents the program variables.
A state formula is a formula in F (V) and represents a set of
global states. A transition formula, from now on, typically
denoted by the letter R, is a formula in F (V [V

0).
Formally, we model a program as a pair (init,T) where

init 2F (V) is the initial-state predicate, and T a finite set of
threads. We assume that the set of threads is endowed with
some total order <. A thread T 2T is a tuple T = (L, l

i , l

 , A)
consisting of a finite set of control locations L, an initial location
l

i 2 L, an error location l

 , and a set of actions A. An action is a
pair a = (l , N) 2 L£2F (V [V

0)£L , consisting of a current location
l and a set of successor control locations l

0, each associated with
a transition constraint. An assignment l1: x=y+1; l2: . . .
is represented as (l1, {(x

0 = y +1^ y

0 = y ; l2)}). An assertion
l1: assert(x<y); l2: . . . becomes an action (l1, {(x ∏ y^
x

0 = x^y

0 = y, l

), (x < y^x

0 = x^y

0 = y, l2)}), which enters the
error location l

 if the condition is violated. Sets of successors
are used to represent branching control flow, e.g., the encoding
of the if-statement l1: if(x==1) goto l3; l2: . . . is
(l1, {(x = 1^x

0 = x, l3), (x 6= 1^x

0 = x, l2)}).
We write L(T) and A(T) to denote the locations and actions

of a thread. For an action a = (l , N) 2 A(T) of thread T , action
a is enabled at location l and at global location l if a is enabled
at l

T

. We assume that exactly one action a

T,l of any given T

is enabled at any location l 2 L.
The control-flow graph C FG

T

= (l

i ,E) of thread T =
(L, l

i , l

 , A) is defined by entry node l

i and edges E =S
a2A(T) E

a

where E

a

= {(l , l

0) 2 L £ L | a = (l , N), (R, l

0) 2 N }.
The control-flow nodes are topologically ordered. We say that
an action a induces a back edge if E

a

contains a back edge.
We say that an action a = (l , N) 2 T is enabled at a state

if a is enabled at global location l(s). We denote the enabled
actions at a state s by enabled(s). We assume that an action
a = (l , N) defines a total function {s 2 S | a 2 enabled(s)} ! S

on all program states for which it is enabled.
For ease of notation, we identify a with this function and

write a(s) to denote the successor of a state s under action a.
Invariants and Correctness Proofs: A program path º is a

sequence (l0,T0, a0, l1) . . . (l
N°1,T

N°1, a

N°1, l
N

). For a thread T ,
and l , l

0 2 L(T) with l 6= l

0, we write l @ l

0 if there exists a
program path from l to l

0.
A path is an error path if l0 is the vector of initial

locations for all threads, and l
N°1 contains an error location

of a thread. We denote by F (º) the sequence of formulas
init

(0) ^R

(0)
0 , . . .R

(N°1)
N°1 obtained by shifting each R

i

i time
frames into the future. We say that º is feasible if

V
R

(i)
i

is logically satisfiable. A solution to
V

R

(i)
i

corresponds to a
program execution assigning values to the program variables
at each execution step. The program is said to be safe if all
error paths are infeasible.

An inductive invariant is a mapping I : L

G

! F (V) such
that init) I (li) and for all locations l 2 L

G

, all threads T 2T ,

194 211

and actions a = (l ,R, l

0) 2 T in thread T enabled in l, we
have I (l)^R) I (l[T 7! l

0]). A safety invariant is an inductive
invariant with I (l) ¥ False for all error locations l. If there is a
safety invariant the program is safe.

Interpolants: In case a path is infeasible, an explanation
can be extracted in the form of an interpolant. To this end, we
define sequent interpolants [7]. A sequent interpolant for formu-
las A1, . . . , A

N

, is a sequence b
A1, . . . , b

A

N

where the first formula
is equivalent to true b

A1 ¥ True, the last formula is equivalent to
false b

A

N

¥ False, consecutive formulas imply each other, i.e.,
for all i 2 {1, . . . , N }, b

A

i°1 ^ A

i

) b
A

i

, and, the i -th sequent is a
formula over the common symbols of its prefix and postfix, i.e.,
for all i 2 {1, . . . N }, b

A

i

2 F (A1, . . . , A

i

)\F (A

i+1, . . . , A

N

). For
certain theories, quantifier-free interpolants can be generated
for inconsistent, quantifier-free sequences A1, . . . , A

N

[7].

III. IMPACT ALGORITHM FOR CONCURRENT PROGRAMS

We now present an extension of the original Impact algorithm
to concurrent programs. The algorithm returns either a safety
invariant for a given program, finds a counterexample or
diverges (the verification problem is undecidable). To this
end, the algorithm constructs an abstraction of the program in
the form of an abstract reachability tree, which corresponds to
a program unwinding annotated with invariants.

Definition 3.1 (ART): An abstract reachability tree (ART)
A for program P is a tuple (V ,≤,!,.) consisting of a tree
with nodes V , root node ≤ 2V , edges !µV

2, and a covering
relation .µV

2 between tree nodes such that:
• every nodes v 2V is labeled with a tuple (l,¡) consisting

of a current global control location l, and a state formula
¡. We write l(v) and ¡(v) to denote the control location
and annotation, respectively, of node v .

• edges correspond to program actions, and tree branching
represents both branching in the control flow within a
thread and thread interleaving. Formally, an edge is a tuple
(v,T,R, w) where v, w 2 V , T 2 T , and R the transition
constraint of the corresponding action.

We write v

T! w if there exists an edge (v,T,R, w) 2!. We
denote by the transitive closure of !.

To put abstract reachability trees to work for proving program
correctness for unbounded executions, we need a criterion to
prune the tree without missing any error paths. This role is
assumed by the covering relation ..

Intuitively, the purpose of node labels is to represent
inductive invariants, i.e., over-approximations of sets of states,
and the covering relation is the equivalent of a subset relation
between nodes. Suppose that two nodes v, w share the same
control location, and ¡(v) implies ¡(w). If there was a feasible
error path from v , there would be a feasible error path from w .
Therefore, if we can find a safety invariant for w , we do not
need to explore successors of v , as ¡(v) is at least as strong
as the already sufficient invariant ¡(w).

Note that, therefore, if w is safe, all nodes in the subtree
rooted in v are safe as well. Therefore, a node is covered if

and only if the node itself or any of its ancestors has a label
implied by another node’s label at the same control location.

To obtain a proof from an ART, the ART needs to fulfill
certain conditions, summarized in the following definition:

Definition 3.2 (Safe ART): Let A = (V ,≤,!,.) be an ART.
• A is well-labeled if the labeling is inductive, i.e.,

8(v,T,R, w) 2!: l(v) = l(w) ^ ¡(v) ^ R) ¡(w)0 and
compatible with covering, i.e., (v, w) 2 . : ¡(v))¡(w)
and w not covered.

• A is complete if all of its nodes are covered, or have an
out-going edge for every action that is enabled at l.

• A is safe if all error nodes are labeled with False.

Theorem 3.3: If there is a safe, complete, well-labeled ART
of program P , the program is safe.

Proof As in [1], the labeling immediately gives a safety
invariant M , M(l0) =W

{¡(v) | l(v) = l0}.

A. Concurrent Impact with Full Interleaving

The concurrent version of the IMPACT algorithm we describe
next (Algorithm 1) constructs an ART by alternating three
different operation on nodes: EXPAND, REFINE, and CLOSE.
At all times, the algorithm maintains the invariant that the tree
is well-labeled and safe, i.e., to produce a correctness proof
the algorithm needs to make the tree complete.

To keep track of nodes where the tree is incomplete,
uncovered leaf nodes are kept in a work list Q.

EXPAND takes an uncovered leaf node and computes its
successors. To this end, it iterates over all threads. For every
enabled action, it creates a fresh tree node w , and sets its
location to the control successor l

0 given by the action. To
ensure that the labeling is inductive, the formula ¡(w) is set to
True. Then the new node is added to the work list Q. Finally,
a tree edge is added (Line 23), which records the step from v

to w and the transition formula R. Note that if w is an error
location, the labeling is not safe; in which case, we need to
refine the labeling, invoking operation REFINE.

REFINE takes an error node v and, detects if the error
path is feasible and, if not, restores a safe tree labeling. First,
it determines if the unique path º from the initial node to
v is feasible by checking satisfiability of F (º). If F (º) is
satisfiable, the solution gives a counterexample in the form
of a concrete error trace, showing that the program is unsafe.
Otherwise, an interpolant is obtained, which is used to refine
the labeling. Note that strengthening the labeling may destroy
the well-labeledness of the ART. To recover it, pairs w . v

i

for strengthened nodes v

i

are deleted from the relation, and
the node w is put into the work list again.

CLOSE takes a node v and checks if v can be added to the
covering relation. As potential candidates for pairs v.w , it only
considers nodes created before v , denoted by the set V

¡v (V .
This is to ensure stable behavior, as covering in arbitrary order
may uncover other nodes, which may not terminate. Thus
only for uncovered nodes w 2V

¡v , it is checked if l(w) = l(v)
and ¡(v) implies ¡(w). If so, (v, w) is added to the covering

195212

Algorithm 1 Impact with support for concurrent programs
1: procedure MAIN()
2: Q := {≤}, . :=;
3: while Q 6=; do
4: select and remove v from Q

5: CLOSE(v)
6: if v not covered then
7: if er r or (v) then
8: REFINE(v)
9: EXPAND(v)

10: return P is safe
11:
12: procedure EXPAND(v)
13: for T 2T do
14: EXPAND-THREAD(T, v)

15: procedure EXPAND-THREAD(T, v)
16: (l,¡) := v

17: for (l , N) 2 A(T) with l
T

= l do
18: for (R, l

0) 2 N do
19: w := fresh node
20: l(w) := l[T 7! l

0]
21: ¡(w) := True

22: Q :=Q [{w}, V :=V [{w}
23: !:=![{(v,T,R, w)}
24:
25: procedure CLOSE(v)
26: for w 2V

¡v : w uncovered do
27: if l(v) = l(w)^¡(v))¡(w) then
28: . :=.[{(v, w)}
29: . :=.\ {(x, y) 2. | v y}

30: procedure REFINE(v)
31: if v not error node or ¡(v) ¥ False then
32: return
33: º := v0, . . . v

N

path from ≤ to v

34: if F (º) has interpolant A0 . . . A

N

then
35: for i = 0. . . N do
36: ¡ := A

°i

i

37: if ¡(v

i

) 6Õ¡ then
38: Q :=Q [{w | w . v

i

}
39: . :=.\ {(w, v

i

) | w . v

i

}
40: ¡(v

i

) :=¡(v

i

)^¡
41: for w 2V s.t. w v do
42: CLOSE(w)
43: else
44: abort (program unsafe)

relation .. To restore well-labeling, all pairs (x, y) where y is
a descendant of v , denoted by v y , are removed from ., as
v and all its descendants are covered.

MAIN first initializes the queue with the initial node ≤, and
the relation . with the empty set. It then runs the main loop of
the algorithm until Q is empty, i.e., until the ART is complete,
unless an error is found which exits the loop. In the main loop,
a node is selected from Q. First, CLOSE is called to try and
cover it. If the node is not covered and it is an error node,
REFINE is called. Finally, the node is expanded, unless it was
covered, and evicted from the work list.

An important optimization of the algorithm is another
subroutine, called force cover. Initially, all new nodes are
labeled with invariant True. Therefore, they will not be covered
by an existing node with a non-trivial invariant, although this
may be a permissible labeling. To check coverage, force cover
finds the nearest common ancestor of two nodes and then
checks the characteristic formula to the new node to see if
the invariant of the other node also holds at the new node.
Beyer [8] showed that this optimization is essential for the
performance of Impact.

Wrapping up the extension of the original Impact algorithm
to concurrent programs: the single control location becomes
a vector, and the EXPAND routine enumerates all possible
interleavings. This algorithm is very inefficient in its basic
form: due to the full interleaving semantics, the number of
global control locations grows very quickly. We shall amend
this in the next section.

IV. PARTIAL ORDER REDUCTION

Performing a thread interleaving at every step would be
prohibitively expensive. Impact needs some way of reducing
interleaving. Therefore, we present an algorithm that combines
partial-order reduction with the Impact algorithm. A very
simple kind of partial order reduction is to only allow inter-
leaving when shared-variable accesses occur, however a much
stronger reduction is possible in many cases. In this section,
we consider a more advanced partial exploration strategy
that generates monotonic program paths ¶

mono

, wherein
consecutive independent actions only occur in the order of
increasing thread ids [6].

Recall that the soundness proof of the original IMPACT
algorithm rests on three pillars, namely: completeness, safety
and well-labeledness of ARTs. However, partial order reduction
clashes with the original completeness criterion of IMPACT
that requires the very thing we aim to avoid: full expansion of
all thread interleavings. Thus we need a new soundness proof
and, in particular, a weaker completeness criterion, to combine
abstraction with partial-order reduction.

To this end, we introduce the new concept of ¶-completeness,
which is parameterized with an exploration strategy via a set of
program paths ¶, and gives a systematic framework to combine
abstraction with partial-order reduction. Based on this concept,
we also present the dPOR-IMPACT algorithm, which explores
monotonic paths and produces ¶

mono

-complete ARTs.
Before we come to ¶-completeness and dPOR-IMPACT, we

first need to review some basic POR concepts and notation.

A. Independence and Mazurkiewicz Equivalence

Partial-order reduction is based on the notion of indepen-
dence of actions. Intuitively, two actions are independent if
they commute and we can execute them in any order:

Definition 4.1 (Independence): Two actions a1 and a2 are
independent, denoted by a1 || a2, if for all states s 2 S

where a1 and a2 are co-enabled, i.e., a1, a2 2 enabled(l(s)),
we have a1(a2(s)) = a2(a1(s))). Otherwise, we say that they
are dependent and write a1 �|| a2.

Partial-order reduction techniques are based on finding a rep-
resentative subset of the interleavings avoiding the exploration
of all equivalent interleavings, i.e., interleavings that lead to
equivalent orderings of actions. This leads to the notion of
Mazurkiewicz equivalence [9]:

Definition 4.2 (Mazurkiewicz equivalence): Two program
paths are Mazurkiewicz equivalent if they result from exchang-
ing the order of two independent actions.
We call a set of program paths ¶ representative if it contains a
representative path for every Mazurkiewicz equivalence class.

An example for a representative set of program paths are
the monotonic program paths, which are defined as follows:

196 213

v2

v0 v1 u2 v3 v4

l0 l1 l2 l3 l4

Fig. 3: Path correspondence. Rounded rectangles represent ART
nodes v0, . . . , v4 and u2. We have u2.v2. The gray arrows depict
ART edges. The path l0 . . . l5 is a control flow path.

Definition 4.3 (Monotonic paths): A program path º =
(l0,T0, a0, l1) . . . (l

N°1,T

N°1, a

N°1, l
N

) is monotonic if for all
i , j 2 {0, . . . , N °1} with i < j , a

i

|| a

j

and T

i

> T

j

, we have
j 6= i +1. Let ¶

mono

be the set of monotonic program paths.

B. ¶-completeness

We will say that an ART A is ¶-complete with respect
to a set of program paths ¶ if each path º 2 ¶ is covered
by A . Intuitively, a program path is covered if there exists a
corresponding sequence of nodes in the tree, where correspond-
ing means that it visits the same control locations and takes
the same actions. In absence of covers, the matching between
control paths and sequences of nodes is straightforward.

However, a path of the ART may end in a covered node. For
example, consider the path l0 . . . l5 in Figure 3. While prefix
l0l1l2 can be matched by node sequence v0v1u2, node u2 is
covered by node v2, formally u2. v2. But how we can match
the remainder of the path? We are stuck at node u2, a leaf with
no out-going edges. Our solution is to allow the corresponding
sequence to “climb up” the covering order . to a more abstract
node, here we climb from u2 to v2. Node v2 in turn must have
a corresponding out-going edge, as it cannot be covered and
its control location is also l2. Finally, the corresponding node
sequence for l0 . . . l4 is v0 . . . v4.

Figure 4 illustrates the formalization of our notion of path
correspondence. On top of the figure, we depict a fragment
of a program path with locations l

i

, l

i+1 and l

i+2, and, at
the bottom, the corresponding path which climbs from node
u

i+1 to node v

i+1 where u

i+1 and v

i+1 are both at location
l(u

i+1) = l(v

i+1) = l
i+1 and u

i+1. v

i+1. A corresponding path
is allowed to climb up not only at one position i but at any
position i (or none) and at arbitrarily many positions.

This notion is formalized in the following definition:

Definition 4.4 (Corresponding paths & path cover): Con-
sider a program P . Let A be an ART for P and let
º = (l0,T0, a0, l1) . . . (l

N°1,T

N°1, a

N°1, l
N

) be a program path.
A corresponding path for º in A is a sequence v0, . . . , v

n

in
A such that, for all i 2 {0, . . . , N °1}, l(v

i

) = l
i

, and

9u

i+1 2V : v

i

T

i

,a
i! u

i+1 ^ (u

i+1 = v

i+1 _u

i+1. v

i+1)

A program path º is covered by A if there exists a correspond-
ing path v0, . . . , v

n

in A .

We are now ready to define our new completeness criterion:

Definition 4.5 (¶-completeness): Let P be a program and ¶
a set of program paths. ART A for P is ¶-complete if every
path º 2¶ is covered by A .

l
i

l
i+1 l

i+2

v

i

u

i+1 v

i+1 v

i+2
T

i

, a

i

T

i+1, a

i+1

.

T

i

, a

i

T

i+1, a

i+1

Fig. 4: Illustration of Definition 4.4. The diagram shows a
fragment of an ART A with notation for the nodes of the
definition. The dashed line represents a covering edge.

A ¶-complete, safe, well-labeled ART constitutes a proof
of program correctness, as stated in the following proposition:

Proposition 4.6: Let P be a program. Let ¶ be a representative
set of program paths. Assume that A is safe, well-labeled and
¶-complete. Then program P is safe.

C. Abstraction Algorithm

We now combine POR with IMPACT. The obvious starting
point is to modify the EXPAND function in Algorithm 1. We
first introduce the modified expansion function EXPAND⌃.
However, changing only the expansion function turns out to
be insufficient. Due to a subtle interplay between coverings
and POR, the resulting algorithm does not guarantee ¶

mono

-
completeness, and is unsound, which we illustrate with a small
example. We then describe a method to fix this problem and
present Algorithm 2, a sound variant of Impact with POR.

First, we change EXPAND such that only monotonic paths
are unwound. To this end, instead of expanding all threads
at a node, EXPAND⌃ first checks if expanding with T yields
a non-monotonic program path. This check is carried out in
function SKIP⌃ for given node v and thread T . Function SKIP⌃
analyses the thread T

0 and action a

0 executed by the parent u

of v , and returns true if the thread T is smaller than T < T

0

and action a

0 is independent of a.

Algorithm 2 dPOR-IMPACT
1: procedure EXPAND⌃(v)
2: for T 2T with ¬SKIP⌃(v,T) do
3: EXPAND-THREAD(T, v)
4:
5: procedure SKIP⌃(v,T)
6: choose unique T

0, a

0 s.t. u

T

0 ,a0
! v

7: return
°
T < T

0 ^
°
ACTION(v,T) || a

0¢¢^¬LOOP(u,T

0)
8:
9: procedure CLOSE⌃(v)

10: for w 2V

¡v : w uncovered do
11: if l(v) = l(w)^¡(v))¡(w) then
12: . := (.[{(v, w)}) \ {(x, y) 2. | v y}

13: for T with v

T,...! v

0 and not w

T,...! w

0 do
14: EXPAND-THREAD(T, w)

Intuitively, two writes to the same variable are dependent,
a read and a write to the same variable are dependent, but
two reads to the same variable are independent. Two actions
a and a

0 are independent, denoted by a || a

0, if R

a

\W

a

0 =
; ^ W

a

\ (R

a

0 [W

a

0) =; where R

a

and R

a

0 are the variables
being read, and, W

a

and W

a

0 the variables being written.
Additionally, we introduce function LOOP to detect control-

flow loops. Function LOOP(u,T) returns true if action a = (l , N)

197214

of T at node u induces a back edge in the thread’s control
flow. This completes our discussion of EXPAND⌃.

As mentioned before, just modifying EXPAND yields an un-
sound algorithm that does not guarantee ¶

mono

-completeness.
Consider the example program below. Note that to violate
the assertion, the context switch between the two threads
has to happen right after T1 has executed x=1. However, the
covering between the left and the right (2,0)-node prevents this
expansion, leading to an ART that is not ¶

mono

-complete.
In particular, the counterexample path is not covered by
the resulting ART, i.e., there is no corresponding path, as
assert(x==0) is not expanded at the covering (2,0)-node.

0,01,0

2,02,0

3,02,1

§

§
x=1

x=0

Xassert(x==0) .

T1 T2
0: if(*) 0: assert(x==0);
1: x=1; 1:
2: x=0;
3:

the counterexample is
T1 : *, T1 : x=1;, T2 : assert(x==0)

To guarantee ¶
mono

-completeness, we modify CLOSE to
carry out expansions at the covering node, so-called cover
expansions – yielding function CLOSE⌃. We consider actions
that would have been expanded at the covered node, had
there been no cover. These actions are now expanded in the
covering node. In our example, this results in an expansion
of assert(x==0) on the right (2,0)-node, which triggers a
refinement that uncovers the left (2,0)-node and reveals the
counterexample in the next step.

This combination of EXPAND⌃ and CLOSE⌃ guarantees
¶

mono

-completeness, as proved in the following lemma, which
also establishes the correctness of dPOR-Impact:

Lemma 4.7: If Algorithm 2 reports that the program is safe,
the computed ART A is ¶

mono

-complete.

Proof We need to show that every path º 2¶
mono

is covered
by A . We carry out a proof by induction on the length N = |º|
of º. The base case for N = 1 is trivial. Assume that N ∏ 2
and that every path of length at most N °1 is covered. Let
º= (l0,T0, a0, l1) . . . (l

N°1,T

N°1, a

N°1, l
N

) 2¶
pm

be a path of
length N . We need to prove that there exists a corresponding
path v0, . . . , v

N

that meets the criteria of Definition 4.4.
By induction hypothesis, there exists a corresponding path

v

0
0, . . . , v

0
N°1 for the length N °1 prefix of º. As º 2¶

mono

,
we have that SKIP⌃(v

0
N°1,T

N°1) = F al se. Hence, if v

0
N°1 is

not covered, it will be expanded yielding a suitable successor
v

0
N

, and choosing v

i

= v

0
i

for all i 2 {1, . . . , N } we are done. So
let us assume that v

N°1 is covered. Then there exists v

N°1
distinct from v

N°1 such that v

N°1 . v

N°1 and v

N°1 is not
covered. It could be that SKIP⌃(v

N°1,T

N°1) = Tr ue, however
the covering v

0
N°1. v

N°1 must result from an invocation of
CLOSE⌃, forcing expansion of T

N°1 at v

N°1 and thus yields
a suitable successor v

N

. Thus we choose v

i

= v

0
i

for i 2
{1, . . . , N °2}, v

N°1 and v

N

as above, and u

N°1 = v

0
N°1.

D. Conditional Dependence

We now describe how to deal with aliasing in presence of
pointers and shared tables. This leads to dynamic dependencies
determined by the execution state, e.g., when dereferencing
pointers, the dependence relation is determined by pointer
aliasing. Two pointer variables may point to the same location
leading to a dependency, or to disjoint locations. When
accessing tables via indices, dependencies may arise when
two threads access the same position in a table, which depends
on the value of the indexing variable.

Dynamic dependencies can be accommodated in our frame-
work by considering so-called conditional dependence between
actions [2]. Effectively, the dependence relation, which was a
binary relation between actions until now, becomes a ternary
relation, such that dependencies are triples consisting of a state
and two actions. When carrying out partial-order reduction,
the ART is built in the same way as before, except that the
dependency check takes into account the aliasing information.

Computation of the aliasing information can be carried out
by simply inspecting the history of the state. However, note that
covering produces nodes that represent states with potentially
different histories. Hence, if aliasing information is used to
prune expansions, this alias information must also be annotated
in the node labels, to ensure soundness. This can be achieved
as follows: we carry out a simple aliasing analysis along the
history of a node, if we find that there is no aliasing (and
hence no dependence), we refine the nodes along the path with
inductive invariants that enforce absence of the alias. For a pair
of accesses, we define an alias expression al i as, such that the
expression becomes true if and only if the two accesses go
to the same address. The construction of alias expressions for
typical array accesses is described, e.g., in [6].

For illustration, consider the example in Figure 1. For the
path a A, we need to check independence of the access v[i]=2
and v[j]=-2, which gives the alias expression i = j . Let º be
the path to the node at which we check the alias relation, in our
example a A. The accesses are independent if the conjunction
of path formula and alias expression F (º)^ al i as

(|º|°1) is
unsatisfiable. In our example, this formula is unsatisfiable, due
to the assume statement in line 1 of main, and the nodes
along the path are refined with the interpolant i 6= j , and we
can make the reduction depicted in the figure.

V. EXPERIMENTS

We have implemented the techniques described in this
paper in a prototype tool, called IMPARA, a software model
checker for concurrent C programs with POSIX or WIN32
threads. Experiments were run on an Intel Xeon machine
with 8 cores at 3.07 GHz with 50 GB RAM. The time-
out is 900 s and the memory limit is 15 GB. We make
the implementation and detailed results available online at
http://www.cprover.org/concurrent-impact/ for evaluation.

Comparison with Other Tools: We compare the per-
formance of IMPARA 0.2 with the tools CBMC 4.5 [10]
(bounded model checking with partial-order encoding), ES-
BMC 1.20 [11] (bounded model checking, POR and state

198 215

program safe CBMC ESBMC SATABS THREADER IMPARA
dekker y 0.6§ 2.2§ 0.2 TO 0.1
lamport y 12.4§ 18.1§ 0.3 38.1 0.3
peterson y 0.2§ 2.0§ 0.3 4.8 0.1
szymanski y 0.5§ 4.7§ 0.2 13.5 0.2
read_write_u n 0.2 TO 0.8 58.4 0.6
read_write_s y 0.4 TO 0.8 58.1 0.9
time_var_mutex y 0.2 110.3 95.4 4.3 0.1
stack_u n 1.0 TO TO 80.6 0.5
stack_s y 33.5 TO TO 250.1 38.8

TABLE I: IMPARA vs. other tools on competition benchmarks

hashing), THREADER 0.92 [12] (predicate abstraction and
thread-modular reasoning), and SATABS 3.1 [13] (SAT-based
predicate abstraction).

To this end, we use the concurrency benchmarks from
the Second Competition on Software Verification [14], which
includes typical mutual exclusion protocols, such as Dekker,
Peterson, Szymanski and Lamport, as well as programs that
manipulate concurrent data structures.

Some benchmarks contain unbounded loops, which can be
handled by IMPARA, SATABS and THREADER, while CBMC
and ESBMC require an unwinding limit, which we set to 6, the
maximum among the bounded loops. Partial loop exploration
is marked with a star superscript at the respective running time.

We observe that IMPARA shows promising performance
compared to the other tools, despite its prototype status. The
running time for selected benchmarks are given in Table I.
Each program contains assertions to be verified. Column “safe”
indicates if the respective program is safe.

IMPARA 0.2 uses CBMC 4.5 as a front end. The back
end, including the symbolic-execution engine, was written
from scratch. To focus the implementation effort on the
concurrency aspect, we use syntactic weakest preconditions
as an interpolation procedure. For many typical concurrency
benchmarks, weakest preconditions give sufficient invariants.
However, we anticipate that leveraging a more advanced
interpolation procedure could further improve performance.

We have implemented optimizations to speed up the fre-
quently occurring cover checks. In a cascaded approach, we
first use syntactic checks to cover trivial implications that can
be resolved syntactically, e.g., x > 0^ y > 0 trivially implies
y > 0. Then we look up the implication in a table. Finally, if
that fails, we invoke a SMT solver to check implication.

Benchmarks Using Weak Memory Consistency: The
presented algorithm assumes interleaving semantics. Modern
multi-core architectures, however, implement weaker consis-
tency models, and therefore permit additional behaviors. Our
technique can be extended to support popular consistency
models including TSO (x86), PSO, RMO and PowerPC by
combining it with the instrumentation proposed in [15].

The sql benchmark is a bug in PostgreSQL worker
synchronization that occurs on the PowerPC architecture. A
developer fix has also been found to be buggy. IMPARA is able
to verify the safe programs and find counterexamples except
for the PowerPC variant of the PostgreSQL benchmark where
the tool times out. We anticipate that this can be fixed by a
more aggressive expression simplification.

Effect of dPOR and Force Covers: To evaluate the benefit
of dynamic partial-order reduction, and to compare different

program safe CBMC ESBMC SATABS THREADER IMPARA
Sober benchmark

SC y 0.3 X 1.2 X 0.3 X 120 FN 0.7 X
TSO n 0.5 X TO 2.6 X ERR 3.7 X
RMO n 0.5 X TO 2.5 X ERR 3.6 X
PSO n 0.3 X TO 1.4 X ERR 1.7 X
Power n 0.3 X TO 1.4 X ERR 1.7 X
fix_SC y 0.3 X 1.3 X 0.4 X 120 FN 0.7 X
fix_TSO y 0.3 X TO 5.5 X ERR 1.3 X
fix_PSO y 0.3 X TO 5.6 X ERR 1.4 X
fix_power y 0.3 X TO 5.6 X ERR 1.4 X

SQL benchmark
SC y 1.8§ (X) 475.6§ X 0.3 X 1.7 FN 0.4 X
TSO y 6.9§ (X) TO 0.3 X 3.25 FN 0.5 X
Power n 824.9§ X TO TO ERR TO
dev_fix_Power n TO TO 17.7 FP ERR TO

TABLE III: IMPARA on weak memory benchmarks

combinations of force cover and partial-order reduction, we
experiment with four different configurations of IMPARA:

• sPOR: expands interleavings only when an action is
executed that operates on shared variables; the original
implementation of CLOSE is used.

• sPOR+FC: sPOR with force cover (FC).
• dPOR: dPOR-IMACT without force cover; this requires

the CLOSE⌃ function described in Sec. IV-C.
• dPOR+FC: dPOR with force cover.

Table II compares the four different configurations in terms
of their running time (“s” for seconds), number of nodes
(“|V |”) and number of cover checks that require an implication
check by an SMT solver (“impl”). Runs that have timed
out are recorded with “TO” in the time field, and all other
fields are filled with “–”. To quantify the penalty incurred
by cover expansions from CLOSE⌃, we give the percentage
(“C”) of nodes resulting from cover expansions, e.g., 15%
for read_write_s and around 27% for safe Sober weak-
memory examples (to save space, we omit detailed results
for weak memory benchmarks). Note that cover expansions
were crucial to find assertion violations in the weak-memory
benchmarks. For safe programs, we find that dPOR always
produces less nodes than sPOR despite cover expansions.

Clearly, all configurations beat sPOR. On the other hand, we
observe that POR and FC are complementary techniques. POR
removes redundancies arising from thread interleaving, while
FC covers thread-internal branching, e.g., from conditionals
and loops, as well as redundant thread interleavings. For the
latter, FC needs more unwindings than POR. For the smaller
examples, these additional unwindings are few, as paths remain
short, but the cost increases in larger programs. Comparing FC
and POR, we observe that POR tends to reduce the number
of necessary implications checks. This is because FC catches
redundant interleavings that are removed by POR, and because
it is a refinement technique, which triggers implication checks.
Again, the cost of implication checks increases with program
size, which can make POR scale better to larger problems.

VI. RELATED WORK

Partial-order reduction (POR) [2]–[4] has been proposed
as a technique to combat state explosion by exploring only a
representative subset of all possible interleavings, and has been
implemented in the explicit-state model checkers SPIN [16] and
Verisoft [5]. Dynamic POR techniques [17], [18] are based on
the same concepts as classical static POR but capture dynamic

199216

sPOR sPOR+FC dPOR dPOR+FC
LOC safe s |V | impl s |V | impl s |V | impl C s |V | impl C

dekker 57 y 1.3 7407 9 0.2 504 8 0.1 433 3 0% 0.1 331 2 0%
lamport 79 y 9.6 36624 223 1.0 4740 226 1.0 7418 149 54% 0.3 1700 205 13%
peterson 45 y 0.7 3155 55 0.1 419 89 0.3 1081 43 0% 0.1 199 16 0%
szymanski 57 y 2.3 13332 14 0.3 1059 5 0.2 1264 5 0% 0.2 673 2 0%
read_write_u 59 n 5.4 31786 23 1.0 7628 119 1.6 18261 59 0% 0.6 4899 53 0%
read_write_s 68 y 75.2 109096 148 7.0 12932 1457 5.0 36777 129 14% 0.9 7065 223 15%
time_var_mutex 92 y 0.2 867 4 0.2 867 6 0.2 435 3 0% 0.1 252 1 0%
stack_u 144 n TO – – TO – – 3.1 2589 717 0% 0.5 424 81 0%
stack_s 144 y TO – – TO – – TO – – – 38.8 2037 4420 0%

TABLE II: Comparison of different configurations of IMPARA

dependencies induced by pointers on-the-fly during the state-
space exploration.

Our monotone exploration strategy dPOR corresponds to the
one used in [6], where POR is applied to SMT-based bounded
model checking. The idea of cover expansions in function
CLOSE⌃ of our algorithm is inspired by a similar precaution
in stateful dynamic POR [19].

Cimatti et al. combine static POR with lazy abstraction [20]
to verify SystemC programs. There are several differences
to our approach: our POR technique aims at dynamic de-
pendencies induced by pointers, we are using Impact rather
than predicate abstraction, and our approach is geared towards
multi-threaded programs rather than SystemC programs.

Gupta et al. combine predicate abstractions with thread-
modular proof rules [21], [22] in a tool called THREADER [23].

In the setting of single-threaded programs, the IMPACT algo-
rithm has been re-implemented in a tool called WOLVERINE
and compared with SATABS [24]. Beyer et al. have developed
an approach where different invariant-generation techniques
can be combined in a configurable tool CPA-CHECKER [25],
together with techniques such as large block encoding [26].
Using CPA-CHECKER, they compare predicate abstraction
with Impact [8] and evaluate the effectiveness of force covers.

VII. CONCLUSION

We have presented a new software model checking tech-
nique for concurrent programs based on lazy abstraction
with interpolants and partial-order reduction, which performs
very favorably compared to existing tools. In the future, we
would like to incorporate more advanced invariant-generation
techniques and investigate more aggressive POR techniques.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, and also
Subodh Sharma, Luis María Ferrer Fioriti and Matt Lewis for
their valuable feedback.

REFERENCES

[1] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, ser. LNCS,
vol. 4144. Springer, 2006, pp. 123–136.

[2] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems, ser. LNCS. Springer, 1996, vol. 1032.

[3] D. Peled, “All from one, one for all: on model checking using
representatives,” in CAV, ser. LNCS, vol. 697. Springer, 1993, pp.
409–423.

[4] A. Valmari, “Stubborn sets for reduced state space generation,” in
Applications and Theory of Petri Nets, ser. LNCS, vol. 483. Springer,
1989, pp. 491–515.

[5] P. Godefroid, “Software model checking: The VeriSoft approach,” Formal
Methods in System Design, vol. 26, no. 2, pp. 77–101, 2005.

[6] C. Wang, Z. Yang, V. Kahlon, and A. Gupta, “Peephole partial order
reduction,” in TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 382–
396.

[7] K. L. McMillan, “An interpolating theorem prover,” Theor. Comput. Sci.,
vol. 345, no. 1, pp. 101–121, 2005.

[8] D. Beyer and P. Wendler, “Algorithms for software model checking:
Predicate abstraction vs. Impact,” in FMCAD. IEEE, 2012, pp. 106–
113.

[9] A. W. Mazurkiewicz, “Trace theory,” in Advances in Petri Nets, ser.
LNCS, vol. 255. Springer, 1986, pp. 279–324.

[10] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for efficient
bounded model checking of concurrent software,” in CAV, 2013, pp.
141–157.

[11] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
SMT-based context-bounded model checking,” in ICSE. ACM, 2011,
pp. 331–340.

[12] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-based
verifier for multi-threaded programs,” in CAV, 2011.

[13] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
abstraction of ANSI–C programs using SAT,” Formal Methods in System
Design (FMSD), vol. 25, pp. 105–127, September–November 2004.

[14] D. Beyer, “Second competition on software verification – (summary of
SV-COMP 2013),” in TACAS, ser. LNCS, vol. 7795. Springer, 2013,
pp. 594–609.

[15] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig, “Software
verification for weak memory via program transformation,” in ESOP, ser.
LNCS, vol. 7792. Springer, 2013, pp. 512–532.

[16] G. J. Holzmann, “Software model checking with SPIN,” Advances in
Computers, vol. 65, pp. 78–109, 2005.

[17] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL. ACM, 2005, pp. 110–121.

[18] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv, “Cartesian partial-order
reduction,” in SPIN, ser. LNCS, vol. 4595. Springer, 2007, pp. 95–112.

[19] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient
stateful dynamic partial order reduction,” in SPIN, ser. LNCS, vol. 5156.
Springer, 2008, pp. 288–305.

[20] A. Cimatti, I. Narasamdya, and M. Roveri, “Boosting lazy abstraction
for SystemC with partial order reduction,” in TACAS, ser. LNCS, vol.
6605. Springer, 2011, pp. 341–356.

[21] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, pp. 319–340, 1976.

[22] C. B. Jones, “Tentative steps toward a development method for interfering
programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, pp. 596–619,
1983.

[23] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and
refinement for verifying multi-threaded programs,” in POPL. ACM,
2011, pp. 331–344.

[24] D. Kroening and G. Weissenbacher, “Interpolation-based software
verification with WOLVERINE,” in CAV, ser. LNCS, vol. 6806. Springer,
2011, pp. 573–578.

[25] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in CAV, ser. LNCS, vol. 6806. Springer, 2011,
pp. 184–190.

[26] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in FMCAD. IEEE,
2009, pp. 25–32.

200 217

